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Abstract

A group of players are supposed to follow a prescribed profile of strategies.
If they follow this profile, they will reach a given target. We show that if the
target is not reached because some player deviates, then an outside observer
can identify the deviator. We also construct identification methods in two
nontrivial cases.

1 Introduction

Alice and Bob alternately report outcomes (Heads or Tails), which each of them is
supposed to generate by tossing a fair coin. If both of them follow through, then
the realized sequence of outcomes is random and with probability 1 will pass known
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statistical tests. Suppose that the sequence of outcomes does not pass a given test: for
example, the long-run frequency of Heads does not converge to 1/2. Can an outside
observer who observes only the sequence of outcomes identify who among Alice and
Bob did not generate the outcomes by tossing a fair coin?

With regards to the explicit test suggested above, if the outcome sequence fails
the test, it is easy to identify who is responsible by checking separately the long-
run frequency of Heads in the sequences produced by each player. Consider now a
different test: Alice’s and Bob’s outcomes control a one-dimensional random walk
which moves to the right when a Head is reported, and to the left when a Tail is
reported. Alice controls the odd periods and Bob controls the even periods, and they
pass the test if the realized walk crosses the origin infinitely often. We assume that
the coin flips are generated sequentially, and that each player observes the previous
flips of the other player before announcing her or his next outcome. A version of this
test that is also interesting is the one in which Alice and Bob pass the test if the walk
visits the origin at least once after the initial step.

Here, too, if Alice and Bob generate the outcomes by tossing fair coins, the realized
sequence passes the test with probability 1. Suppose this does not happen, can one
identify from only the reported outcomes who among the two is responsible for the
test’s failure? The reader may want to stop at this point and think whether this is
possible.

We study a more general form of this question, in which each player has some
probabilistic rule according to which they are supposed to generate outcomes in every
period. The blame function identifies a player, who is proclaimed the deviator, when
the outcome is outside some target set. In our opening example, the target set is the
set of realizations with long-run frequency 1/2 of Heads, and in the second example
the target set is the set of all realizations where the induced random walk crosses the
origin infinitely often. Given a target set, we seek a blame function with the property
that, if only one player deviates from her prescribed rule, then the probability that
the realization is outside the target set and an innocent player is blamed is small.

Our motivation comes from Game Theory. The most studied solution concept
in Game Theory is the Nash Equilibrium ([11]), which is a profile of strategies, one
for each player, such that no player can profit by deviating from his or her strategy.
A common way to construct a Nash Equilibrium in dynamic games is to punish a
player who is caught deviating from their prescribed strategy, see, e.g., [3]. To date,
detecting deviations is known only in simple cases, e.g., when players are supposed to
choose their actions according to the same distribution, independently of past play,
and punishment is initiated after incorrect long-run frequency of actions. Our result
enables the detection of deviations from more complicated strategies. Indeed, our
result can be used to provide an alternative proof for the existence of an ε-equilibrium
in repeated games with tail-measurable payoffs, see [1].
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The paper is also related to statistical decision theory. Recall that in a statistical
decision problem (See, for example, [2, Chapter 7]), a statistician observes a realiza-
tion from a distribution that depends on an unknown parameter, and then makes a
decision. The statistician’s loss is a function of the unknown parameter and her deci-
sion. In our problem, a realization is an infinite sequence of outcomes, the parameter
space is all distributions induced by possible deviations of a single player, the statis-
tician’s decision is a player to blame, and the statistician loses if an innocent player
is blamed. Our blame function is, in the terminology of statistical decision theory,
a decision rule. The twist is that in our problem the statistician makes a decision
only if the realization is outside the target set. We show that in our environment the
statistician has a decision rule with zero risk.

An explicit statistical problem related to our work is the slippage problem, see,
e.g., [10, 8]. In this problem, one would like to test whether several given populations
have the same mean, and, if not, find the population with the maximal mean. Put in
the language of our problem, in the slippage problem (a) the selections of each player
are independent of past selections and are identically distributed, and (b) the only
possible deviation is to increase the mean of one’s choices.

The paper is structured as follows. In Section 2 we formally describe a general
model, the concept of a blame function, and the main results. In Section 3 we
construct blame functions for two nontrivial examples, including the one-dimensional
random walk. In Section 4 we present a non-constructive proof for the general case,
and we conclude in Section 5.

