
Algorithmica (1997) 17:209-223 Algorithmica
~:) 1997 Springer-Verlag New York Inc.

Finding and Counting Given Length Cycles 1

N. Alon, 2 R. Yuster, 2 and U. Zwick 2

Abstract. We present an assortment of methods for finding and counting simple cycles of a given length
in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the
graph in question, and not on the number of vertices. The bounds obtained improve upon various previously
known results.

Key Words. Graph algorithms, Cycles.

1. In t roduc t ion . T h e p r o b l e m o f d e c i d i n g w h e t h e r a g i v e n g r a p h G = (V, E)conta ins
a simple cycle of length k is among the most natural and easily stated algorithmic graph
problems. If the cycle length k is part of the input, then the problem is clearly NP-
complete as it includes in particular the Hamiltonian cycle problem. For every fixed k,
however, the problem can be solved in either O(VE) time [11] or O(V ~ log V) [2],
where w < 2.376 is the exponent of matrix multiplication.

The main contribution of this paper is a collection of new bounds on the complexity
of finding simple cycles of length exactly k, where k > 3 is a fixed integer, in a directed
or an undirected graph G = (V, E). These bounds are of the form O (E ~k) or of the form
O(E ~k .d(G)• where d(G) is the degeneracy of the graph (see below). The bounds
improve upon previously known bounds when the graph in question is relatively sparse
or relatively degenerate.

We let Ck stand for a simple cycle of length k. When considering directed graphs,
a Ck is assumed to be directed. We show that a Ck in a directed or undirected graph
G = (V, E), if one exists, can be found in O(E 2-2/k) time, if k is even, and in
O(E 2-2/(k+1)) time, if k is odd. For finding triangles (C3's), we get the slightly bet-
ter bound of O(E 2~176 = O (E I 4 1) , where w < 2.376 is the exponent of matrix
multiplication.

Even cycles in undirected graphs can be found even faster. A C4k-2 in an undirected
graph G = (V, E), if one exists, can be found in O(E 2-(l/2k)tl+l/k)) time. A Cak, if one
exists, can be found in O(E 2-(l/k-t/(2k+~))) time. In particular, we can find an undirected
Ca in O(E 4/3) time and an undirected C6 in O(E 13/8) time.

The degeneracy d(G) of an undirected graph G ---- (V, E) is the smallest number d
for which there exists an acyclic orientation of G in which all the out-degrees are at
most d. The degeneracy d(G) of a graph G is linearly related to the arboricity a(G) of
the graph, i.e., a(G) = (-)(d(G)), where a(G) is the minimal number of forests needed

I This work was supported in part by The Basic Research Foundation administrated by The Israel Academy
of Sciences and Humanities.
2 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-
versity, Tel Aviv 69978, Israel. Inoga,raphy, zwick}@math.tau.ac.il.

Received October 18, 1994; revised May 5, 1995. Communicated by N. Megiddo.

210 N. Alnn, R. Yuster, and U. Zwick

Table 1. Finding small cycles in directed graphs--some of the new results.

Cycle Complexity Cycle Complexity

C3 E TM, E.d(G) C7 E 1'75, E3/2"d(G)
C4 E 15 , E.d(G) C8 E 175, E3/2.d(G)
C5 E 1'67, E.d(G) ~ C9 E 18 , E3/2.d(G) 3/2
C6 E 1'67. E3/2.d(G) I/2 CIo E 1'8 , Es/3"d(G)2/3

to cover all the edges of G. The degeneracy of a directed graph G = (V, E) is defined
to be the degeneracy of the undirected version of G. The degeneracy of a graph is an
important parameter of the graph that appears in many combinatorial results. It is easy
to see that for any graph G = (V, E) we have d(G) < 2E 1/2. For graphs with relatively
low degeneracy we can improve upon the previously stated results. A C4k in a directed
or undirected graph G = (V, E) that contains one can be found in O(E 2-1/k .d(G))
time. A C4k+l , if one exists, can be found in O(EZ-I/k.d(G) J+j/~) time. Similar results
are obtained for finding Cak-2's and C4k-t 's . In particular, C3's and C4's can be found
in O(E.d(G)) time and Cs 's in O(E .d(G) 2) time. Some of the results mentioned are
summarized in Tables 1 and 2.

