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Abstract

An n-vertex graph G is c-Ramsey if it contains neither a complete nor an empty
induced subgraph of size greater than c log n. Erdős, Faudree and Sós conjectured that
every c-Ramsey graph with n vertices contains Ω(n5/2) induced subgraphs any two of
which differ either in the number of vertices or in the number of edges, i.e. the number
of distinct pairs (|V (H)|, |E(H)|), as H ranges over all induced subgraphs of G, is
Ω(n5/2). We prove an Ω(n2.3693) lower bound.

1 Introduction

For a graph G = (V,E), call a set W ⊆ V homogenous, if W induces a clique or an
independent set. Let hom(G) denote the maximum size of a homogenous set of vertices of
G. For a positive constant c > 0, an n-vertex graph G is called c-Ramsey if hom(G) ≤ c log n.

Ramsey theory states that every n-vertex graph G satisfies hom(G) ≥ (log n)/2, and for
almost all such G, we have hom(G) ≤ 2 log n. In other words, in a random graph G, the
value hom(G) is of logarithmic order. Moreover, the only known examples of graphs with
hom(G) = O(log n) come from various constructions based on random graphs with edge
density bounded away from 0 and 1. Therefore it is natural to ask whether c-Ramsey graphs
look “random” in some sense.

This question has been an object of intense study. The first result in this area is due to
Erdős and Szemerédi [11], who showed that the edge density of c-Ramsey graphs is bounded
away from 0 and 1. Not much later Erdős and Hajnal [10] proved that for a fixed integer
k, such graphs are k-universal, i.e. they contain every graph on k vertices as an induced
subgraph. This was improved by Prömel and Rödl in [12], where they proved that in fact
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c-Ramsey graphs are d log n-universal, where the constant d depends only on c, which is
asymptotically best possible. A similarly flavored result was obtained by Shelah. In [13] he
proved that every c-Ramsey graph contains 2dn non-isomorphic induced subgraphs, where
again d is some constant depending only on c, settling a conjecture of Erdős and Rényi.

A related question was asked by Erdős and McKay (see [7], [8]), who conjectured that
every c-Ramsey graph contains an induced subgraph with exactly m edges, for every 1 ≤
m ≤ dn2, where again the constant d depends only on c. The conjecture is still open, and
the best currently known result is due to Alon, Krivelevich and Sudakov [3].

In this paper we tackle a similar problem, first posed by Erdős, Faudree and Sós (see [7],
[8]), who stated the following conjecture:

Conjecture 1. For every positive constant c, there is a positive constant b = b(c), such that
if G is a c-Ramsey graph on n vertices, then the number of distinct pairs (|V (H)|, |E(H)|),
as H ranges over all induced subgraphs of G, is at least bn5/2.

At the time the conjecture was stated, its authors knew how to prove an Ω(n3/2) lower
bound. The same lower bound was also obtained as a corollary of a much stronger result
of Bukh and Sudakov in [6]. Very recently it has been improved to Ω(n2) by Alon and

Kostochka in [2]. Here we further improve this bound to Ω(n1+
√

30/4−ε) ≈ Ω(n2.3693−ε).

Theorem 2. For every positive constants c and ε, there is a positive constant b = b(c, ε), such
that if G is a c-Ramsey graph on n vertices, then the number of distinct pairs (|V (H)|, |E(H)|),

as H ranges over all induced subgraphs of G, is at least bn1+
√

30
4
−ε ≈ bn2.3693−ε.

Remark. In fact, as it will become clear in the proof of Theorem 2, we prove a bit stronger
statement. Namely, we show that for Θ(n) different values of k, there are k-vertex induced

subgraphs with Ω(n
√

30
4
−ε) different sizes.

The paper is organized as follows. In Section 2 we introduce some notation and state a
few older results that we will repeatedly use throughout the paper. At the end of Section
2 we formulate Theorem 12, a rather technical statement, from which we are able to quite
easily derive the main result, Theorem 2. This is done in Section 3. Finally, in Section 4 we
prove some technical lemmas that will later be used in the proof of Theorem 12, which we
postpone till Section 5.

2 Basics

For a graph G we denote the number of vertices of G by v(G), and the number of edges

by e(G). The (edge) density of G is a(G) = e(G)
(
v(G)

2

)−1
. For any v ∈ V (G) and a subset

W ⊆ V (G), let d(v,W ) be the number of neighbors of v lying in W . Similarly, if H is an
induced subgraph of G and u ∈ V (H), then dH(u) = d(u, V (H)) will denote the degree of u
in the subgraph H. The relation H ≤ G will always mean that H is an induced subgraph of
G. For a subset A ⊆ V (G) we denote the subgraph of G induced on A by G[A]. To increase
clarity of presentation, if G is clear from the context, we will abbreviate e(G[A]) by e(A).
Finally, for every integer k, with 0 ≤ k ≤ v(G), we define the following quantities:

ψ(k,G) = max{e(H)− e(H ′) : H,H ′ ≤ G with v(H) = v(H ′) = k},
φ(k,G) = |{e(H) : H ≤ G with v(H) = k}|.
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Note that the number of distinct pairs (|V (H)|, |E(H)|) as in Conjecture 1 can be now
written as ∣∣{(v(H), e(H)) : H ≤ G}

∣∣ =

v(G)∑
k=0

φ(k,G).

Erdős, Goldberg, Pach and Spencer ([9]; see also [5] and [2]) derived the following bound
on ψ(k,G) for graphs with edge density bounded away from 0 and 1.

Theorem 3. For any positive 0 < ε < 1/2 and k and n satisfying 5/ε < k < n/2, and
for any graph G on n vertices with density satisfying ε < a(G) < 1 − ε, we have ψ(k,G) ≥
10−4k3/2ε1/2.

Suppose that each vertex v ∈ V (G) is given a nonnegative weight ω(v). For a subgraph
G′ of G let its weight be defined as ω(G′) = e(G′) +

∑
v∈V (G′) ω(v). Generalizing the above

definitions to weighted graphs we introduce a new parameter

φω(k,G) = |{ω(G′) : G′ ≤ G with v(G′) = k}|.