2 Model and Main Results

Throughout the paper, we fix a finite set I of players, and for each player i ∈ I we
fix a finite set of actions Ai. Denote by A =

∏
i∈I Ai the set of action profiles.

The set of finite realizations is the set A<N of finite sequences of action profiles.
A pure strategy for player i is a function σi : A<N → Ai, and a behavior strategy
for player i is a function σi : A<N → ∆(Ai), where ∆(Ai) is the set of probability
distributions over Ai. Denote by zn = (zni )i∈I the action profile selected by the players
in period n, and by σi(z

n
i | z1, z2, . . . , zn−1) the probability that σi selects the action

zni in period n, provided the action profiles selected in the first n − 1 periods are
z1, z2, . . . , zn−1. Denote by Σi the set of behavior strategies of player i.

We endow the space AN of realizations with the product topology and the induced
Borel σ-algebra. Every behavior strategy profile σ = (σi)i∈I ∈

∏
i Σi induces a proba-

bility distribution Pσ over realizations. Abusing notations, for every finite realization
z ∈ A<N we denote by Pσ(z) the probability that the sequence z will be generated
under σ. Given a strategy profile σ = (σi)i∈I , denote by σ−i = (σj)j 6=i the strategies
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of all players except player i.
Even though we use game theoretic terminology (players, actions, strategies), we

emphasize that we do not define a game between the players, as there are no payoff
functions.

2.1 Testability

Definition 2.1 (Goal). A goal is a pair (σ∗, D) where σ∗ ∈
∏

i Σi is a behavior
strategy profile and D ⊆ AN is a Borel set of realizations, which is termed the target
set.

The strategy profile σ∗ is a prescribed way for the players to play. The target set
D is a set of realizations that they are supposed to reach if they follow through their
prescribed strategy. We are interested in cases in which the probability Pσ∗(D) that
the prescribed strategy profile attains the target set is 1 or close to 1.

Remark 2.2 (Alternate Play). In our model, players make their choices simultane-
ously. Yet, the model can accommodate alternate play. Indeed, if I = {0, 1, . . . , |I| −
1}, and if for each player i, the strategy σ∗i randomizes only in periods n such that n
mod |I| = i, then in effect the players play alternately.

Definition 2.3 (Blame function). A blame function is a Borel function f : Dc → I.

The interpretation of a blame function is that if the players generate a realization
s ∈ AN that misses the target set, player f(s) is blamed as the player who did not
follow her part of σ∗.

Definition 2.4 (δ-testability). Fix δ ≥ 0. The goal (σ∗, D) is δ-testable if there exists
a blame function f such that for every player i ∈ I and every strategy σi for player i
we have Pσi,σ∗−i

(Dc and {f 6= i}) ≤ δ.

The interpretation of testability is that if some player i deviates, then the probabil-
ity that a different player j is blamed is at most δ. Thus, with probability Pσi,σ∗−i

(D)
no player is blamed, and with probability at least Pσi,σ∗−i

(Dc)− δ the blame function
identifies the player who deviated from σ∗. We note that if (σ∗, D) is δ-testable then

Pσ∗(D) = 1−Pσ∗(D
c) = 1− 1

|I| − 1

∑
i∈I

Pσi,σ∗−i
(Dc and {f 6= i}) ≥ 1− |I|

|I| − 1
δ.

2.2 Main Results

Our main results are the following.
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Theorem 2.5. Every goal (σ∗, D) is 2
√

(|I| − 1)ε-testable, as soon as Pσ∗(D) > 1−ε.

Remark 2.6. A random blame function is a function ϕ : Dc → ∆(I), with the
interpretation that if the realization s is not in D, then each player i is blamed with
probability ϕi(s). If in the definition of δ-testability we allow for random blame
functions, then we could get rid of the constant 2 in Theorem 2.5, as can be seen in
the proof of the theorem.

As the next result states, in the case that Pσ∗(D) = 1, the goal (σ∗, D) is in fact
0-testable.

Theorem 2.7. Every goal (σ∗, D) such that Pσ∗(D) = 1 is 0-testable.

As we now observe, Theorem 2.7 is a consequence of Theorem 2.5.

Proof of Theorem 2.7 using Theorem 2.5. Fix a goal (D, σ∗) with Pσ∗(D) = 1. Let
(δk)

∞
k=1 be a sequence of positive reals such that

∑∞
k=1 δk <∞. By Theorem 2.5, the

goal (D, σ∗) is δk-testable for every k ∈ N. Let fk : Dc → I be a blame function such
that Pσi,σ∗−i

(fk 6= i) < δk, for every player i ∈ I and every strategy σi ∈ ΣB
i . By the

Borel-Cantelli Lemma, Pσi,σ∗−i
(fk 6= i for infinitely many k) = 0.