As any planar graph has a vertex whose degree is at most 5, the degeneracy of any
planar graph is at most 5. As a consequence of the above bounds we get, in particular,
that C3's, C4's, and Cs 's in planar graphs can be found in O(V) time. This in fact holds
not only for planar graphs but for any nontrivial minor-closed family of graphs.

Another contribution of this paper is an O(V ~) algorithm for counting the number
of Ck's, for k < 7, in a graph G = (V, E).

A preliminary version of this work appeared in [1].

2, Comparison with Previous Works. Monien [11] obtained, for any fixed k >_ 3,
an O(VE) algorithm for finding Ck's in a directed or undirected graph G = (V, E).
In a previous work [2] we showed, using the color-coding method, that a Ck, for any
fixed k > 3, if one exists, can also be found in O(V ~ expected time or in O (W ~ log V)
worst-case time, where w < 2.376 is the exponent of matrix multiplication.

Our new O(E 2 -e/k) algorithm is better than both the O(VE) and the O(V ~ algo-
rithms when the input graph G = (V, E) is sufficiently sparse. It is interesting to note
that, for k _< 6, Monien 's O(VE) bound is superseded by either the O (W ~ algorithm,
when the graph is dense, or by the O(E 2 -I/Fk/21) algorithm, when the graph is sparse.

Table 2. Finding small cycles in undirected graphs--
some of the new results.

Cycle Complexity Cycle Complexity

C4 E 1.34 C8 E 1.7
C6 E 1.63 C 10 E 1.78

Finding and Counting Given Length Cycles 211

For every k _> 7, each one of the four bounds (including the bound that involves the
degeneracy) beats the others on an appropriate family of graphs.

In a previous work [161 we have also shown that cycles of an even length in undirected
graphs can be found even faster. Namely, for any even k > 4, if an undirected graph G =
(V, E) contains a Ck, then such a Ck can be found in O (V 2) time. Our O (E 2-(l/2k)(l+ 1/~))
bound for C4k-2 and O(E 2-(I/~-l/t2k+l))) bound for C4k are again better when the graph
is sparse enough.

Itai and Rodeh [8] showed that a triangle (a C3) in a graph G = (V, E) that contains
one can be found in O(V ~ or O(E 3/2) time. We improve their second result and show
that the same can be done, in directed or undirected graphs, in O(E 2'~176 = O (E 1"41)

time.
Chiba and Nishizeki [6] showed that triangles (C3's) and quadrilaterals (C4's) in

graphs that contain them can be found in O(E.d(G)) time. As d(G) = O(E 1/2) for
any graph G, this extends the result of Itai and Rodeh. We extend the result of Chiba
and Nishizeki and show that C4k-i's and C4k's can be found in O(E 2-1/k .d(G)) time.
We also show that C4k+l'S can be found in O(E 2-1/k .d(G) 1+Ilk) time. This gives, in
particular, an 0 (E.d(G) 2) algorithm for finding pentagons (Cs's). Our results apply to
both directed and undirected graphs.

Itai and Rodeh [8] and also Papadimitriou and Yannakakis [13] showed that C3's in
planar graphs can be found in O(V) time. Chiba and Nishizeki [6] showed that C3's as
well as C4's in planar graphs can be found in O(V) time. Richards [14] showed that Cs's
and C6's in planar graphs can be found in O(V log V) time. We improve upon the result
of Richards and show that C5 's in planar graphs can be found in O (V) time. In a previous
work [2] we showed, using color-coding, that, for any k >_ 3, a Ck in a planar graph, if
one exists, can be found in either O(V) expected time or O(V log V) worst-case time.

