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Abstract

For a graph G = (V,E), let τ(G) denote the minimum number of pairwise edge disjoint complete

bipartite subgraphs of G so that each edge of G belongs to exactly one of them. It is easy to see

that for every graph G, τ(G) ≤ n − α(G), where α(G) is the maximum size of an independent

set of G. Erdős conjectured in the 80s that for almost every graph G equality holds, i.e., that for

the random graph G(n, 0.5), τ(G) = n− α(G) with high probability, that is, with probability that

tends to 1 as n tends to infinity. Here we show that this conjecture is (slightly) false, proving that

for all n in a subset of density 1 in the integers and for G = G(n, 0.5), τ(G) ≤ n − α(G) − 1 with

high probability, and that for some sequences of values of n tending to infinity τ(G) ≤ n−α(G)−2

with probability bounded away from 0. We also study the typical value of τ(G) for random graphs

G = G(n, p) with p < 0.5 and show that there is an absolute positive constant c so that for all

p ≤ c and for G = G(n, p), τ(G) = n−Θ(α(G)) with high probability.
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1 Introduction

For a graph G = (V,E), let τ(G) denote the minimum number of pairwise edge disjoint complete

bipartite subgraphs of G so that each edge of G belongs to exactly one of them. A well-known

theorem of Graham and Pollak [7] asserts that τ(Kn) = n− 1, see [11], [10], [12] for more proofs, and

[1], [9] for several variants.

Let α(G) denote the maximum size of an independent set of G. It is easy to see that for every

graph G, τ(G) ≤ n − α(G). Indeed one can partition all edges of G into n − α(G) stars centered at

the vertices of the complement of a maximum independent set in G. Erdős conjectured (see [9]) that

for almost every graph G equality holds, i.e., that for the random graph G(n, 0.5), τ(G) = n − α(G)

with high probability (whp, for short), that is, with probability that tends to 1 as n tends to infinity.

Chung and Peng [6] extended the conjecture for the random graphs G(n, p) with p ≤ 0.5, conjectur-

ing that for any p ≤ 0.5, τ(G) = n−(1+o(1))α(G) whp. They also established lower bounds supporting

this conjecture, and the one of Erdős, by proving that for G = G(n, p) and for all 0.5 ≥ p = Ω(1),

τ(G) ≥ n− (log n)3+ε whp for any positive ε.
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Here we first show that Erdős’ conjecture for G = G(n, 0.5) is (slightly) incorrect. It turns out

that for most values of n, and for G = G(n, 0.5), τ(G) ≤ n−α(G)−1 whp, while for some exceptional

values of n (that is, those values for which the size of α(G) is concentrated in two points, and not in

one), τ(G) ≤ n− α(G)− 2 with probability that is bounded away from 0.

To state the result precisely let β(G) denote the number of vertices in the largest induced complete

bipartite subgraph in G. It is easy to see that for every G, τ(G) ≤ n − β(G) + 1. Indeed, one can

decompose all edges of G into n−β(G) stars centered at the vertices in the complement of an induced

complete bipartite subgraph H of G of maximum size, together with H itself. For an integer n let

k0 = k0(n) denote the largest integer k so that f(k) =
(
n
k

)
2−(k2) ≥ 1. In words, k0 is the largest k

so that the expected number of independent sets of size k in G = G(n, 0.5) is at least 1. It is easy

to check that k0 = k0(n) = (1 + o(1))2 log2 n, that n = Θ(k02k0/2) and that for k = (1 + o(1))k0,

f(k + 1)/f(k) = n−1+o(1), (c.f., e.g., [3]).

Theorem 1.1 Let k0 = k0(n) be as above. Then

(i) If 1 = o(f(k0)) and f(k0 + 1) = o(1), then whp α(G) = k0 and β(G) = k0 + 2. Therefore, in this

case τ(G) ≤ n− α(G)− 1 whp.

(ii) If f(k0) = Θ(1), then whp one of of the following four possibilities holds, and each of them holds

with probability that is bounded away from 0 and 1:

(a) α(G) = k0 and β(G) = k0 + 2.

(b) α(G) = k0 and β(G) = k0 + 1.

(c) α(G) = k0 − 1 and β(G) = k0 + 2.

(d) α(G) = k0 − 1 and β(G) = k0 + 1.

(iii) If f(k0 + 1) = Θ(1), then each of the four possibilities obtained from the ones in (ii) by replacing

k0 by k0 + 1 is obtained with probability bounded away from 0 and 1, and whp one of those holds.

We also improve the estimates of [6] for G(n, p) for any c ≥ p ≥ 2
n , where c is some small positive

absolute constant, determining the typical value of n − τ(G(n, p)) up to a constant factor in all this

range.