Also, for a vertex v, let dω(v,W ) = d(v,W ) +ω(v) and similarly dωH(u) = dH(u) +ω(u). We
will refer to these values as weighted degrees.

In the sequel we will repeatedly use the following results of Alon and Kostochka [2].
Although Theorem 4 does not appear there in the form in which it is stated below, it can
be inferred from the proof of the main result of [2] (see concluding remarks in [2]).

Theorem 4. For every 0 < ε < 1/2 there is an n0 = n0(ε) so that the following holds. Let
n ≥ n0 and let G be an n-vertex graph with ε < a(G) < 1− ε. Assume that k ≤ εn

3
and every

vertex v ∈ V (G) is given a weight ω(v) ∈ [0, x · ψ(k,G)/k], where x ≥ 1. Then

φω(k,G) ≥ 10−8k

x
.

Moreover one can find 10−8k/x distinct sizes of induced k-vertex subgraphs of G, such that
the difference between consecutive weights is at least mx, where m = 500ψ(k,G)/k.

Definition 5. Let G be a graph on n vertices and let 0 ≤ k ≤ n. Define

m = m(k,G) = 500
ψ(k,G)

k
.

For a k-element subset W of V (G), call a vertex v ∈ V (G) W -typical if∣∣d(v,W )− a(G)(k − 1)
∣∣ ≤ m+ 1.

Theorem 6. Let G be a graph on n vertices and let W be a k-element subset of V (G), with
20 < k ≤ n/3. Then, all but at most |W |/5 vertices inside W are W -typical, and all but at
most |W |/5 vertices outside W are W -typical.

It is also good to keep in mind the following simple observation:
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Observation 7. Let G be a graph, and W a k-element subset of V (G). If each vertex of G
is given a nonnegative weight ω, then every W -typical vertex v satisfies∣∣dω(v,W )− a(G)(k − 1)

∣∣ ≤ m+ ω(v) + 1.

In particular, if the weights are in the range [0, x ·ψ(k,G)/k] for some x ≥ 1, then all typical
vertices satisfy ∣∣dω(v,W )− a(G)(k − 1)|

∣∣ ≤ 2mx.

The two main definitions we are about to state are motivated by the following result of
Erdős and Szemerédi from [11]:

Theorem 8. For every positive constant c, there is some ε = ε(c) > 0, such that if G is an
n-vertex c-Ramsey graph, then ε < a(G) < 1− ε.

Assume that G is a graph on n-vertices and H is an induced subgraph of G of order
nδ. It is clear that hom(H) ≤ hom(G). Therefore, if G is c-Ramsey, then H is c/δ-Ramsey,
so in particular a(H) is bounded away from 0 and 1. Informally, all large subgraphs of a
c-Ramsey graph have edge density bouded away from 0 and 1. It makes sense to define a
similar property for an arbitrary graph.

Definition 9. For 0 < ε < 1/2 and 0 < δ ≤ 1, let D(ε, δ) denote the family of graphs G,
such that all induced subgraphs H ≤ G with v(H) ≥ v(G)δ have density ε < a(H) < 1− ε.

Having defined the class D(ε, δ), it is immediate to derive the following corollary of
Theorem 8:

Corollary 10. Let c and δ be positive constants. There are constants 0 < ε < 1/2 and n0

(depending on c and δ), such that every n-vertex c-Ramsey graph with n ≥ n0 belongs to
D(ε, δ).

Keeping in mind the statement of Corollary 10, from now on we can concentrate our
attention on graphs in classes D(ε, δ). Our aim will be to show that large enough graphs
in D(ε, δ) have many induced subgraphs that differ either by number of vertices or weight
(for a reasonably chosen weight function). The following definition should make this a little
more precise.

Definition 11. For every 0 < ε < 1/2 and 0 < δ ≤ 1, let P(ε, δ) be the set of pairs (α, β),
such that for some positive constants C,D, F and n0 the following holds:
All G ∈ D(ε, δ) with n ≥ n0 vertices satisfy

φω(k,G) ≥ C
k

xF logD n
min

{
kα,

(
ψ(k,G)

k

)β}
(1)

for all k ∈ [ εn
100
, εn

3
] and weight functions 0 ≤ ω ≤ x · ψ(k,G)/k, where x ≥ 1.

We will be working only with graphs whose edge density is bounded away from 0 and 1,
and for all such G, Theorem 3 guarantees that (ψ(k,G)/k)β ≥ Ω(kβ/2) for all k ∈ [ εn

100
, εn

3
].

Therefore if α < β/2, the minimum in (1) is equal to kα, and can change only by a constant
multiplicative factor when we decrease β to 2α. Since we do not care about the constants,
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but only the order of magnitude of φω(k,G), we can always assume that whenever (α, β) ∈
P(ε, δ), we have α ≥ β/2.

Also, since ψ(k,G) ≤ k(k − 1)/2, trivially (ψ(k,G)/k)β ≤ kβ. Therefore if α > β, the
minimum in (1) is equal to (ψ(k,G)/k)β, and will not change when we decrease α to β.
Therefore we can also assume that all pairs (α, β) ∈ P(ε, δ) satisfy α ≤ β.

Finally, we are able to state the main theorem, from which the main result, Theorem 2,
will be derived as a simple corollary.

Theorem 12. Suppose that (α, β) ∈ P(ε, δ). Then
(
β+2
β+5

, α+1
2

)
∈ P(ε, δ/10).

We postpone the proof of Theorem 12 till Section 5. Instead we will now show how it
implies the main result of this paper.

3 Proof of Theorem 2

First note that by Theorem 4, for all 0 < ε′ < 1/2, the pair (0, 0) is in P(ε′, 1). Define

i(α, β) =

(
β + 2

β + 5
,
α + 1

2

)
, and note that i2(α, β) =

(
α + 5

α + 11
,

2β + 7

2β + 10

)
.