The fact that the number of triangles in a graph can be counted in O(V ~ time is
trivial. In [2] we showed, using color-coding, that, for any k >_ 3, a C~, if one exists, can
be found in either O(W ~ expected time or in O(V ~ log V) worst-case time. Here we
show that for any k _< 7 the number of Ck's in a graph can be counted in O(V ~') time.
The counting method used here yields, in particular, a way of finding Ck's for k _< 7, in
O (V ~~ worst-case time.

Sundaram and Skiena [15] have recently presented some more fixed-subgraph iso-
morphism algorithms. The results presented here, and in [2] and [16], improve some of
their results.

Eppstein [7] has recently shown that the fixed-subgraph isomorphism problem for
planar graphs, i.e., given a fixed graph H and a planar graph G = (V, E), find a
subgraph of G isomorphic to H, can be solved, for every fixed H, in O(V) time.

3. Finding Cycles in Sparse Graphs. Monien [11] obtained his O (VE) algorithm by
the use of representative collections. Such collections are also used by our algorithms.
In what follows, a p-set is a set of size p.

DEFINITION 3.1 [1 1]. Let .T" be a collection of p-sets. A subcollection ~" __)t- is q-
representative for .T" if, for every q-set B, there exists a set A ~ .T" such that A fq B = 13
if and only if there exists a set A ~ ~ with this property.

212 N. Alon, R. Yuster, and U. Zwick

It follows from a combinatorial lemma of Bollob~is [3] that any collection .Y" of p-sets,
no matter how large, has a q-representative subcollection of size at most (P+q) Monien x p .,"

[l l] describes an O (p q . ~q=0 pi . 13vl)_time algorithm for finding a q-representative
q i subcollection of 0 v whose size is at most Y~-i=0 P �9 Relying on Monien's result we obtain

the following lemma:

LEMMA 3.2. Let Sg be a collection of p-sets and let G be a collection of q-sets. Consider
p and q to befired. In O(I.7-1 + I~1) time, we can eitherfind two sets A ~ .F and B ~
such that A n B = ~ or decide that no two such sets exist.

PROOF. We use Monien 's algorithm to find a q-representative subeollection ~" of 3 r
whose size is at most Y~fl=0 pi and a p-representative subcollection ~ of ~ whose size
is at most Y~-/P=0 qi. This takes only O(13rl + IGI) time (as p and q are constants).

It is easy to see that if there exist A 6 5 r and B 6 G such that A n B = ~, then
there also exist A' 6 ~ and B' ~ ~ such that A' N B' = 0. To see this note that if
A f3 B = ~, then, by the definition of q-representatives, there must exist a set A' ~ .~"
such that A' N B = ~ and then there must exist a set B' 6 ~ such that A' n B' = (6 as
required.

After finding the representative collections ~ and ~ it is therefore enough to check
whether they contain two disjoint sets. This can be easily done in constant time (as p
and q are constants). []

We also need the following lemma that follows immediately from the work of
Monien [11].

LEMMA 3.3 [1 l]. Let G = (V, E) be a directed or undirected graph, let v E V, and
let k >_ 3. A Ck that passes through v, if one exists, can be found in O (E) time.

We are finally able to present our improved algorithm.

THEOREM 3.4. Deciding whether a directed or undirected graph G = (V, E) contains
simple cycles o f length exactly 2k - 1 and o f length exactly 2k, and finding such cycles
if it does, cart be done in O (E 2-1/k) time.

PROOF. We describe a n O (E 2-1 /k) - t ime algorithm for finding a C2k in a directed graph
G = (V, E). The details of all the other cases are similar. Let A = El/*. A vertex
in G whose degree is at least A is said to be of high degree. The graph G = (V, E)
contains at most 2 E / A = O (E I-Ilk) high-degree vertices. We check, using Monien 's
algorithm (Lemma 3.3), whether any of these high-degree vertices lies on a simple
cycle of length 2k. For each vertex this costs O (E) operations and the total cost is
O (E 2 / A) = O (E 2 - 1 / k) . If one of these vertices does lie on a cycle of length 2k we are
done. Otherwise, we remove all the high-degree vertices and all the edges adjacent to them
from G and obtain a subgraph G' that contains a C2k if and only if G does. The maximum
degree of G ' is at most A = E I/k and there are therefore at most E . A k- I = E 2-1/k

simple directed paths of length k in G'. We can find all these simple paths in O (E 2 l/k)