Theorem 1.2 There exists an absolute constant c > 0 so that for any p satisfying 2
n ≤ p ≤ c and for

G = G(n, p)

τ(G) = n−Θ

(
log(np)

p

)
whp.

For very sparse graphs, that is, for p = o(n−7/8), it is not difficult to give a precise expression for

the typical value of τ(G). For a graph H in which every connected component is either an isolated

vertex or a cycle of length 4, let γ(H) denote the number of vertices of H minus the number of cycles

of length 4 in it.
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Proposition 1.3 If p = o(n−7/8) then for G = G(n, p), whp, τ(G) = n − maxH(γ(H)), where the

maximum is taken over all induced subgraphs of G in which any connected component is either a vertex

or a cycle of length 4.

The rest of this paper contains the proofs. Theorem 1.1 is proved in Section 2. Part (i) is

established using the second moment method and parts (ii) and (iii) are proved by applying the

Stein-Chen method.

Theorem 1.2 is proved in Section 3 by combining an appropriate first moment computation with

some combinatorial arguments. Section 4 contains several concluding remarks as well as the simple

proof of Proposition 1.3.

Throughout the rest of the paper we assume, whenever this is needed, that n is sufficiently large.

All logarithms are in base 2, unless otherwise specified.

2 Random graphs

In this section we consider G = G(n, 0.5) and prove Theorem 1.1.

We start with the proof of part (i), which implies that for most values of n, τ(G) ≤ n− α(G)− 1.

Here ”most” means that if we take a random uniform integer n in [1,M ], then the probability that

for this n the assumptions in part (i) hold tend to 1 as M tends to infinity.

The proof of part (i) is based on the second moment method. Let V = {1, 2, . . . , n} be a fixed set of

n labeled vertices, and let G = G(n, 0.5) = (V,E) be the random graph on V . Let f(k) =
(
n
k

)
2−(k2) be

the expected number of independent sets of size k in G, and let k0 be, as in the introduction, the largest

k so that f(k) ≥ 1. Suppose that the assumption in part (i) of Theorem 1.1 holds. This means that

the expected number of independent sets of size k0 + 1 in G is o(1) and hence, by Markov’s inequality,

the probability that there is such an independent set if o(1). The assumption also implies that the

expected number of independent sets of size k0 tends to infinity. It is known (c.f., e.g., [3], Theorem

4.5.1) that in this case α(G) = k0 whp. For completeness we include the relevant computation, which

will be used later as well.

Suppose k = (1+o(1))2 log2 n. For each K ⊂ V , |K| = k, let XK be the indicator random variable

whose value is 1 if and only if K is an independent set in G. Let X =
∑

K XK , where K ranges over

all subsets of size k of V , be the total number of independent sets of size k in G. The expectation

of this random variable is clearly E(X) = f(k) =
(
n
k

)
2−(k2). We proceed to estimate its variance. For

K,K ′ ⊂ V , |K| = |K ′| = k, let K ∼ K ′ denote that |K ∩K ′| ≥ 2 (and K 6= K ′). The variance of X

satisfies:

Var(X) =
∑
K

Var(XK) +
∑
K∼K′

Cov(XK , XK′) ≤ E(X) +
∑
K∼K′

E(XKXK′),

where K,K ′ range over all ordered pairs of subsets of size k of V satisfying 2 ≤ |K ∩ K ′| ≤ k − 1.

Note that ∑
K∼K′

E(XKXK′) =

k−1∑
i=2

(
n

k

)(
k

i

)(
n− k
k − i

)
2−2(k2)+(i

2) =

k−1∑
i=2

fi,
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where here

fi =

(
n

k

)(
k

i

)(
n− k
k − i

)
2−2(k2)+(i

2)

is the contribution to the sum
∑

K∼K′ E(XKXK′) arising from ordered pairs K,K ′ whose intersection

is of size i.

Without trying to get here the best possible estimate, we consider two possible ranges for the

parameter i, as follows.

Case 1: If 2 ≤ i ≤ 2k/3 then

fi
f(k)2

=

(
k
i

)(
n−k
k−i
)(

n
k

) 2(i
2) ≤ ki(k

n
)i2(i

2) =

(
k22(i−1)/2

n

)i
≤ 1

n0.3i
.

Here we used the facts that k = (1 + o(1))2 log2 n and i ≤ 2k/3 to conclude that

k22(i−1)/2

n
≤ 1

n1/3−o(1)
.

Case 2: If i = k − j, 1 ≤ j ≤ k/3, then

fi
f(k)

=

(
k

j

)(
n− k
j

)
2−(k2)+(i

2) ≤ kjnj2−j(k−j) ≤ (kn2−(k−j))j ≤ 1

n0.3j
.