Now it is easy to see that both coordinates of the sequence i2n(0, 0) are increasing and
bounded, and hence the sequence converges to a pair (α, β) satisfying

α =
α + 5

α + 11
and β =

2β + 7

2β + 10
,

namely

(α, β) := (
√

30− 5,

√
30

2
− 2) ≈ (0.4772, 0.7386).

By iteratively applying Theorem 12, we get that for every positive constant ε there is some δ,
such that (α−ε, β−ε) ∈ P(ε′, δ) for every ε′ > 0. Let G be a c-Ramsey graph with n = v(G)
large enough. By Corollary 10, G ∈ D(ε′, δ) for sufficiently small ε′. By the definition of
P(ε′, δ), if we set x = 1 and ω(v) = 0 for all v ∈ V (G), then for all k ∈ [ ε

′n
100
, ε
′n
3

]

φ(k,G) ≥ C
k

logD n
min

{
kα−ε,

(
ψ(k,G)

k

)β−ε}

≥ Ω

(
k ·min{kα−ε, k(β−ε)/2}

logD n

)
≥ Ω

(
min{k1+α−2ε, k1+β/2−ε}

)
≥ Ω

(
k
√

30
4
−ε
)
,

where the first inequality follows from Theorem 3, the second inequality holds because k =
Θ(n) and hence logD n = o(kε), and the last one is due to β/2 < α. Hence the number of
distinct pairs (v(H), e(H)) can be bounded as follows:

n∑
k=0

φ(k,G) ≥
∑

k∈[ ε
′n

100
, ε
′n
3

]

φ(k,G) ≥ Ω(n1+
√

30
4
−ε).
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4 Technical lemmas

Theorem 13. Let Mj denote the family of all n(n − 1) · . . . · (n − j + 1) ordered subsets
A = {a1, . . . , aj} of [n] of cardinality j. Let F : Mj → R be a real function, and suppose
that if for A and B = {b1, . . . , bj} ∈Mj, the number of indices i for which ai 6= bi is at most
2 then |F (A) − F (B)| ≤ 1. Let µ = E(F ) denote the expected value of F (T ), where T is
chosen randomly and uniformly in Mj. Then, for every λ > 0,

Pr[|F (T )− µ| ≥ λ
√
j] ≤ 2e−λ

2/2.

Proof. We apply the method in [1], Lemma 2.2, which is based on known arguments, see,
for example, Chapter 7 in [4]. Define a martingale X0, X1, . . . , Xj on the members T of Mj,
where Xi(T ) is the expected value of F (T ′) as T ′ ranges over all ordered subsets T of size j
satisfying t1 = t′1, . . . , ti = t′i. Thus X0 = µ is a constant and Xj(T ) = F (T ). This is clearly
a Doob martingale. We claim that if two ordered sets A and B agree on their first i elements
and differ in element number i+ 1, then |Xi+1(A)−Xi+1(B)| ≤ 1. Indeed, there is a one to
one correspondence π between all ordered sets T ∈Mj that agree with A on their first i+ 1
elements and all those that agree with B on their first i+ 1 elements, so that the symmetric
difference between T and π(T ) is at most 2 for all T . (In this correspondence one simply
swaps bi+1 and ai+1). Thus the two averages Xi+1(A) and Xi+1(B) differ by at most 1. This
easily implies that |Xi+1(T )−Xi(T )| ≤ 1 for all i, as Xi(T ) is the average of numbers of the
form Xi+1(T ′) any pair of which differ by at most 1. The result now follows from Azuma’s
inequality (see, e.g., Theorem 7.2.1 in [4]).

From the above it is easy to get the following:

Lemma 14. Let s be a fixed integer. Let G be a graph on n vertices and let N1, . . . , Nns ⊆
V (G), with Ni having size 0 ≤ ni ≤ n. Then there is an ordering (v1, . . . , vn) of the vertices
in V (G) such that, if we let Sj = {v1, . . . , vj}, we have

(i) for each 1 ≤ j ≤ n and every 1 ≤ i ≤ ns, |Sj ∩Ni| differs from the expectation, j
n
· ni,

by at most 2j1/2
√

2(s+ 1) log(2n),

(ii) for each 1 ≤ j ≤ n, the number of edges in G[Sj] differs from the expectation,
(
j
2

)
·

e(G)
(
n
2

)−1
, by at most 2j3/2

√
2 log(2n).

Proof. Take a random ordering of the vertices of V (G). For every fixed j, the set Sj is a
uniform random subset of size j of the set of vertices of G. Fix 1 ≤ i ≤ ns. By applying
Theorem 13 to the function F (T ) = |T ∩Ni|/2, we get that

Pr

[∣∣|Sj ∩Ni| −
j

n
· ni
∣∣ > 2j1/2

√
2(s+ 1) log(2n)

]
≤ 1

(2n)s+1
.

Using the union bound we show that the probability that our ordering does not satisfy (i)
is at most ns · n · 1/(2n)s+1 = 1/2s+1 < 1/2.

Similarly, applying Theorem 13 to the function F (T ) = e(G[T ])/(2|T |) yields

Pr

[∣∣e(G[Sj])− e(G) ·
(
j

2

)(
n

2

)−1∣∣ > 2j3/2
√

log(2n)

]
≤ 1

2n
.

Again the union bound implies that the probability that our ordering does not satisfy (ii)
is at most n · 1/(2n) = 1/2. Hence the probability that a random ordering of V (G) satisfies
both (i) and (ii) is greater than zero.
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Finally, we need a folklore lemma, whose proof we present for the sake of completeness.

Lemma 15. Given I1, . . . , In open bounded intervals, there exists a set J ⊆ [n], such that
(Ij)j∈J are disjoint and ∑

j∈J

l(Ij) = l(
⋃
j∈J

Ij) ≥
1

2
l(

n⋃
j=1

Ij),

where l(I) denotes the length of I.