Finding and Counting Given Length Cycles 213

time. We divide these paths into groups according to their endpoints. This can be done
using radix sort in O(E 2-1/k) time and space. We get a list of all the pairs of vertices
connected by simple directed paths of length exactly k. For each such pair u~ v, we g e t
a collection ,T'u,~ of (k - 1)-sets. Each (k - 1)-set in 5t-u,o corresponds to the k - 1
intermediate vertices that appear on simple directed paths of length k from u to v. For
each pair u, v that appears on the list, we check whether there exist two directed paths
of length k, one from u to v and the other from v to u, that meet only at their endpoints.
Such two paths exist if there exist A ~ 5vu,~ and B 6 Fv,u such that A tq B = 13. This
can be checked, as shown in Lemma 3.2, in O (l~-,,v I + I~-o,, I) time. As the sum of the
sizes of all these collections is O (E2-1/k), the total complexity is again O(E2-1/k). This
completes the proof. []

In the case of triangles we can get a better result by using fast matrix multiplication.

THEOREM 3.5. Deciding whether a directed or an undirected graph G = (V, E) con-
tains a triangle, and finding one if it does, can be done is O(E 2~~176 = O(E 1'41)
time.

PROOF. Let A - ~ - E (w-l)/(~~ A vertex is said to be of high degree if its degree is
more than A and of low degree otherwise. Consider all directed paths of length 2 in G
whose intermediate vertex is of low degree. There are at most E. A such paths and they
can be found in O(E. A) time. For each such path, check whether its endpoints are
connected by an edge in the appropriate direction. If no triangle is found in this way,
then any triangle in G must be composed of three high-degree vertices. As there are
at most 2E/A high-degree vertices, we can check whether there exists such a triangle
using matrix multiplication in O((E/A) ~ time. The total complexity of the algorithm
is therefore

O (E. A + (E)~ = O(E2~176

This completes the proof. []

We have not been able to utilize matrix multiplication to improve upon the result of
Theorem 3.4 for k > 4. This constitutes an interesting open problem.

4. Finding Cycles in Graphs with Low Degeneracy. An undirected graph G :
(V, E) is d-degenerate (see p. 222 of [4]) if there exists an acyclic orientation of it in
which dout(V) < d for every v ~ V. The smallest d for which G is d-degenerate is called
the degeneracy or the max-rain degree of G and is denoted by d(G). It can be easily seen
(see again [4]) that d(G) is the maximum of the minimum degrees taken over all the
subgraphs of G. The degeneracy d(G) of a graph G is linearly r~lated to the arboricity
a (G) of the graph, i.e., a(G) = | (d(G)), where a (G) is the minimal number of forests
needed to cover all the edges of G. The degeneracy of a directed graph G = (V, E)
is defined to be the degeneracy of the undirected version of G. It is easy to see that
the degeneracy of any planar graph is at most 5. Clearly, if G is d-degenerate, then

214 N. Alon, R. Yuster, and U. Zwick

[EI < d.IVI. The following simple iemma, whose proof is omitted, is part of the folklore
(see, e.g., [10]).

LEMMA4.1. LetG = (V, E) be a connected undirected graph G = (V, E).Anacyclic
orientation of G such that for every o ~ V we have dour(V) < d(G) can be found in
O (E) time.

The main result of this section is the following theorem:

THEOREM4.2. Let G = (V, E) be a directed or an undirected graph.

(i) Deciding whether G contains a simple cycle of length exactly 4k - 2, and finding
such a cycle if it does, can be done in O(E2-1/k.d(G) l-l/k) time.

(ii) Deciding whether G contains simple cycles of length exactly 4k - 1 and of length
exactly 4k, and finding such cycles if it does, can be done in 0 (E 2- I / k .d (G)) time.

(iii) Deciding whether G contains a simple cycle of length exactly 4k + 1, and finding
such a cycle if it does, can be done in O(E 2-1/k .d(G)I+l/t,) time.