We have thus proved the following.

Lemma 2.1 With the notation above, if k = (1 + o(1))2 log2 n and i ≤ 2k/3, then fi ≤ f(k)2 1
n0.3i .

If k = (1 + o(1))2 log2 n and i = k − j, j ≤ k/3, then fi ≤ f(k) 1
n0.3j . Therefore, if f(k) ≥ Ω(1) then∑

K∼K′ E(XKXK′) = o(f(k)2) and Var(X) ≤ E(X) + o(f(k)2) = E(X) + o((E(X)2).

Next we consider induced complete bipartite graphs in the random graph G = G(n, 0.5) on V .

Let k = (1 + o(1))2 log2 n satisfy n = Θ(k2k/2) and recall that this holds for k = k0(n) defined as

the largest integer k so that f(k) ≥ 1. For any subset B ⊂ V of size |B| = k + 2 let YB denote the

indicator random variable whose value is 1 if and only if the induced subgraph of G on B is a complete

bipartite graph. Define Y =
∑

B YB, as B ranges over all subsets of size k+ 2 of G, and note that this

is the number of induced complete bipartite subgraphs of G of size k + 2. Denote the expected value

of Y by g(k) and note that

E(Y ) = g(k) =

(
n

k + 2

)
(2k+1 − 1)2−(k+2

2 ).

Indeed, there are
(
n
k+2

)
subsets B of k + 2 vertices, in each such subset there are 2k+1 − 1 ways to

partition it into two nonempty vertex classes, and the probability that the induced subgraph on B is

a complete bipartite graph on these two vertex classes is 2−(k+2
2 ).

Since by assumption n = Θ(k2k/2) it follows that

g(k) = f(k)
(n− k)(n− k − 1)

(k + 2)(k + 1)
(2k+1 − 1)2−2k−1 = Θ(f(k)). (1)
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To compute the variance of Y , we use B ∼ B′ to denote two distinct subsets B,B′ ⊂ V satisfying

|B| = |B′| = k + 2 and |B ∩B′| ≥ 2. Then

Var(Y ) ≤ E(Y ) +
∑
B∼B′

Cov(YB, YB′) ≤ E(Y ) +
∑
B∼B′

E(YBYB′).

Now,

∑
B∼B′

E(YBYB′) ≤
k+1∑
i=2

(
n

k + 2

)
(2k+1 − 1)2−(k+2

2 )
(
k + 2

i

)(
n− k − 2

k + 2− i

)
2k+2−i2−(k+2

2 )+(i
2) =

k+1∑
i=2

gi,

where

gi =

(
n

k + 2

)
(2k+1 − 1)2−(k+2

2 )
(
k + 2

i

)(
n− k − 2

k + 2− i

)
2k+2−i2−(k+2

2 )+(i
2)

is the contribution from pairs B,B′ with intersection of size i.

We bound the terms gi as done for the quantities fi before.

Case 1: If 2 ≤ i ≤ 2k/3 + 2 then

gi
g(k)2

< (k + 2)i(
k + 2

n
)i2(i

2) =

(
(k + 2)22(i−1)/2

n

)i
≤ 1

n0.3i
.

Case 2: If i = k + 2− j, 1 ≤ j ≤ k/3, then

gi
g(k)

=

(
k + 2

j

)(
n− k − 2

j

)
2j2−(k+2

2 )+(i
2) ≤ ((k + 2)2n2−(k+2−j))j ≤ 1

n0.3j
.

We have thus obtained the following.

Lemma 2.2 With the notation above, if n = Θ(k2k/2) and i ≤ 2k/3 + 2, then gi ≤ g(k)2 1
n0.3i . If

n = Θ(k2k/2) and i = k + 2 − j, j ≤ k/3, then gi ≤ g(k) 1
n0.3j . Therefore, if g(k) ≥ Ω(1) then∑

B∼B′ E(YBYB′) = o(g(k)2) and Var(Y ) ≤ E(Y ) + o(g(k)2) = E(Y ) + o((E(Y )2).

Proof of Theorem 1.1, part (i): Since f(k0 +1) = o(1) the expected number of independent sets of

size k0 + 1 is o(1) and hence, by Markov, with probability 1− o(1), α(G) < k0 + 1. On the other hand,

as f(k0) tends to infinity we conclude, by Lemma 2.1, that the random variable X which counts the

number of independent sets of size k0 in G has expectation f(k0) which tends to infinity, and variance

o(f(k0)2). Thus, by Chebyshev’s Inequality, X is positive whp, and therefore α(G) ≥ k0 (and hence

α(G) = k0) whp.