Let f : Dc → I be such that f(s) = i only if fk(s) = i for infinitely many k’s.
Then f satisfies that Pσi,σ∗−i

(f 6= i) = 0, for every player i ∈ I and every strategy

σi ∈ ΣB
i , as desired.

3 Examples

In this section we present two examples in which we can describe explicit blame
functions. The first example is rather simple, the second is more sophisticated. In
both examples, there are two players, denoted A and B, and to simplify notations,
we will assume that Player A is active only in odd periods, and Player B is active
only in even periods.

3.1 Adjacent Ones

Two players generate an infinite sequence in {0, 1}N, where Player A chooses the odd
bits and Player B chooses the even ones. In period n, the player whose turn it is to
choose the bit is supposed to choose 1 with probability µ/n, and 0 with probability
1−µ/n, where µ > 0 is a small real. Formally, the strategy pair σ∗ = (σ∗A, σ

∗
B) is given

by σ∗A(1 | z) = µ/n for every z ∈ {0, 1}n−1 such that n is odd, and σ∗B(1 | z) = µ/n
for every z ∈ {0, 1}n−1 such that n is even.
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Call a sequence in {0, 1}N bad if there is an odd number n ≥ 1 such that the bits
in both periods n and n + 1 are 1. That is, Player B chooses 1 exactly one period
after Player A chooses 1. A sequence is good if it is not bad, and the target set D
is the set of all good infinite sequences. The probability of falling into the target set
under the process above is 1− ε, where ε is given by

ε =
∞∑
k=0

( ∏
0≤i<k

(1− µ2

(2i+ 1)(2i+ 2)
)

)
· µ2

(2k + 1)(2k + 2)
= Θ(µ2).

By Theorem 2.5, the goal (σ∗, D) described above is O(µ)-testable. Intuitively,
if Player A selected 1 too often, she is proclaimed the deviator, and otherwise it is
Player B. Formally, let s = (s1, s2, s3, . . .) be a sequence in Dc, that is, a sequence
containing two consecutive ones in positions 2k + 1, 2k + 2 for some k ≥ 0. If∑

k≥0,s2k+1=1

µ

2k + 2
> µ,

then f(s) = A. Otherwise, f(s) = B.
Suppose Player A is honest. If so, then the expectation of the sum∑

k≥0,s2k+1=1

µ

2k + 2

is ∑
k≥0

µ

2k + 1
· µ

2k + 2
< µ2.

Therefore, by Markov’s Inequality, the probability this sum exceeds µ is smaller than
µ, showing that in this case the probability that the blame function blames Player A
is less than µ. This conclusion holds for every strategy of Player B, as this step is
independent of the bits selected by her.

Suppose Player B is honest. Then s ∈ Dc and f(s) = B only if
∑

k≥0,s2k+1=1
µ

2k+2
≤

µ and there is an index k ≥ 0 such that s2k+1 = s2k+2 = 1. However, the conditional
probability of this event given any fixed possibility of the odd bits of s satisfying
the above inequality is at most

∑
k≥0,s2k+1=1

µ
2k+2

≤ µ. Therefore, in this case the

probability that s ∈ Dc and f(s) = B is at most µ. This shows that the goal
considered here is µ-testable by the explicit blame function f described above.

3.2 Avoiding the origin in a random walk

In this subsection we return to the random walk example in the introduction. Two
players generate an infinite sequence in {−1, 1}N, thought of as the moves in an infinite
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walk on Z that originates at 10, where Player A chooses the odd terms and Player
B chooses the even terms. In each period, the player is supposed to choose 1 with
probability 1/2. The target set D is the set of all infinite random walks w ∈ {−1, 1}N
such that there exists n for which

∑
i≤nwi = −10, i.e., the walk reaches the origin at

least once. The random walk is recurrent with probability 1, so Pσ∗(D) = 1.
Let a1, a2, . . . ∈ {−1, 1} and b1, b2, . . . ,∈ {−1, 1} be the moves that player A plays

and player B plays, in order, that is, w = (a1, b1, a2, b2, . . . ). Let An =
n∑
i=1

ai and

Bn =
n∑
i=1

bi. Let sn be the position of the random walk at time n, so that s0 = 10, and

for n ≥ 1, s2n = 10 +An +Bn and s2n−1 = 10 +An +Bn−1. Call the player that plays
randomly Honest, and the other player Deviator. We claim that the following blame
function f : Dc → {A,B} allows the statistician to detect Deviator with probability
1. Given w ∈ Dc, the following steps are performed in order to determine the value
of f .