PROOF. We show how to find a C4k+l in a directed graph G = (V, E), if one ex-
ists, in O(E 2- Ilk. d(G)I+l/k) time. The proofs of the other claims are easier. If d(G) >
E I/(z~+ t) , we can use the algorithm of Theorem 3.4 whose complexity is O (E 2- l/(2k+ l)) <
O(E 2-1/k .d(G)l+l/k). Assume therefore that d(G) < E I/t2k+l).

Let A = El/k/d(G)l+l/k. As d(G) < E l/(21+l), we have that d(G) < A. A vertex
is said to be of high degree if its degree is more than A and of low degree otherwise.
As in the proof of Theorem 3.4, we can check in O(E2/A) time whether any of the
high-degree vertices lies on a Cak+l. If none of them lies on a Cak+l, we can remove all
the high-degree vertices along with the edges adjacent to them from G and obtain a graph
whose maximal degree is at most A. The degeneracy of a graph can only decrease when
vertices and edges are deleted and d(G) is therefore an upper bound on the degeneracy
of the graph obtained.

Suppose therefore that G is a graph with maximal degree A and degeneracy d(G).
To find a C4k+l in G, it is enough to find all directed simple paths of length 2k and
2k + 1 in G and then check, using the algorithm described in the proof of Lemma 3.2,
whether there exist a path of length 2k and a path of length 2k + 1 that meet only at their
endpoints.

In O(E) time we can get an acyclically oriented version G' of G in which the out-
degree of each vertex is at most d(G). The orientations of the edges in G and G' may
be completely different.

The number of paths, not necessarily directed, of length 2k -t- 1 in G, is at most

2 ' 2 E ' i ~ ~ . = Aid (G)~- i = O(EA~d(G)k).

To see this, consider the orientations, in G', of the edges on a (2k + l)-path in G. In
at least one direction, at most k of the edges are counterdirected. The number of paths
of length 2k + 1 in which exactly i among the last 2k edges are counterdirected is at

Finding and Counting Given Length Cycles 215

most 2E. (2/~)Aid(G) zk-` . The binomial coefficient (27) stands for the possible choices
for the position of the counterdirected edges in the path. Similarly, the number of paths
of length 2k in G is O(EA~d(G)k- l) .

We can lower the number of paths of length 2k + 1 and 2k we have to consider by
utilizing the fact that a Cak+l can be broken into two paths of length 2k + 1 and 2k
in many different ways. In particular, let C be a directed C4k+l in G and consider the
orientations of its edges in G'. As 4k + 1 is odd and as G' is acyclic, C must contain three
consecutive edges ezk, ezk+l, and e2k+2, the first two of which have the same orientation
while the third one has an opposite orientation. It is therefore enough to consider all
(2k + 1)-paths that start with at least two backward oriented edges and all 2k-paths
that start with at least one backward oriented edge. The orientations referred to here
are in G'.

The number of paths of length 2k + 1 in G whose first two edges are backward oriented
in G' is O (EA k- l d(G)k+l). To see this, note that any such path is composed of a directed
path {e2k, e2k+l} of length 2, attached to an arbitrarily oriented path {el e2k-i } of
length 2k - 1. The number of paths of length 2k - 1 is, as shown earlier, at most
O (E Ak-I d (G) ~-1) and the number of directed path of length 2 with a specified starting
point is at most d (G) 2. Similarly, there are at most O(EAk-~d(G) k) 2k-paths that start
with a backward oriented edge.

It should be clear from the above discussion that all the required (2k + 1)- and 2k-paths,
whose total number is O(EAk-ld(G)k+l) , can be found in O(E A k - ld (G) k+l) time.
Paths which are not properly directed, in G, are thrown away. Properly directed paths are
sorted, using radix sort, according to their endpoints. Using Lemma 3.2 we then check
whether there exist a directed (2k + l)-path and a directed 2k-path that close a directed
simple cycle. All these operations can again be performed in O (EAk- ld (G) k+l) time.