Proof. First let us delete all “redundant” intervals, i.e. every time some Ii ⊆
⋃
j 6=i Ij, we

remove Ii. Since the union of all intervals does not change after any such deletion, without
loss of generality we can assume that the family I1, . . . , In contains no redundant intervals.
We may also assume that the left ends of our intervals form a non-decreasing sequence. It
easily follows that also the right ends form a non-decreasing sequence, or otherwise some
Ii+1 ⊆ Ii.

Now observe that whenever j > i+1, the interval Ij lies to the right of Ii (so in particular
they are disjoint), or otherwise Ii+1 ⊆ Ii ∪ Ij. Hence all the intervals with even indices
are pairwise disjoint, and similarly all the intervals with odd indices are pairwise disjoint.
Obviously one of those families has to cover at least half of the entire union.

5 Proof of Theorem 12

Fix some δ, ε > 0 and any pair (α, β) ∈ P(ε, δ). Let γ = (β + 2)/(β + 5) and C,D, F be
as in Definition 11. Recall that by the remark following this definition, we can assume that
β/2 ≤ α ≤ β. Furthermore let G ∈ D(ε, δ/10) with n vertices and fix any k ∈ [ εn

100
, εn

3
]. For

each v ∈ V (G), let ω(v) be its weight, satisfying 0 ≤ ω(v) ≤ x ·ψ(k,G)/k for some x ≥ 1. To
simplify the notation we let m = 500ψ(k,G)/k. Throughout the proof we will assume that
n is big enough. We will also omit all ceiling and floor signs, as they are not crucial. Finally,
in order to avoid tedious constant computations, C ′, D′, F ′, C ′′, D′′, F ′′ . . . will denote some
constants that depend only on δ, ε, α and β, and not on k, n, ω or G. In order to limit the
number of different symbols in the proof, these constants will be often “recycled”. We hope
this does not cause too much confusion. Similarly, C1, C2, . . . will denote some constants
depending only on δ, ε, α and β, but their values will remain fixed throughout the entire
proof.

Theorem 4 guarantees the existence of a sequence H1, . . . , H10−8k/x of k-vertex induced
subgraphs of G such that ω(Hi+1)− ω(Hi) ≥ mx for every 1 ≤ i < 10−8k/x.

Before we start, let us outline our general strategy. First, for each i in the above range, we
will find an interval Ii centered at ω(Hi) that contains some Ni different weights of k-vertex
induced subgraphs of G. Then, using Lemma 15 we will find a large family of pairwise disjont
Ii’s (thus making sure that they all contain different weights) and add up the corresponding
Ni’s. The sum we obtain will surely be a lower bound on the number of distinct weights of
k-vertex induced subgraphs of G. In order to prove the promised lower bound, we will make
sure that for all i, the ratio of Ni and the length l(Ii) of the interval Ii will satisfy

Ni

l(Ii)
≥ C ′

mxF ′ logD
′
n

min{kγ,m
1+α

2 }, (2)

and the total length of this disjoint family of Ii’s will be of order Ω(k ·m).
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Fix some i. By Theorem 6, at least 0.8k vertices in V (Hi) are V (Hi)-typical. Hence we
can find either a sequence u1, . . . , u0.5kγ of typical vertices with different weighted degrees
dωHi or a set Bi ⊆ V (Hi) of typical vertices with the same value of dωHi , say d′i, of size at least
k1−γ. Similarly, there are either typical vertices v1, . . . , v0.5kγ ∈ V (G)− V (Hi) with different
weighted degrees dω(vj, V (Hi)) or a set Ai ⊆ V (G)−V (Hi) of typical vertices with the same
value of dω(−, V (Hi)), say di, of size at least k1−γ.

Assume first that we have found a sequence u1, . . . , u0.5kγ ∈ V (Hi) of typical vertices
with different weighted degrees dωHi . Let v be an arbitrary V (Hi)-typical vertex from V (G)−
V (Hi). Either at least 0.25kγ vertices in the sequence (uj) are adjacent to v, or at least 0.25kγ

vertices in that sequence are non-neighbors of v. Without loss of generality we can assume
that the former holds and u1, . . . , u0.25kγ ∈ NG(v). Consider graphs Hi,j = G[V (Hi)+v−uj].
Then for a fixed i

ω(Hi,j) = ω(Hi) + dω(v,Hi)− 1− dωHi(uj)

are all distinct as j ranges from 1 to 0.25kγ. Moreover, since both uj and v are V (Hi)-typical,
by our assumption on ω and Observation 7,

|ω(Hi,j)− ω(Hi)| ≤ |dω(v,Hi)− dωHi(uj)|+ 1 < 5mx.

Hence if we set Ii = ω(Hi)+(−5mx, 5mx), all the weights ω(Hi,j) will belong to Ii. Therefore
Ni ≥ C ′kγ, and so (2) is satisfied.

We deal with the case when we can find a sequence v1, . . . , v0.5kγ in a similar fashion,
exchanging vj’s in turn with some fixed V (Hi)-typical vertex u ∈ V (Hi), again obtaining
at least 0.25kγ different weights in the interval Ii = ω(Hi) + (−5mx, 5mx). Hence for the
remainder of the proof we assume that there are sets Ai, Bi and numbers di, d

′
i, as described

above.

Let t = k2(1−γ)/3. Fix an arbitrary subset B′i of Bi of size t. We can find a t-element
subset A′i ⊆ Ai such that the (non-weighted) degrees d(−, B′i) of every pair of vertices of A′i
differ by at most

√
t. It is possible since

|Ai| ≥ t3/2 = t · |B
′
i|√
t
.

Let d∗i be the edge density between A′i and B′i, that is

d∗i =
∑
v∈A′i

d(v,B′i)

t2
.

Then by the choice of A′i, we have |d(v,B′i)− td∗i | ≤
√
t for all v ∈ A′i. Applying Lemma 14

to the graph G[B′i] and the neighborhoods of vertices from A′i, or rather their traces on B′i,
one gets the following statement.