The situation with Y is similar. By (1) g(k0) = Θ(f(k0)) and g(k0 + 1) = Θ(f(k0 + 1)). Therefore,

by assumption, g(k0 + 1) = o(1) and hence β(G) < (k0 + 1) + 2 = k0 + 3 whp. On the other hand

g(k0) = Θ(f(k0)) tends to infinity, and hence by Lemma 2.2 and Chebyshev’s Inequality β(G) ≥ k0 +2

whp. Thus β(G) = k0 + 2 whp, implying the assertion of part (i).

We proceed with the proof of part (ii) (the proof of part (iii) is essentially identical). This is

done by applying the Stein-Chen method, which is a method that can show that certain random
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variables can be approximated well by Poisson random variables. It is in fact possible to apply the

two-dimensional method (see, for example, [4], Corollary 10.J.1) to show that if f(k0) = Θ(1) (and

hence also g(k0) = Θ(1)), then the two random variables X, which counts the number of independent

sets of size k = k0, and Y , which counts the number of induced complete bipartite subgraphs of size

k0 + 2, behave approximately like independent Poisson random variables with expectations E(X) and

E(Y ). In particular, each of the four events

E11 = {X > 0, Y > 0}, E10 = {X > 0, Y = 0}, E01 = {X = 0, Y > 0}, E00 = {X = 0, Y = 0} (2)

hold with probability bounded away from 0 and 1. However, the same conclusion can be derived

using the one dimensional method, since it suffices to show that X, Y and their sum X + Y are all

approximately Poisson. This suffices to show that if E(X) = λ and E(Y ) = µ, then the probability

that X = 0 is (1 + o(1))e−λ, the probability that Y = 0 is (1 + o(1))e−µ and the probability that

X + Y = 0 (which is exactly the probability that X = Y = 0, as both are nonnegative integers) is

(1 + o(1))e−λ−µ. This will enable one to compute the probabilities of all four events Eij in (2) above

and establish the conclusion of Theorem 1.1, part (ii).

The details follow. We start with a statement of the Stein-Chen method in a simple form that

suffices for our purpose here. This is the version that appears in [8], Theorem 6.23.

Let {Iα}α∈F be a (finite) family of indicator random variables. A graph L on the set of vertices

F is a dependency graph for this family if for any two disjoint subsets M1 and M2 of F with no

edges of L between them, the families {Iα}α∈M1 and {Iβ}β∈M2 are mutually independent. Thus, for

example, if the family of indicator random variables is the family of all
(
n
k

)
variables XK considered

in the paragraphs preceding Lemma 2.1, then the graph L in which K,K ′ are adjacent if and only if

K ∼ K ′, that is, if and only if 2 ≤ |K ∩K ′| ≤ k − 1, is a dependency graph. We need the following

version of the Stein-Chen method.

Theorem 2.3 (c.f., [8], Theorem 6.23) Let {Iα}α∈F be a (finite) family of indicator random vari-

ables with dependency graph L. Put X =
∑

α∈F Xα, let πα be the expectation of Iα and let λ =∑
α∈F πα be the expectation of X. Then the total variation distance between the distribution of X and

that of a Poisson random variable Po(λ) with expectation λ satisfies

dTV (X,Po(λ)) ≤ min(λ−1, 1)(
∑
α∈F

π2
α +

∑
α,β∈F ,αβ∈E(L)

(E(IαIβ) + E(Iα)E(Iβ))),

where the sum is over ordered pairs α, β. In particular, |Prob(X = 0) − e−λ| is bounded by the right

hand side of the last inequality.

We can now proceed with the proof of Theorem 1.1, part (ii). Let G = G(n, 1/2) be the random

graph on V = {1, 2, . . . , n}, let k0 be as in Theorem 1.1, and suppose that the assumption of part (ii)

holds, that is f(k0) = Θ(1). Let X =
∑

K XK be, as before, the number of independent sets of size

k = k0 in G, then E(X) = f(k0). Put f(k0) = λ. As noted before, the graph on the k-subsets K of V
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in which K,K ′ are adjacent if and only if K ∼ K ′ is a dependency graph for the variables XK . Put

πK = E(XK) = 2−(k2). By Theorem 2.3:

|Prob(X = 0)− e−λ| ≤ min(λ−1, 1)(
∑
K

π2
K +

∑
K∼K′

(E(XKXK′) + E(XK)E(XK′))), (3)

where the first sum is over all k-subsets K of V and the second is over ordered pairs of such subsets

that satisfy K ∼ K ′.
Since πK = 2−(k2) = n−Θ(logn) = o(1), it follows that∑

K

π2
K = 2−(k2)

∑
K

πK = o(1)λ = o(1).