Recalling that A = EU~/d(G) I+Uk, we get that the overall complexity of the
algorithm is

o(E-~--A+E.Ak-ld(G) ~+;) =O(E2-1/kd(G)l+l/k) .

This completes the proof of the theorem. []

As an immediate corollary we get:

COROLLARY 4.3. If a directed or undirected planar graph G = (V, E) contains a
pentagon (a C5), then such a pentagon can be found in O(V) worst-case time.

By combining the ideas of this section, the O(E 2~176 algorithm of Theorem 3.5,
and the color-coding method [2] we can also obtain the following result.

THEOREM 4.4. Let G = (V, E) be a directed or undirected graph. A C6 in G, if one
exists, can be found in either O ((E .d (G)) 2~/C~ l)) = O ((E .d (G)) 1"41) expected time
or O((E.d(G)) 2~~176 .log V) = O((E.d(G))1.41 log V) worst-case time.

PROOF. We show how to find a C6 in an undirected graph G = (V, E), if one exists,

216 N. Alon, R. Yuster, and U. Zwick

el I A,~ el3 el,t A s A~?

Fig. 1. The possible orientations of C6 in G'.

in O ((E . d (G)) 2'~/1~ expected time, or O ((E . d (G)) 2~'/~'+1) log V) worst-case time.
The proof of the directed case is similar.

In O(E) time we can get an acyclically oriented version G ' = (V, E') of G in which
the out-degree of each vertex is at most d(G). Suppose that G contains a C6. The six
possible nonisomorphic orientations of this C6 in G ' are shown in Figure I. We refer to
these orientations as Ai A6. Our algorithm checks, for each 1 < i < 6, whether G '
contains an Ai and if so finds one.

We show how to find an A 1 in G' , if one exists. The other cases are similar, and in fact
easier. As in [2], we color the vertices of G ' randomly using six colors (i.e., every vertex
receives a number between 1 and 6, all numbers equally likely). Let c(v) denote the color
of vertex v. Let A be a specific copy of an A i in G'. We say that A is well-colored if
its vertices are consecutively colored by 1 through 6, and the color 1 is assigned to one
of the three vertices having only outgoing edges in A. (By "consecutively colored" we
mean that each v �9 A with c(v) < 6 has a neighbor u �9 A with c(u) = c(v) + 1). The
probability that A is well-colored is 6/66. We now show how to detect a well-colored
copy of an A ~ deterministically, if one exists.

Create a new undirected graph G* = (V*, E*) defined as follows:

V* = {v �9 V: c(v) �9 {2,4,6}}

E* = {(u, v): c(u) = 6, c(v) = 2, (3 w E V) (c(w) = 1, (w, u), (w, v) �9 E')]

U {(u, v): c(u) = 2, c(v) = 4, (3 w �9 V) (c(w) = 3, (w ,u) , (w, v) �9 E')}

U {(u, v): c(u) = 4, c(v) = 6, (3 w �9 V) (c(w) = 5, (w, u), (w, v) �9 E')}.

Clearly, V* < V. To create G*, we examine each edge (w, u) E E ' with c(w) odd.
Suppose c(w) = i and c(u) = 6. We create edges in G* between u and all vertices
v such that (w, v) E E ' and c(v) = 2. There are at most d(G) - I such vertices. We
therefore have E* < E . d (G) and G* can be constructed in O (E . d (G)) time from G'.
Clearly, there exists an undirected triangle in G* iff there exists a well-colored A i in G'.
We can detect such a triangle in G* in O((E*) 2~ = O ((E d (G)) 2'~/(0~+1)) time
using the algorithm of Theorem 3.5. If such a triangle is not found, we repeat the whole
process using a new random coloring. If G ' contains an A 1, then such an A i will be
found after an expected number of 65 = 7776 attempts.

We have thus shown how to detect an At in G' , if one exists, in O ((E d (G)) 2C~176 =
O ((E . d (G)) z~176 expected time. As shown in [2], such a coloring scheme can be
derandomized at the price of an O(log V) factor. []

Finding and Counting Given t.ength Cycles 217

5. Finding Cycles in Sparse Undirected Graphs. To obtain the results of this section
we rely on the following combinatorial lemma of Bondy and Simonovits 15].