Claim 1. We can enumerate B′i = {b1, . . . , bt}, such that for all 1 ≤ z ≤ t:

(i) |e(Sz)− a′i
(
z
2

)
| ≤ 2z3/2

√
2 log k,

(ii) |d(v, Sz)− zd∗i | ≤ 2z1/2
√

5 log k for all v ∈ A′i,

where Sz abbreviates {b1, . . . , bz} and a′i = e(G[B′i])/
(
t
2

)
.
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Proof. Let A′i = {v1, . . . , vt} and then define Nj to be the set of neighbors of vj in the set
B′i. By the remark preceeding the statement of this Lemma, we have

nj = |Nj| = d(vj, B
′
i) ∈ [td∗i −

√
t, td∗i +

√
t]. (3)

Lemma 14 applied to the graph G[B′i] and sets N1, . . . , Nt yields the desired enumeration
B′i = {b1, . . . , bt}. To see that (i) holds, it just suffices to note that t� k, so log(2t) ≤ log k.
For (ii), Lemma 14 (i) guarantees that

|d(vj, Sz)−
z

t
nj| ≤ 2z1/2

√
4 log(2t), (4)

and combining (3) with (4) gives the desired bound.

What we would like to do now is to obtain many k-vertex induced subgraphs of G with
different weights by exchanging the set of vertices Sz ⊆ B′i with many subsets of A′i, possibly
for many values of z.

To get started and see how this idea works in practice, let Tz be some set of z vertices
from A′i, and let H ′i(z) = G[V (Hi) ∪ Tz − Sz]. We compute the weight of this graph.

ω(H ′i(z)) = ω(Hi)−
z∑
j=1

(ω(bj) + dHi(bj)) + e(Sz) +
∑
v∈Tz

(ω(v) + d(v,Hi − Sz)) + e(Tz)

= ω(Hi)− d′iz + e(Sz) +
∑
v∈Tz

(di − d(v, Sz)) + e(Tz)

= ω(Hi) + ∆iz + e(Sz) + e(Tz)−
∑
v∈Tz

d(v, Sz), (5)

where ∆i = di − d′i ∈ [−4mx, 4mx]. If all the degrees d(v, Sz), where v ranges over A′i ⊇ Tz,
were equal, for fixed i and z the weight of H ′i(z) would depend only on e(Tz). Even though
it does not have to be the case (our last claim only guarantees that d(v, Sz) are all “close”
to d∗i z), this will not be a big issue for us, since, as we will later see, by assigning carefully
chosen weights to vertices in A′i, we can compensate for the possibly uneven distribution of
the degrees.

Fix some z ≥ n1/10. Let dmax
i (z) = maxv∈A′i d(v, Sz) and for each v ∈ A′i set ω′(v) =

dmax
i (z)− d(v, Sz). If we again let Tz be some z-subset of A′i, then

ω′(Tz) = e(Tz) +
∑
v∈Tz

ω′(v) = e(Tz)−
∑
v∈Tz

d(v, Sz) + dmax
i (z) · z. (6)

Hence if we combine (5) with (6), the weight of H ′i(z) = G[Hi ∪ Tz − Sz] can be written in
the form

ω(H ′i(z)) = ω(Hi) + ∆iz + e(Sz)− dmax
i (z) · z + ω′(Tz),

where only the last term depends on the choice of Tz as a particular z-subset of A′i.

Claim 2. There are positive constants C1 and D1, such that for all n1/10 ≤ z ≤ t′ = εt/3,
we have

φω′(z,G[A′i]) ≥
C1z

logD1 n
min

{
zα,

(
ψ(z, A′i)

z

)β}
. (7)
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Proof. Let A′′i be any (3z/ε)-element subset of A′i that contains some z vertices spanning the
most edges among all z-vertex subsets of A′i and some z vertices spanning the least edges
among all z-vertex subsets of A′i. By construction, ψ(z, A′′i ) = ψ(z, A′i). Since we assumed
that z is big enough, G ∈ D(ε, δ/10) implies that G[A′′i ] ∈ D(ε, δ). By our assumption
(α, β) ∈ P(ε, δ), we have

φω′(z,G[A′′i ]) ≥
C ′z

logD z · logF n
min

{
zα,

(
ψ(z, A′′i )

z

)β}
,

since from Claim 1 (ii) and Theorem 3 it follows that (provided n is large enough) 0 ≤
ω′ ≤ log n · ψ(z, A′′i )/z. Finally, (7) follows because A′′i ⊆ A′i and therefore φω′(z,G[A′i]) ≥
φω′(z,G[A′′i ]).

Let us again rewrite formula (5).

ω(H ′i(z)) = ω(Hi) + ∆iz + a′i

(
z

2

)
+ (e(Sz)− a′i

(
z

2

)
)

+e(Tz)−
∑
v∈Tz

(d(v, Sz)− d∗i z)− d∗i z2.

Now let ai = a(G[A′i]) and recall that z ≥ n1/10. Since:

• |e(Sz)− a′i
(
z
2

)
| ≤ 2z3/2

√
2 log k by Claim 1 (i),

• |d(v, Sz)− d∗i z| ≤ 2z1/2
√

5 log k by Claim 1 (ii),

• |e(Tz)− ai ·
(
z
2

)
| ≤ ψ(z, A′i) by the definition of ψ and

• ψ(z, A′i) ≥ 10−4ε1/2z3/2 by Theorem 3 and the assumptions on G and z,

we conclude that ω(H ′i(z))− ω(Hi) lands in the interval

Ii(z) = ∆iz + (a′i + ai)

(
z

2

)
− d∗i z2 + C2 log k ·

(
− ψ(z, A′i), ψ(z, A′i)

)
, (8)

where C2 is some constant depending only on ε. In particular, the following is true.

Claim 3. We can find k-vertex induced subgraphs of G with at least φω′(z,G[A′i]) different
weights in the interval ω(Hi) + Ii(z).