It is also easy to bound the sum ∑
K∼K′

E(XK)E(XK′)

as the fraction of pairs K,K ′ that satisfy K ∼ K ′ among all pairs K,K ′ is easily seen to be Θ(k4/n2) =

o(1). Therefore ∑
K∼K′

E(XK)E(XK′) = O(k4/n2)(
∑
K

πK)2 = o(1)λ2 = o(1).

It remains to bound the sum ∑
K∼K′

E(XKXK′).

By Lemma 2.1 this is at most o(λ2) = o(1).

Plugging in (3) we conclude that

Prob(X = 0) = (1 + o(1))e−λ. (4)

A similar computation holds for the random variable Y that counts the number of induced complete

bipartite subgraphs of size k+ 2 = k0 + 2 in G. The expectation of Y is µ = g(k0) = Θ(f(k0)) = Θ(1),

and we have

Prob(Y = 0) = (1 + o(1))e−µ. (5)

Indeed, here Y =
∑

B YB where B ranges over all subsets of cardinality k + 2 of V and YB is the

indicator random variable whose value is 1 if and only if the induced subgraph on B is a complete

bipartite graph. A dependency graph here is obtained by having B,B′ adjacent if and only if B ∼ B′,
that is, if and only if 2 ≤ |B ∩ B′| ≤ k + 1. One can thus apply Theorem 2.3 and establish (5) by

repeating the arguments in the proof of (4), replacing Lemma 2.1 by Lemma 2.2.

Finally, we claim that the sum X+Y can also be approximated well by a Poisson random variable

with expectation λ+ µ and hence

Prob(X = Y = 0) = Prob(X + Y = 0) = (1 + o(1))e−λ−µ. (6)

The reasoning here is similar, although it requires a slightly more tedious computation. Here

X + Y =
∑

K Xk +
∑

B YB with XK , YB as before. A dependency graph L is obtained here by having
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K,K ′ adjacent if and only if K ∼ K ′, B,B′ adjacent if and only if B ∼ B′, and K,B adjacent if

and only if 2 ≤ |K ∩ B| ≤ k (note that here the subset B may fully contain the subset K). Here

E(XK) = πK = o(1) and E(YB) = πB = o(1) and hence, as before∑
K

π2
K +

∑
B

π2
B = o(1)(λ+ µ) = o(1).

As before ∑
KK′∈E(L)

E(XK)E(XK′) = O(k4/n2)(
∑
K

πK)2 = o(1)λ2 = o(1),

and similarly ∑
BB′∈E(L)

E(YB)E(YB′) = O(k4/n2)(
∑
B

πB)2 = o(1)µ2 = o(1)

and ∑
KB∈E(L)

E(XK)E(YB) = O(k4/n2)(
∑
K

πK)(
∑
B

πB) = o(1)λµ = o(1).

The remaining term we have to bound, which is also the main term, is∑
KK′∈E(L)

E(XKXK′) +
∑

BB′∈E(L)

E(YBYB′) +
∑

KB∈E(L)

E(XKYB).

Each of the first two summands here is o(1), by the discussion above. The third sum can be bounded

by a similar computation, which follows.

∑
KB∈E(L)

E(XKYB) =
k∑
i=2

(
n

k

)
2−(k2)

(
k

i

)(
n− k

k + 2− i

)
(2k+2−i − 1)2−(k+2

2 )+(i
2) =

k∑
i=2

hi,

where here

hi =

(
n

k

)(
k

i

)(
n− k

k + 2− i

)
(2k+2−i − 1)2−(k2)−(k+2

2 )+(i
2)

is the contribution arising from pairs K,B with |K ∩ B| = i. Indeed, there are
(
n
k

)
ways to choose

K, then
(
k
i

)
ways to choose the intersection K ∩ B and

(
n−k
k+2−i

)
to select the remaining elements of

B. Next we have to choose for each of these remaining elements if it belongs to the same vertex

class of the induced bipartite graph on B as the elements of K ∩B, or to the other vertex class (and

not all elements can belong to the same vertex class as those of K ∩ B, since otherwise we get an

independent set and not a complete bipartite graph). There are 2k+2−i − 1 ways to make this choice.

Finally, the
(
k
2

)
+
(
k+2

2

)
−
(
i
2

)
edges of K and B should all be as needed, and the probability for this

is 2−(k2)−(k+2
2 )+(i

2).

To bound hi we consider two possible ranges of the parameter i, as done in the proofs of Lemmas

2.1 and 2.2.