LEMMA 5.1 [5]. Let G = (V, E) be an undirected graph. I f IEI > lOOk. [VI I+l/k,
then G contains a C2~ for every, integer g E [k, n I/k].

By combining the algorithm described in the proof of Theorem 4.2 with an algorithm
given in [16] we obtain the following theorem.

THEOREM 5.2. Let G -~ (V, E) be an undirected graph.

(i) A C4k-2 in G, if one exists, can be found in O(E 2-~1/2k)~1+1/~)) time.
(ii) A Cak in G, if one exists, can be found in O(E 2-~l/k-t/t2k+l))) time.

PROOF. We prove the second claim. The proof of the first claim is similar. Let d =
2OOk. E l/~2k+l). If d(G) >__ d, then, by the definition of degeneracy, there is a subgraph
G' = (V', E') of G in which the minimal degree is at least d. Such a subgraph can be
easily found in O(E) time (see, e.g., 1101). Clearly, E' > dV ' /2 > lOOk. V'. E 'l/t2k+l)
and therefore E ' > (lOOk. V') l+l/2k > iOOk.(V') l+l/2k. By Lemma 5.1 we get that G'
contains a Cak and such a Cak can be found in O(V '2) ----- O(E 2-2/~2k+11) time using
the algorithm given in [16]. If, on the other hand, d(G) < d, then a Cak in G, if one
exists, can be found in O(E 2-1/k .d) = O(E 2-1j/k-I/~2k+l))) time using the algorithm
of Theorem 4.2. It is easy to check that E 2-2/~2~+j) < E 2-~I/k-~/t2k+~)) with equality
holding only i fk = 1. In both cases the complexity is therefore O(E 2-~/k-~/C2k+l))) as
required. []

COROLLARY 5.3. Let G = (V, E) be an undirected graph.

(i) A quadrilateral (C4) in G, if one exists, can be found in O(E 4/3) time.
(ii) A hexagon (C6) in G, if one exists, can be found in O(E 13/8) time.

6. Count ing Small Cycles. Let G = (V, E) be a simple undirected graph and let
A = Ac be the adjacency matrix of G. Assume for simplicity that V = {1 n}.
Denote by a~; ~ = (Ak)ij the elements of the kth power of A. The trace tr(A ~) of A k,
which is the sum of the entries along the diagonal of A k, gives us the number of closed
walks of length k in G. If we could also compute the number of nonsimple closed walks
of length k in G we would easily obtain the number of simple closed paths of length k
in G. This number is just 2k times the number of Ck's in G.

Before describing a way of counting the number of nonsimple closed walks of length k,
where k < 7, in a graph G in O(W") time, we need the following definitions:

DEFINITION 6.1. Let G I = (Vi, El) and G2 ----- (V2, E2) be two simple graphs. A
mapping f : V~ U E I ~ V2UE2 is a homomorphism if for every v e Vl we have
f (v) c V2 and for every e = (u, v) e El we have f (e) = (f (u) , f (v)) ~ E2. If f is
onto V2 U E2, we say that G2 is a homomorphic image of G j.

218 N. Alon, R. Yuster. and U. Zwick

r'll l "~ 112

Fig. 2. The 4-cyclic graphs.

DEFINITION 6.2. A graph H = (V/4, EH) is said to be k-cyclic, for k > 3, if it is a
homomorphic image of the cycle C,. The number of different homomorphisms from Ck
to H is denoted by ck(H). Clearly, H is k-cyclic if and only if ck(H) > 0.

It is easy to check, for example, that C3 is k-cyclic for every k > 3 except k = 4. It
is also not difficult to check that c3 (C3) = 6 (and more generally ck (Ck) = 2k for every
k _> 3) and that c5(C3) ---- 30. The only 3-cyclic graph is C3 itself. The k-cyclic graphs,
for 4 < k < 7, are given in Figures 2-5.