In the remainder of the proof we will carefully estimate the number of different weights
in all these intervals. Recall that n1/10 ≤ z ≤ t′ = εt

3
is the number of vertices we want

to exchange. For the sake of brevity let |Ii(z)| denote max{| inf Ii(z)|, | sup Ii(z)|}, i.e. how
much the weight of H ′i(z) can possibly differ from the weight of Hi, and

c(Ii(z)) = ∆iz + (a′i + ai)

(
z

2

)
− d∗i z2 (9)

will denote the center of the interval Ii(z).
Before we proceed with the counting, first let us prove a technical lemma.

10



Claim 4. For all z ≥ n1/10, the centers c(Ii(z + 1)) and c(Ii(z)) satisfy

|c(Ii(z + 1))− c(Ii(z))−∆i| < 5z.

In particular,
|∆i| − 5z < |c(Ii(z + 1))− c(Ii(z))| < |∆i|+ 5z.

Proof. Looking at the definition of c(Ii(z)) in (9), it is easy to see that the difference δ =
c(Ii(z + 1))− c(Ii(z)) can be computed as follows:

δ = ∆i + (a′i + ai) · (
(
z + 1

2

)
−
(
z

2

)
) + d∗i (z

2 − (z + 1)2)

= ∆i + (a′i + ai)z − d∗i (2z + 1).

Hence, ∣∣δ −∆i

∣∣ ≤ (a′i + ai)z + d∗i (2z + 1) ≤ 4z + 1,

where the last inequality holds because ai, a
′
i, d
∗
i ∈ [0, 1].

We will now analyze the function z 7→ |Ii(z)| and split the proof into several cases. First,
recall that m = 500ψ(k,G)/k and z is in the range n1/10 ≤ z ≤ t′ = εt/3.

5.1 Case 1. maxz |Ii(z)| < 3mx.

In particular Ii(t
′) ⊆ (−3mx, 3mx). We set Ii = ω(Hi) + (−3mx, 3mx) and note that by

Claims 2 and 3,

Ni ≥ φω′(t
′, G[A′i]) ≥

C1t
′

logD1 n
min

{
(t′)α,

(
ψ(t′, A′i)

t′

)β}

≥ C ′

logD
′
n

min{k
2
3

(1−γ)(1+α), k
2
3

(1−γ)(1+β
2

)} =
C ′

logD
′
n
kγ, (10)

since α ≥ β/2 and 2
3
(1 − γ)(1 + β

2
) = γ. Finally, note that l(Ii) = 6mx and therefore

inequality (2) is satisfied. This completes the proof in Case 1.

5.2 Case 2. maxz |Ii(z)| ≥ 3mx.

Let z0 be the minimal z such that |Ii(z)| ≥ 3mx. First we show that |Ii(z0)| is in fact not
much larger than 3mx. To make it precise, let us prove the following claim.

Claim 5. If z0 > n1/10, then there is a constant C3 depending only on ε, such that

|Ii(z0)| < C3mx.

Proof. Minimality of z0 implies that |c(Ii(z0 − 1))| and C2 log k · ψ(z0 − 1, A′i) are at most
3mx. By Claim 4,

|c(Ii(z0))| ≤ 3mx+ |∆i|+ 5z0 < C ′mx,

11



where the second inequality holds since, by Theorem 3, we have 3mx ≥ ψ(z0 − 1, A′i) =

Ω(z
3/2
0 ) and, by Observation 7, we have |∆i| ≤ 4mx (recall that we work only with typical

vertices). Finally, note that ψ(z0, A
′
i) differs from ψ(z0 − 1, A′i) by at most z0 and therefore

|Ii(z0)| = |c(Ii(z0))|+ C2 log k · ψ(z0, A
′
i) < C ′mx+ C ′′ log k · ψ(z0 − 1, A′i) < C3mx.

From (8) it easily follows that

|Ii(z)| ≤ |∆i|z + |(a′i + ai)

(
z

2

)
− d∗i z2|+ C2 log k · ψ(z, A′i), (11)

and therefore we can split the proof into further subcases, depending on which of the three
terms on the right-hand side of (11) is the “dominant” term.

5.2.1 Case 2a. C2 log k · ψ(z0, A
′
i) ≥ mx.

First note that z0 = Ω(
√

mx
log k

), simply because ψ(z,−) ≤
(
z
2

)
. Claim 5 allows us to set

Ii = ω(Hi) + (−C3mx,C3mx) ⊇ ω(Hi) + Ii(z0). Finally by Claims 2 and 3,

Ni ≥ φω′(z0, G[A′i]) ≥
C1z0

logD1 n
min

{
(z0)α,

(
ψ(z0, A

′
i)

z0

)β}
=

C1

logD1 n
min{z(1+α)

0 , ψ(z0, A
′
i)
βz1−β

0 }

≥ C ′

logD
′
n

min{(mx)
1+α

2 , (mx)β(mx)
1−β

2 } =
C ′

logD
′
n

(mx)
1+α

2 , (12)

since α ≤ β. The length of Ii is l(Ii) = 2C3mx, hence the inequality (2) is satisfied. This
completes the proof in Case 2a.

5.2.2 Case 2b. z0 ≥
√
mx/3 (takes care of |(a′i + ai)

(
z0
2

)
− d∗i z2

0 | ≥ mx).

Note that |∆i| <
√
mx log k or else the center of Ii(z1), where z1 =

√
mx/log1/4 k < z0 would

be at distance at least

|∆i|z1 − |(a′i − ai(z1))

(
z1

2

)
− d∗i z2

1 | ≥ mx log1/4 k −O(
mx√
log k

) > 3mx

from 0, contradicting the minimality of z0. From (11) and the above bound on |∆i| it
follows that |Ii(

√
mx/log k)| ≤ C ′ mx√

log k
≤ 0.1mx. In the sequel we will combine this simple

observation with the following claim.

Claim 6. For
√
mx/log k ≤ z < z0, the intervals Ii(z) and Ii(z + 1) intersect.