1. If lim supn→∞

(
An√

n log logn

)
> 0, choose player A. Otherwise, if lim supn→∞

(
Bn√

n log logn

)
>

0, choose player B.

2. If
∞∑
n=2

an√
n(log n)3/4

diverges, choose player A. Otherwise, if
∞∑
n=2

bn√
n(log n)3/4

diverges, choose player B.

3. If
∞∑
n=1

s22n+1 − s22n
2n log(2n)

=∞, choose player B. Otherwise, if
∞∑
n=2

s22n − s22n−1
(2n− 1) log(2n− 1)

=

∞, choose player A.

4. Otherwise, choose player A.

Theorem 3.1. The blame function f above correctly identifies the Deviator with
probability 1, regardless of Deviator’s strategy.

Remark 3.2. In the second example in the introduction, the target set D contains all
realizations that visit the origin infinitely often. The algorithm above can be adapted
to this case. Indeed, supposing that the realization s is such that the origin is visited
finitely many times, then applying the above algorithm to the suffix of the realization
after the last visit to the origin identifies Deviator with probability 1.

The idea of the proof is that since Deviator must move to the right during periods
where Honest moves substantially to the left (to avoid going below zero), Deviator
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must thus move to the left when Honest moves to the right to avoid being clearly
right-biased (Steps 1 and 2 detect right-biased behavior). Thus Deviator must keep
the walk fairly close to 0.

Since s2n increases by 1 in expectation on Honest’s moves, it should decrease on
Deviator’s moves to keep the walk close to 0, and this discrepancy is what’s detected
in Step 3.

The success of the algorithm can be deduced from the following lemmas.

Lemma 3.3. Honest is chosen on Step 1 with probability 0.

Lemma 3.4. Honest is chosen on Step 2 with probability 0.

Lemma 3.5. If no player is chosen on Steps 1 and 2, then
∞∑
n=2

s2n
n2 log n

converges.

Lemma 3.6. If A is Honest, the probability that no player is chosen on Step 1 and
∞∑
n=1

s22n+1 − s22n
2n log(2n)

does not diverge to ∞ is 0, regardless of Deviator’s strategy.

Similarly, if B is Honest, the probability that no player is chosen on Step 1 and
∞∑
n=2

s22n − s22n−1
(2n− 1) log(2n− 1)

does not diverge to ∞ is 0, regardless of Deviator’s strategy.

Lemma 3.5 is the primary place where the fact that the walk must be nonnegative
is used. Indeed, in a purely random walk, the analogous statements to the other
three lemmas are true, but since s2n is generally of order n in a purely random walk,∑
s2n/(n

2 log n) would be on the order of the divergent sum
∑

1/(n log n).
We now deduce Theorem 3.1 from these lemmas.

Proof of Theorem 3.1. We show that the probability that the algorithm chooses the
wrong player at any given step is 0.

Firstly, Lemma 3.3 and Lemma 3.4 show that the algorithm chooses the wrong
player on Steps 1 and 2 with probability 0.

By Lemma 3.6, the probability that no player is chosen in Steps 1, 2, and 3
combined is 0. Thus the algorithm chooses the wrong player on Step 4 with probability
0.

It remains to bound the probability that the algorithm chooses the wrong player
on Step 3. By Lemma 3.6, if A is Honest, then the algorithm fails on Step 3 with
probability 0.
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Suppose B is Honest. Then by Lemma 3.5, if we reach Step 3, then
∞∑
n=2

s2n
n2 log n

converges. Notice that 1
x log x

has derivative (−1 + o(1)) 1
x2 log x

, so

1

(n− 1) log(n− 1)
− 1

n log n
= (1 + o(1))

1

n2 log n
.