Case 1: If 2 ≤ i ≤ 2k/3 then, since n = Θ(k2k/2),

hi
f(k)2

=

(
k
i

)(
n−k
k+2−i

)(
n
k

) 2(i
2)2−2k−1(2k+2−i − 1) ≤ ki(k

n
)i−22−k2(i

2)
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= Θ(ki
ki−2

ni−2
(
k

n
)22(i

2)) = Θ((
k22(i−1)/2

n
)i) ≤ 1

n0.3i
.

Case 2: If i = k − j, 0 ≤ j ≤ k/3, then

hi
f(k)

≤
(
k

j

)(
n− k
j + 2

)
2−(k+2

2 )+(i
2)2j+2 ≤ kjnj2−(j+2)(k−j)2j+2 ≤ (kn2−(k−j)2)j+2 ≤ 1

n0.3(j+2)
.

By the bounds above and Theorem 2.3, (6) follows.

Proof of parts (ii) and (iii) of Theorem 1.1: Suppose the assumptions of part (ii) hold. Then

the expected number of independent sets of size k0 is λ = Θ(1), and the expected number of induced

complete bipartite graphs of size k0 + 2 is µ = Θ(1). Note that this implies that the expected number

of independent sets of size k0 − 1 is n1−o(1) and hence there are such sets whp, by Lemma 2.1, and

the expected number of independent sets of size k0 + 1 is n−1+o(1), and hence, by Markov’s Inequality,

whp there are no such sets. Thus α(G) is either k0 − 1 or k0 whp. Similarly, by Lemma 2.2, β(G) is

either k0 + 1 or k0 + 2 whp.

Let X,Y be the random variables as above. Then by (4),(5) and (6) each of the four events Eij

in (2) occurs with probability bounded away from 0 and 1 (which we can compute, up to a (1 + o(1))

factor, as a function of λ and µ which are both Θ(1)). Also, by the previous paragraph, whp exactly

one of these events holds.

Note, now, that if E11 holds then there is an independent set of size k0 and there is an induced

complete bipartite graph of size k0 +2, namely, in this case the assertion of Theorem 1.1, part (ii), (a),

holds. Similarly, E10 corresponds to (b), E01 to (c) and E00 to (d). This completes the proof of part

(ii). The proof of Part (iii) is identical, replacing k0 by k0 + 1. This completes the proof of Theorem

1.1. 2

Remark: By the definition of k0, and as f(k + 1)/f(k) = n−1+o(1) for k close to k0, it follows that

1 ≤ f(k0) ≤ n and n−1+o(1) ≤ f(k0 + 1) < 1. Therefeore, for a given k0, exactly one of the three

possibilities described in parts (i), (ii) and (iii) of Theorem 1.1 occurs.

3 Sparser random graphs

In this section we prove Theorem 1.2. We need the following technical lemma.

Lemma 3.1 There are absolute positive constants b, c and C so that for all sufficiently large n and

every positive p ≤ c satisfying np ≥ C log n the following holds. For every integer m satisfying

pn

16
≤ m ≤ pn

4

we have ∑
2≤d≤

√
m,d|m

(
n

d

)(
n− d
m/d

)
pm ≤ 2−b log(1/p)m. (7)

9



Proof. Assume, first, that m is even. In this case the sum in (7) contains the summand
(
n
2

)(
n−2
m/2

)
pm

which is larger by a factor of 2Ω(m) ≥ 2Ω(n0.5) than each of the other summands if m ≥ n0.5, and by a

factor of nΩ(m) ≥ nΩ(logn) if m ≤ n0.5. Therefore, the left hand side of (7) is

(1 + o(1))

(
n

2

)(
n− 2

m/2

)
pm ≤ 2(1+o(1))H( m

2n
)npm = 2(1+o(1))H( m

2n
)n−m log(1/p)

where H(x) = −x log x− (1− x) log(1− x) is the binary entropy function, and the o(1) terms tend to

zero as n tends to infinity.

Since for any x smaller than some absolute positive constant H(x) ≤ 1.1x log(1/x) we conclude

that if c is sufficiently small then for p ≤ c and m as above

(1+o(1))H(
m

2n
)n−m log(1/p) ≤ [1.2

m

2n
log(

2n

m
)− m

2n
2 log(1/p)]n ≤ −b′ m

2n
log(1/p)n = −b

′

2
log(1/p)m

for some absolute positive constant b′, where here we used the fact that log(2n
m ) = log(1/p) + Θ(1)

since, by assumption, p
32 ≤

m
2n ≤

p
8 . This supplies the assertion of the lemma (with b = b′/2) in case

m is even.

If m is odd we simply bound the left hand side of (7) by the far bigger quantity
(

n
(m+1)/2

)
pm+1,

which is bounded by the right-hand side of (7), using the reasoning above. 2

Call a complete bipartite graph nontrivial if it is not a star, that is, each of its vertex classes is of

size at least 2.