Proof. By Claim 4, the distance δ between the centers of these two intervals is at most
|∆i| + 5z, and ψ(z, A′i) ≥ C ′z3/2 � (mx)1/2+1/6 � |∆i|. Now we are done, since l(Ii(z)) =
2C2 log k · ψ(z, A′i).
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The above observation, together with Claim 6 show that the family {Ii(z) :
√
mx/log k ≤

z ≤ z0} covers an interval of length at least 2.9mx (either [0.1mx, 3m] or [−3m,−0.1mx]).
Also, Claim 5 shows that Ii(z0) (and by the choice of z0 also all the other Ii(z)’s in question)
is entirely contained in −ω(Hi) + Ii = (−C3mx,C3mx).

Again, by Claims 2 and 3, in each of the ω(Hi) + Ii(z)’s we can find at least

φω′(z,G[A′i]) ≥
C1

logD1 n
min{z1+α, ψ(z, A′i)

βz1−β}

≥ C ′

logD
′
n

min{m
1+α

2 , l(Ii(z))βm
1−β

2 }

weights. Lemma 15 ensures we can find a collection of disjoint Ii(z)’s, indexed by z ∈ Z, of
total length at least 1.45m. Hence

Ni ≥
∑
z∈Z

C ′

logD
′
n

min{m
1+α

2 , l(Ii(z))βm
1−β

2 }

≥ C ′

logD
′
n

min{m
1+α

2 ,
∑
z∈Z

l(Ii(z))βm
1−β

2 }

≥ C ′

logD
′
n

min{m
1+α

2 ,

(∑
z∈Z

l(Ii(z))

)β

m
1−β

2 }

≥ C ′′

logD
′′
n

min{m
1+α

2 ,mβm
1−β

2 }

=
C ′′

logD
′′
n
m

1+α
2 , (13)

where the third inequality holds because 0 ≤ β ≤ 1 and therefore y 7→ yβ is concave. Once
again, l(Ii) = 2C3mx and therefore inequality (2) is satisfied. This completes the proof in
Case 2b.

5.2.3 Case 2c. |∆i|z0 ≥ mx and ψ(z0, A
′
i) ≥ |∆i|.

We can easily assume that neither of the previous subcases holds, so in particular C2 log k ·
ψ(z0, A

′
i) < mx and z0 <

√
mx/3, which implies |∆i| >

√
3mx. It is not hard to see that

|∆i|z0 cannot be larger than 8mx. If it was the case, i.e. |∆i|z0 > 8mx, then by Claim 4,

|c(Ii(z0 − 1))| > 8mx− |∆i| − 5z ≥ 8mx− 4mx−mx = 3mx,

contradicting the minimality of z0. Moreover, z0 is not too small either, since

z2
0 > ψ(z0, A

′
i) ≥ |∆i| >

√
3mx =

√
1500x · ψ(k,G)/k ≥ C ′k1/4. (14)

Before we proceed, we need the following claim.

Claim 7. For all z0/30 ≤ z ≤ z0,

10−3ψ(z0, A
′
i) ≤ ψ(z, A′i) ≤ 48ψ(z0, A

′
i).
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Proof. The first inequality follows from a simple averaging argument (see Observation 4 in
[2]), which implies that

ψ(z, A′i) ≥ ψ(z0, A
′
i) ·
(
z

2

)
/

(
z0

2

)
.

Finally, Lemma 6 in [2] yields that for every n-vertex graph G and all 0 < s < k < n/3, we
have ψ(s,G) ≤ 48ψ(k,G). This implies the second inequality.

Claim 7 implies that 0 ≤ ω′ ≤ C ′z1/2
√

log k ≤ log n · ψ(z, A′i)/z for all z in the range
[z0/30, z0]. Moreover, recall that (14) implies that z0/30 ≥ n1/10, and hence by Claims 2 and
3, in each interval ω(Hi) + Ii(z) we find at least

φω′(z,G[A′i]) ≥
C1z

logD1 n
min

{
zα,

(
ψ(z, A′i)

z

)β}
=

C1

logD1 n
min{z1+α, ψ(z, A′i)

βz1−β}

≥ C ′

logD
′
n

min{l(Ii(z))
1+α

2 , l(Ii(z))βl(Ii(z))
1−β

2 }

=
C ′

logD
′′ l(Ii(z))

1+α
2

k-vertex induced subgraphs with different weights. Now recall that |∆i|z0 ≤ 8mx and
therefore

|c(Ii(z0/30))| ≤ |∆i|
z0

30
+ 3

( z0

30

)2

≤ 4mx

15
+
mx

900
≤ mx

2
.

Moreover, by Claims 4 and 7,

|c(Ii(z + 1))− c(Ii(z))| < |∆i|+ 5z ≤ 2ψ(z0, A
′
i) ≤ C2 log k · ψ(z, A′i) = l(Ii(z))/2,

so the intervals Ii(z) and Ii(z + 1) intersect and hence the family {I ′i(z) : z0/30 ≤ z ≤ z0}
will cover an interval of length at least 2.5mx. Lemma 15 ensures we can find a collection
of disjoint Ii(z)’s, indexed by z ∈ Z, of total length not smaller than 1.25m. By (11),

|Ii(z0)| ≤ |∆i|z0 + z2 + C2 log k · ψ(z0, A
′
i) < 8mx+mx+mx,

and therefore all Ii(z)’s in question are entirely contained in the interval (−10mx, 10mx).
Hence, if we set Ii = ω(Hi) + (−10mx, 10mx), we will have

Ni ≥
C ′

logD
′
n

∑
z∈Z

l(Ii(z))
1+α

2 ≥ C ′

logD
′
n

(∑
z∈Z

l(Ii(z))

) 1+α
2

≥ C ′

logD
′
n
m

1+α
2 , (15)

where the second inequality follows by concavity of y 7→ y
1+α

2 , since 0 ≤ α ≤ 1. Finally, let
us note that inequality (2) is satisfied. This completes the proof in Case 2c.
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5.2.4 Case 2d. |∆i|z0 ≥ mx and ψ(z0, A
′
i) < |∆i|.