Since the series
∑
s2n/(n

2 log n) absolutely converges, we may substitute (dropping
the n = 2 term) to obtain that

∞∑
n=3

(
1

(n− 1) log(n− 1)
− 1

n log n

)
s2n (1)

converges. Rearranging terms, we obtain that
∞∑
n=2

s2n+1 − s2n
n log n

(2)

converges, as its partial sums differ from those of expression (1) by
s22

2 log 2
− s2n+1

(n+1) log(n+1)
,

which is bounded because sn = O(
√
n log log n) (otherwise a player would have been

chosen on Step 1).
Almost surely either a player was chosen on Step 1 or 2 or the sum of just the odd-

numbered terms (given by B’s moves) of expression (2) diverges to∞, by Lemma 3.6.
In the latter case, the sum of the even-numbered terms must diverge to −∞ (as the
sum of all terms is convergent), and therefore cannot diverge to ∞. Thus player B is
chosen on this step with probability 0, finishing the proof.

We now prove the various lemmas.

Proof of Lemma 3.3. As Honest’s partial sums form a truly random walk, this follows
from the Law of the Iterated Logarithm.

Proof of Lemma 3.4. Suppose without loss of generality that A is Honest. Let Xn =
an√

n(logn)3/4
for n ≥ 2. Since

∞∑
n=3

E(X2
n) =

∞∑
n=3

1

n(log n)3/2
<∞,

Kolmogorov’s two-series theorem (e.g., [4, Theorem 2.5.6]) implies that
∞∑
n=2

Xn con-

verges almost surely. Thus A is chosen incorrectly on Step 2 with probability 0.
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Proof of Lemma 3.5. Since no player was chosen on Step 1, s2n−1 = An + Bn−1 and
s2n = An +Bn are both o

(√
n(log n)1/4

)
, so sn = o(

√
n(log n)1/4).

Since no player was chosen on Step 2,

∞∑
n=2

an + bn√
n(log n)3/4

converges. We may rewrite this sum using the fact that an + bn = s2n − s2n−2 to
obtain

∞∑
n=2

s2n − s2n−2√
n(log n)3/4

= O(1) +
∞∑
n=2

(
1√

n(log n)3/4
− 1√

n+ 1(log(n+ 1))3/4

)
s2n.

This last rearrangement is possible because the difference in the partial sums of the
two sides is s2n√

n+1(log(n+1))3/4
, which approaches 0 as sn = O(

√
n(log n)1/4).

Let cn = 1√
n(logn)3/4

− 1√
n+1(log(n+1))3/4

. Since the derivative of the function 1√
x(log x)3/4

is (
−1

2
+ o(1)

)
1

x3/2(log x)3/4

as x → ∞, we have that cn = Θ
(

1
n3/2(logn)3/4

)
. Since

∑
cns2n converges and sn ≥ 0

for all n,
∞∑
n=2

s2n
n3/2(log n)3/4

must converge as well. Since |s2n−1 − s2n| ≤ 1 and
∑
n−3/2(log n)−3/4 converges,

∞∑
n=2

s2n−1 + s2n
n3/2(log n)3/4

(3)

converges. Now, the coefficient of sn in expression (3) is (2
√

2 + o(1))n−3/2(log n)−3/4

for n ≥ 3, so finally the sum
∞∑
n=2

sn
n3/2(log n)3/4

(4)

must converge.
Since sn = o(

√
n(log n)1/4), we may multiply each term in expression (4) by

sn√
n(logn)1/4

and retain convergence, using the nonnegativity of sn. Thus
∞∑
n=1

s2n
n2 log n

converges.
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Remark 3.7. The last step of the proof of Lemma 3.5 is the primary location that
the positivity of sn is used. Indeed,

∑
sn/(n

3/2(log n)3/4) would converge with high
probability for a random walk as well. It is only because all sn are positive that this
is surprising.

Proof of Lemma 3.6. We prove the lemma under the assumption that A is Honest;
the proof is analogous when B is Honest.

Notice that
∞∑
n=1

s22n+1 − s22n
2n log(2n)

=
∞∑
n=1

1 + 2an+1s2n
2n log(2n)

.

Now,
∑

1/(2n log(2n)) diverges to ∞ (at rate on the order of log log n). It thus
suffices to show that the probability that no player is chosen on Step 1 and

∞∑
n=1

an+1s2n
n log(2n)

(5)

diverges is 0.
Let s′n = min(sn,

√
n log log n). Notice that if no player is chosen on Step 1,

s′n = sn for all sufficiently large n. Thus the probability that no player is chosen

on Step 1 and expression (5) diverges is at most the probability that
∞∑
n=1

an+1s
′
2n

n log(2n)

diverges.