Lemma 3.2 There are absolute positive constants a, c and C so that for all sufficiently large n and

every positive p ≤ c satisfying np ≥ C log n, the probability that G = G(n, p) contains a set of at most

2n pairwise edge disjoint nontrivial complete bipartite graphs whose union covers at least pn2/4 edges

is at most 2−ap log(1/p)n2
.

Proof. If there are such nontrivial complete bipartite subgraphs, omit each one that contains at most

pn/16 edges (if there are such subgraphs). The remaining subgraphs still cover at least pn2/4 − 2n ·
pn/16 = pn2/8 edges. Each such subgraph with more than pn/4 edges can be partitioned into two

nontrivial complete bipartite subgraphs of nearly equal size, by splitting the larger vertex class into

two nearly equal classes. Repeating this process we obtain a family of pairwise edge disjoint complete

bipartite subgraphs, each having at least pn/16 and at most pn/4 edges, whose union covers at least

pn2/8 edges. Let F be a family of at most 2n arbitrarily chosen members of this family, whose union

covers at least pn2/8 edges. (If the whole family contains less than 2n subgraphs, let F be all of them,

else, take any 2n members, since each of them has at least pn/16 edges altogether they cover at least

pn2/8 edges). Put F = {Fi : i ∈ I}, where |I| ≤ 2n and Fi is a nontrivial complete bipartite subgraph

of G with mi edges. Note that by the discussion above, if G contains a set of at most 2n complete

bipartite graphs as in the lemma, then it contains a family F as above.

We complete the proof by establishing an upper bound for the probability that G contains such

a family F . This is done by a simple union bound, using Lemma 3.1. There are 2n ways to choose

10



the size of I, then there are less than (n2)2n = n4n ways to choose the numbers mi. Once these are

chosen, there are ∑
2≤d≤

√
mi,d|mi

(
n

d

)(
n− d
mi/d

)
ways to select the sets of vertices of the two vertex classes of Fi. As all the graphs Fi are pairwise

edge-disjoint, the probability that all those are indeed subgraphs of G is at most
∏
i∈I p

mi , implying

that the probability that there is an F as above is at most

(2n)n4n
∏
i∈I

∑
2≤d≤

√
mi,d|mi

(
n

d

)(
n− d
mi/d

)
pmi .

By Lemma 3.1 the last quantity is at most

(2n)n4n
∏
i∈I

2−b log(1/p)mi ≤ (2n)n4n2−b log(1/p)pn2/8 ≤ 2−a log(1/p)pn2

for some absolute positive constant a, where here we used the fact that pn ≥ C log n which implies

that (2n)n4n = 2O(n logn) < 2o(log(1/p)pn2). This completes the proof. 2

Following Chung and Peng [6], let τ ′(G) denote the minimum number of pairwise edge disjoint

nontrivial bipartite subgraphs of G whose union covers all edges of G (if there is no such cover define

τ ′(G) =∞). Lemma 3.2 implies that the probability that G = G(n, p) for p as in the lemma satisfies

τ ′(G) ≤ 2n is extremely small, as we observe next.

Corollary 3.3 There are absolute positive constants a, c and C so that for all sufficiently large n and

every positive p ≤ c satisfying np ≥ C log n, the probability that G = G(n, p) satisfies τ ′(G) ≤ 2n is at

most 2−apn
2
.

Proof. By the standard estimates for Binomial distributions (c.f., e.g., [3], Theorem A.1.13) the

probability that G has less than pn2/4 edges is at most e−(1+o(1))pn2/16. By Lemma 3.2 the probability

that G contains a set of at most 2n pairwise edge disjoint nontrivial complete bipartite graphs whose

union covers at least pn2/4 edges is at most 2−ap log(1/p)n2
. If none of these two rare events happens

then clearly τ ′(G) > 2n. 2

The following lemma is proved in [6]

Lemma 3.4 ([6], Lemma 14) For any graph G = (V,E) there exists a set of vertices U ⊂ V so that

if G[U ] denotes the induced subgraph of G on U then

τ(G) = |V | − |U |+ τ ′(G[U ]).

The proof is by considering a bipartite decomposition of G into τ = τ(G) complete bipartite subgraphs,

with a maximum number of stars (among all decompositions into τ such subgraphs). Suppose that in

this decomposition the stars used are centered at the vertices V −U , where U ⊂ V . Now replace each

11



of the remaining, non-star member B in the decomposition by its induced subgraph on V (B) ∩ U .