Recall that t′ = εt/3. This time we have to let z be a little larger, i.e. we define

z1 = min{t′,min{z : ψ(z, A′i) ≥ |∆i|}}.

Note that there are two distinct cases to consider, depending on which value in the above
minimum is smaller.

Case 2d-A. z1 = t′ and ψ(z, A′i) < |∆i| for all z ≤ z1.

First note that z1 � ψ(z1, A
′
i) < |∆i|, so

c(Ii(z1)) ≥ |∆i|z1 − z2
1 ≥ 0.5|∆i|z1,

and

c(Ii(z1/30)) ≤ |∆i|
z1

30
+
( z1

30

)2

≤ 0.1|∆i|z1.

Claim 8. There are at least C ′z1/ log k pairwise disjoint intervals among {Ii(z) : z1/30 ≤
z ≤ z1}.

Proof. Since |∆i|z “dominates” both z and l(Ii(z)), intuitively it is clear that whenever
z2 − z1 is big enough, Ii(z1) and Ii(z2) are disjoint. Formally, by Claim 4,

|c(Ii(z2))− c(Ii(z1))| ≥ (z2 − z1) · |∆i| − 5z2(z2 − z1)

= (z2 − z1) · (|∆i| − 5z2) ≥ (z2 − z1)|∆i|
2

,

and therefore whenever

z2 − z1 ≥ 4C2 log k ≥ l(Ii(z1)) + l(Ii(z2))

|∆i|
,

the intervals Ii(z1) and Ii(z2) are disjoint.

Note that for each z,

|Ii(z)| ≤ |∆i|z + z2 + C2 log k · ψ(z, A′i) < 2|∆i|z,

so (−2|∆i|t′, 2|∆i|t′) contains all the intervals Ii(z), with z1/30 ≤ z ≤ z1. Finally, z1/30 ≥
n1/10, and so by Claims 2, 3 and 8, if we set Ii = ω(Hi) + (−2|∆i|t′, 2|∆i|t′), we will get

Ni ≥
C ′

log k
t′ · C1t

′

logD1 n
min

{
(t′)α,

(
ψ(t′, A′i)

t′

)β}

≥ t′ · C ′′

logD
′
n

min{k
2
3

(1−γ)(1+α), k
2
3

(1−γ)(1+β
2

)} = t′ · C ′′

logD
′
n
kγ. (16)

Recall that we are exchanging only V (Hi)-typical vertices and therefore |∆i| ≤ 4mx. Hence
l(Ii) ≤ 16mx · t′ and therefore inequality (2) is satisfied. That completes the proof in Case
2d-A.

Case 2d-B. ψ(z1, A
′
i) ≥ |∆i|.
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We can simply rewrite the proof of Case 2c here, replacing z0 with z1. The only change
is that Ii = ω(Hi) + (−C ′Mx,C ′Mx), where M = |∆i|z1 and |c(I ′i( z130

))| ≤ 0.5Mx, and in

(15), m
1+α

2 will be replaced by M
1+α

2 . Hence we consider Case 2d-B resolved.

To finish the proof, note that each time (see: (10), (12), (13), (15), (16)) we were able
to construct at least Ni graphs with different weights in the interval Ii, such that the afore-
mentioned inequality (2) holds:

Ni

l(Ii)
≥ C ′

mxF ′ logD
′
n

min{kγ,m
1+α

2 }. (2)

Moreover, the intervals Ii, which are centered at ω(Hi), all have length at least mx. Therefore
these intervals cover the (disjoint!) family {ω(Hi) + [−0.5mx, 0.5mx] : 1 ≤ i ≤ 10−8k/x}.
Hence

l(

10−8k/x⋃
i=1

Ii) ≥ 0.5 · 10−8k ·m.

By Lemma 15, we can find a subfamily of pairwise disjoint Ii’s of joint length C ′km. That
gives us at least

C ′km ·min
Ni

l(Ii)
≥ C ′k

xF ′ logD
′
n

min{kγ,m
1+α

2 } =
C ′′k

xF ′ logD
′
n

min

{
k
β+2
β+5 ,

(
ψ(k,G)

k

) 1+α
2

}

different weights, for some absolute constants C ′′, D′, F ′. This completes the proof.

6 Concluding remarks

It seems that the main reason why our argument fails to prove an Ω(n5/2) lower bound is
the lack of deeper understanding of the behavior of the function z 7→ ψ(z,G). The only
estimates for ψ(z,G) we are using in the proof, namely Ω(z3/2) ≤ ψ(z,G) ≤ O(z2), do not
exploit the dependence of ψ(z,G) and ψ(z′, G) for different values of z and z′ (except for
when z and z′ are of the same order of magnitude, see Claim 7). Note that in a random
graph G(n, p), where p ∈ (0, 1) is fixed (independent of n), with high probability we have
ψ(z,G) = Θ(z3/2) for all z = nΩ(1).

Suppose we assume that there is some ρ = ρ(G) ∈ [1/2, 1], such that ψ(z,G) ≈ z1+ρ for
all z = nΩ(1). A simple (but lengthy and tedious) analysis of the proof shows that under
that additional assumption (which we will not try to make much more precise), Theorem 12
could be improved to (note that since the order of ψ(k,G) is known, the parameter β is now
obsolete)

(α, ∗) ∈ P(ε, δ) =⇒
(

2 + 2α

5 + 2α
, ∗
)
∈ P(ε, δ/10).

This in turn would imply an Ω(n5/2−ε) lower bound for the number of distinct sizes of induced
subgraphs. Further analysis shows that even a much more modest assumption of the form
Ω(z3/2+ρ1) ≤ ψ(z,G) ≤ Ω(z2−ρ2), where at least one of ρ1, ρ2 is positive, would further
improve the current lower bound.
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[9] P. Erdős, M. Goldberg, J. Pach, and J. Spencer, Cutting a graph into two dissimilar
halves, J. Graph Theory 2 (1988), 121–131.
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