Let Dn =
an+1s′2n
n log(2n)

. Since an+1 is chosen at random after s′2n is already fixed it

follows that Dn is a sequence of martingale differences. Now since s′n ≤
√
n log log n,

it follows that
∞∑
n=1

E(D2
n) ≤

∞∑
n=1

1

n(log n)3/2
+O(1) <∞.

Therefore, the partial sums of the infinite series
∑∞

n=1Dn form a martingale bounded
in L2, and therefore the series converges almost surely.

4 Proof of Theorem 2.5

In this section we prove Theorem 2.5 via a game-theoretic approach. Roughly speak-
ing, we consider a zero-sum game between an adversary and a statistician, in which
the adversary chooses a deviation and the statistician, after observing the realization
s, has to guess the deviator if s /∈ D. A strategy for the statistican in this game is
a blame function. We use the minimax theorem to establish that the statistician has
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a strategy that guarantees high payoff. However, for the minimax theorem to apply,
we need to make some modifications to the game.

First, we may assume without loss of generality that D is closed. Indeed, every
probability distribution over AN is regular, so every Borel set D with Pσ∗(D) > 1− ε
contains a closed subset F with Pσ∗(F ) > 1 − ε. Hence, if D is not closed, we can
replace it by F .

For every z = (z1, z2, . . . , zn) ∈ A<N denote by [Tz] = {s ∈ AN : sk = zk for 1 ≤
k ≤ n} the cylinder set of all realizations with initial segment z. A set in AN is open
if and only if it is a union of cylinder sets.

Since the set D is closed, its complement Dc is open, and therefore there is a set
Z ⊆ A<N that satisfies the following properties:

• For every two elements in Z, none is the prefix of the other.

• Dc = ∪z∈Z [Tz].

Since A<N is countable, so is Z.
We now consider the following auxiliary zero-sum game Γ(D) between an adver-

sary and a statistician:

• The adversary selects an element of i ∈ I (a player in the original problem) and
a behavior strategy σi ∈ Σi for that player.

• Nature chooses a realization s ∈ AN according to Pσi,σ∗−i
.

• If s 6∈ D, the statistician is told the element z ∈ Z such that s ∈ [Tz]. The
statistician has then to select an element j ∈ I.

• The statistician wins if s ∈ D or i = j.

• The adversary wins otherwise, that is, if s 6∈ D and i 6= j.

The interpretation of the game is as follows. The statistician has to detect which
player deviated, and the adversary tries to cause the statistician to blame an innocent
player. Thus, the adversary’s strategy is to select the identity of the deviator i ∈ I
and a strategy for that deviator. Then Nature chooses a realization s according to the
strategy that player i deviated to and the prescribed strategies of the other players.
If s ∈ D, then the statistician wins. If s 6∈ D, then the statistician learns the minimal
prefix z of the realization all of whose continuations are not in D, and she wins only
if she correctly guesses the identity of the deviator based on this information.

Lemma 4.1. Let D be a closed set such that Pσ∗(D) > 1−ε. Then for every strategy
of the adversary, the statistician has a response that wins in Γ(D) with probability at
least 1−

√
(|I| − 1)ε.
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Proof. Fix a strategy (q, σ) ∈ ∆(I)×
∏

i Σi of the adversary in Γ(D).
Recall that Dc = ∪z∈Z [Tz] for some countable set Z of finite realizations with the

property that no element of Z is a prefix of a different element of Z.
For a finite realization z = (z1, z2, . . . , zm) ∈ Z let

`i(z) :=
m∏
n=1

σi(z
n
i | z1, z2, . . . , zn−1)

σ∗i (z
n
i | z1, z2, . . . , zn−1)

, ∀i ∈ I,

where 0
0

= 1 and c
0

=∞ for c > 0. Then `i(z) is the likelihood ratio of σi (the deviation
strategy of player i) over σ∗i (the goal strategy of player i) under the realized sequence
z. We recall that in the general model, each player chooses an outcome in all periods,
and therefore σi(z

n
i | z1, z2, . . . , zn−1) is defined for every n ∈ N.