It is easy to see that by modifying the stars, if needed, the resulting graphs also form a bipartite

decomposition of G, and by the maximality of the number of stars, each of the remaining subgraphs

besides the |V | − |U | stars is a nontrivial complete bipartite graph, implying the statement of the

lemma.

Proof of Theorem 1.2: Suppose G = G(n, p) with 2
n ≤ p ≤ c and c as in Corollary 3.3. The

required upper bound for τ(G) follows from the well known fact that α(G) = Θ( log(np)
p ) whp (see [5]

for a much more precise result). We proceed with the proof of the lower bound.

The lower bound for p = o(n−7/8) follows from the assertion of Proposition 1.3, proved in the next

section. We thus may and will assume that, say, np ≥ n0.1. Note that in this case log(np) = Θ(log n).

By Corollary 3.3, the probability that there exists a set U of size k ≥ 2 logn
ap , for an appropriately

chosen absolute constant a > 0, so that τ ′(G[U ]) ≤ 2|U | does not exceed(
n

k

)
2−apk

2 ≤ 2k logn−apk2 ≤ 2k logn−apk2 logn/(ap) = 2−k logn = n−k.

Note that to apply Corollary 3.3, k and p should satisfy

kp ≥ C log k.

As k ≤ n, and k ≥ 2 logn
ap it suffices to have

2 log n

ap
p =

2 log n

a
≥ C log n

and this holds by taking the constant a as in Corollary 3.3, and by decreasing it to 2/C if it is larger

(the assertion of Corollary 3.3 clearly holds when a is decreased). Summing over all values of k ≥ 2 logn
ap

we conclude that whp there is no such set U . Suppose that’s the case.

By Lemma 3.4 there exists a set of vertices U ⊂ V so that if G[U ] denotes the induced subgraph

of G on U then

τ(G) = n− |U |+ τ ′(G[U ]).

Put |U | = k. If k ≤ 2 logn
ap then

τ(G) = n− |U |+ τ ′(G[U ]) ≥ n− k ≥ n− 2 log n

ap

providing the required estimate. For larger values of k, by the assumption above

τ(G) = n− |U |+ τ ′(G[U ]) ≥ n− k + 2k > n,

providing the required bound (with room to spare). This completes the proof. 2
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4 Concluding remarks

We have shown that the conjecture of Erdős that for G = G(n, 0.5) the equality τ(G) = n − α(G)

holds whp is incorrect as stated. In a more recent paper [2] we show that in fact there is a positive

constant c so that τ(G) ≤ n − (1 + c)α(G) whp. The following variation of Erdős’ conjecture seems

plausible.

Conjecture 4.1 For the random graph G = G(n, 0.5), τ(G) = n−Θ(α(G)) whp.

By [2] the more general conjecture of [6] that for any 0.5 ≥ p = Ω(1) and for G = G(n, p), τ(G) =

n − (1 + o(1))α(G) whp also fails for p = 0.5, but may well be true for any fixed p < 0.5 . Although

we are not able to prove it, note that Theorem 1.2 proves a similar, weaker statement, namely, for all

p ≤ c and for G = G(n, p), τ(G) = n−Θ(α(G)) whp, where c is an absolute positive constant.

For p < 0.5 which is bounded away from 0.5, it is easy to check that for G = G(n, p), β(G) < α(G)

whp, and hence in this range the upper bound τ(G) ≤ n − α(G) is typically better than the upper

bound τ(G) ≤ n − β(G) + 1 (which is much better for p > 0.5, but we restrict our attention here to

the case p ≤ 0.5). For very sparse graphs, Proposition 1.3 determines precisely the typical value of

τ(G). Here is the simple proof.

Proof of Proposition 1.3: By Lemma 3.4,

τ(G) = n− |U |+ τ ′(G[U ])

for some set of vertices U of the graph G = G(n, p). However, when p = o(n−7/8) then, whp, G

contains no non-star complete bipartite graphs besides K2,2 = C4, and there are no two copies of C4

that share a vertex. Therefore, any connected component of the induced subgraph G[U ] on U must

be either an isolated vertex or a cycle of length 4, completing the proof. 2

For very sparse random graphs, namely, if p = Θ(1/n) and G = G(n, p), then the whole graph G

contains a connected component which is C4 with probability that is bounded away from 0 and 1. If

this is the case, then the expression n−maxH(γ(H)) provided in Proposition 1.3 for τ(G) is strictly

smaller than n− α(G). Thus, for very sparse random graphs, it is not the case that τ(G) = n− α(G)

whp. Yet, it may well be the case that for any fixed constant p bounded away from 0 and 0.5,

τ(G) = n − α(G) whp. At the moment we can neither prove nor disprove this statement, which

remains open.
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