Note that the probability that a finite realization z will be realized under (σi, σ
∗
−i)

is Pσi,σ∗−i
(z) = `i(z)Pσ∗(z), provided `i(z) < ∞. Similarly, the probability that

z will be realized under (σi, σj, σ
∗
−i,j) is Pσi,σj ,σ∗−i,j

(z) = `i(z)`j(z)Pσ∗(z), provided

`i(z), `j(z) <∞, where σ∗−i,j = (σ∗k)k∈I\{i,j}.
Consider a pure strategy of the statistician that, after observing a finite realization

z ∈ Z, blames a player j whose likelihood ratio is maximal. For each j ∈ I, denote
by Ej the set of all sequences in Z where the statistician blames j. Then

Ej ⊆ {z ∈ Z : `j(z) ≥ `i(z) for every i 6= j},

where the inclusion may be strict when for some z ∈ Z the maximum of {`i(z), i ∈ I}
is attained at j together with some other index.

Observe that

(
Pσi,σ∗−i

(Ej)
)2

=

∑
z∈Ej

`i(z)Pσ∗(z)

2

≤

∑
z∈Ej

`i(z)2Pσ∗(z)

 ·
∑
z∈Ej

Pσ∗(z)

 (6)

≤

∑
z∈Ej

`i(z)`j(z)Pσ∗(z)

 ·
∑
z∈Ej

Pσ∗(z)

 (7)

= Pσi,σj ,σ∗−i,j
(Ej) ·Pσ∗(Ej) ≤ Pσ∗(Ej), (8)

where Eq. (6) holds by the Cauchy-Schwartz Inequality, Eq. (7) holds since `i(z) ≤
`j(z) on Ej, and Eq. (8) follows from the definitions. By the Cauchy-Schwartz In-
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equality once again, it follows that(∑
j 6=i

Pσi,σ∗−i
(Ej)

)2

≤ (|I| − 1) ·

(∑
j 6=i

Pσi,σ∗−i
(Ej)

2

)

≤ (|I| − 1) ·

(∑
j 6=i

Pσ∗(Ej)

)
= (|I| − 1) ·Pσ∗(Z) ≤ (|I| − 1) · ε,

and the claim follows.

We now conclude the proof of Theorem 2.5. For every n ∈ N let Zn = {z ∈
Z : length of z < n}, and let Dn ⊆ A be the set whose complement is given by

Dc
n =

⋃
{[Tz] : z ∈ Zn}.

The sequence (Dn)n∈N is a decreasing sequence of closed sets that contain D, and
because D is closed, D =

⋂
n∈NDn. In particular, Pσ∗(Dn) > 1 − ε for every n.The

set of pure strategies of the statistician in the game Γ(Dn) is finite, as the game ends
after n periods. By a standard minimax theorem,the game has a value in mixed
strategies, and the statistician has an optimal strategy, ξn : Zn → ∆(I).

By Lemma 4.1, For every n ∈ N, the value of the game Γ(Dn) is at least 1 −√
(|I| − 1)ε. Let fn : Zn → I be a blame function such that fn(s) ∈ argmaxi∈Iξn[z].

It follows that if fn(z) 6= i then (ξn(z))(I \ {i}) ≥ 1
2
, and hence

Pσi,σ∗−i
(Dc

n and {fn 6= i}) ≤ 2Pσi,σ∗−i,ξn
(Dc

n and {j 6= i}) ≤ 2
√

(|I| − 1)ε,

for every i ∈ I and every σi ∈ ΣB
i . Abusing notations, we view fn as a function from

Dc
n to I, such that for every z ∈ Zn and every s ∈ [Tz], we set fn(s) = fn(z). It follows

that fn is a blame function that guarantees to the statistician at least 1−2
√

(|I| − 1)ε
in Γ(Dn).

For every n ∈ N, the domain of fn is the finite set Zn. By a diagonal argument,
there is a function f : Dc → I that is an accumulation point of the sequence (fn)n∈N:
there is a subsequence (nk)k∈N such that for every z ∈ Z and every s ∈ T[z], f(s) is
equal to fnk

(s), for all sufficiently large k ∈ N.
We argue that f guarantees to the statistician at least 1− 2

√
(|I| − 1)ε in Γ(D).

Indeed, let i ∈ I and σi ∈ ΣB
i be arbitrary. Since Dc =

⋃
k∈ND

c
nk

,

Pσi,σ∗−i(D
c and {f 6= i}) = Pσi,σ∗−i(D

c
n and {f 6= i}) ≤ 1− 2

√
(|I| − 1)ε,

and the result follows.
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Remark 4.2 (The value of the infinite-horizon game). Instead of studying the trun-
cated games Γ(Dn), we could have proved that the game Γ(D) has a value by showing
that the statistician’s payoff function is upper-semi-continuous and her strategy space
is compact, and use a general minimax theorem, like [7, Theorem 4]. Moreover, the
set of actions A can be countably infinite. We chose the path above, as it uses the
simpler version of von Neumann’s minimax theorem.

5 Concluding Remarks and Open Problems

Theorem 2.5 is not constructive. In Section 3 we described two cases where a blame
function could be identified, and in these cases, especially in the second one, the blame
function is quite involved. There are other interesting cases where identifying an ex-
plicit blame function looks challenging. For example, consider the two-dimensional
analog of the Example in Subsection 3.2: two players control a two-dimensional ran-
dom walk, and the set D is the set of all realizations that visit the origin infinitely
often (or at least once after the initial position). The same question can be considered
for a random walk on any recurrent graph.

In the example described in Subsection 3.1 the quantitative estimate provided
by the explicit blame function matches the bound ensured by Theorem 2.5 up to a
constant factor. Indeed, the set D in this example has probability 1− ε = 1−Θ(µ2),
and the blame function shows that the corresponding goal is µ = O(

√
ε)-testable. It

is in fact not difficult to see that for this example the goal is not δ-testable for any
δ smaller than some Θ(

√
ε) = Θ(µ), showing that the quantitative estimate given

in Theorem 2.5 is tight up to a constant factor. Indeed, consider the following two
scenarios.

1. Player A chooses s1 = 1 and later plays honestly according to the rules. Player
B plays honestly.

2. Player A plays honestly. Player B chooses s2 = 1 and later plays honestly.

In both scenarios, the probability that s1 = s2 = 1 is Θ(µ). Moreover, in both
scenarios, if indeed s1 = s2 = 1, then the conditional distribution of s is identical.
Therefore, on the subset of Dc consisting of all sequences s above with s1 = s2 = 1,
the two scenarios are indistiguishable and any blame function chooses one of the
players with probability at least 1/2. It thus follows that the probability that s lies
in this subset and the blame function blames the honest player is Ω(µ). Note that
the same argument applies to a much simpler game: each of the two players chooses
a single random bit, where he is supposed to choose 1 with probability µ and 0 with
probability 1 − µ. A choice is bad if and only if both players choose 1. Here the
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probability of Dc is µ2 and each player can deviate by choosing 1, ensuring that if the
other player is honest the resulting pair of choices lies in Dc = {11} with probability
µ. In this scenario, too, any blame function must err with probability at least Ω(µ).

It is easy and well known that the probability that a one-dimensional honest ran-
dom walk starting at the origin never returns to the origin for n steps is Θ(1/

√
n).

This implies, by Theorem 2.5, that for the version of the game considered in Sub-
section 3.2, where the set D consists of all walks that visit the origin at least once
during the first n steps, there is a blame function that errs with probability at most
O(1/n1/4). The quantitative estimate that can be derived from the explicit proof de-
scribed in Subsection 3.2 is far weaker. It may be interesting to find an explicit blame
function with a better quantitative performance. The corresponding question for an
n-steps two-dimensional random walk is even more challenging. It is well known ([5],
see also [6], [12]) that the probability that a standard two-dimensional random walk
does not return to the origin for n steps is Θ(1/ log n). Theorem 2.5 thus shows that
the corresponding goal here is O(1/(log n)1/2)-testable. It would be very interesting
to find an explicit description of a blame function demonstrating this bound.

The concept of testability allows for deviations of single players. One may wonder
whether our result holds when more than a single player is allowed to deviate from the
goal (σ,D); namely, whether there is a blame function f : Dc → I such that for every
player i ∈ I and every strategy profile σ−i ∈

∏
j 6=i Σ

B
j we have Pσi,σ−i

(Dc and {f =
i}) ≤ g(Pσ(D)), where g : [0, 1] → [0, 1] is a function that goes to 0 as its argument
goes to 1. Our proof fails to work for joint deviations, and we do not know whether
this extension is true.

Theorem 2.5 states that if there is an agreed upon strategy profile σ∗ that reaches
some desired target set D with high-probability, and if a single player deviates, then
with high probability, the identity of the deviator can be found by all players when
the target set is not reached. Such a result calls for applications in the construc-
tion of equilibria in Game Theory. As mentioned in the introduction, Theorem 2.5
can be used to provide an alternative proof for the existence of an ε-equilibrium in
repeated games with finitely many players each having finitely many actions, and
tail-measurable payoffs, see [1].
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