Let nc (H) denote the number of subgraphs of G isomorphic to H. Clearly, the total
number of closed walks of length k in G is

tr(Ak) = Z ck(H)nc , (H) .
H

If ck(H) > 0, then H is connected and has at most k edges. Also, H cannot be a tree on
k + 1 vertices as each edge leading to a leaf must be the image of at least two edges in
Ck. Hence, I V HI <_ k and in fact, I Vtt I < k unless H = Ck. We therefore obtain, for an
undirected graph G ---- (V, E):

(1) l[1 nG(Ck) = ~ - t r (A k) - Z c k (H) n v (H) .
IVnl<k .J

A very similar formula can be obtained for directed graphs. We show how to compute
n~(H) , for all k-cyclic graphs H with 3 < k < 7, in O (V ~) time. Hence, we obtain the
following theorem.

THEOREM 6.3. Then u m b e r o f C k ' s , f o r 3 < k < 7 inanundirected(ordirected) graph
G = (V, E), can befoutut in O (W ~ time.

PROOF. We consider the undirected case. The directed case is similar and, in fact,
slightly simpler (as there are less k-cyclic graphs). Clearly, the traces tr(Ak), for 3 <
k < 7, can be computed in O(V~ time using fast matrix multiplication. It remains to
show how to find n o (H) for all k-cyclic graphs H, where 3 < k < 7, excluding the
cycles C3 C7 themselves, in O (V ~) time.

The k-cyclic graphs shown in Figures 2-5, which are not simple cycles, are denoted
by HI H15 (they are ordered according to the number of edges they contain).

11~

Fig. 3. The 5-cyclic graphs.

Finding and Counting Given Length Cycles 219

tI~ 112

7! N
II6

A -= --Ha-" e

1t9

Fig. 4. The 6-cyclic graphs

The following list shows how to obtain n 6 (H i) , for 1 _< 1 _< 15, and nG(Ck) , for
3 < k _< 7. In all cases the formulae reference at most O(V 2) values ofa~} ') for some

1 _< p _< k and can hence be computed in O (V ~ time. We let di = a[2) denote the
degree of vertex i.

1.

nG(C3) = l . t r (A3) .

2.

.

4.

.

n G (H ,) = IE[= E a)))"
l<i<j<_n

i=I

1. [tr(A 4) _ 4rig (/ / 2) - - 2rig (HI)] . na(C4) = g

nG(H3) = Z (di -- 1)(dj -- 1) -- 3n6(C3) .
(i.j)~E

A HI .V-
tt,~ tt~ 117

Ha alo live

HI:~ H14 His

Fig. 5. The 7-cyclic graphs.

220

6.

7.

8.

.

10.

11.

12.

13.

N. Alon, R. Yuster. and U. Zwick

nG(H4)=~-~(di) .
i=1

no(Hs) = ~'Li=I

Note that aii(3) is twice the number of triangles that pass through vertex i

no(C5) = ~ .[tr(A 5) - 10no(Hs) - 30n6(C3)1.

n G (H 6) = Z (aCi))'
(i,j)c-E

Note that aly) is the number of common neighbors of i and j , which is also the
number of paths of length 2 between i and j .

n(;(H7) = 7"Li~= l i i k 2 "

n~-;(Hs) = Z a~))(di -- 2)(dj - 2) -- 2riG(H6).
(i . j)EF

Note that we must subtract 2nG(H6) to avoid the case in which the two degree-one
vertices of H8 are, actually, the same vertex.

= , _ _ . , (d , - 2) , _ _ , .

i=1 j ~ i

a~2)
Note that Y~q#i (~) is exactly the number of quadrilaterals in which i participates.

X'~tJ _O), S"a!21 -- 6no(C3) - 2no(Hs) - 4nc,(H6). nc;(Hio) = L. . .a ,St l i i) ~l.....a tj]
i=1 \ j ~ i /

1 (3) Note that (Taii)(Y~,j~i a~)).~ is simply the number of triangles through i times the
number of paths of length 2 that begin with i. However, we must only count such
a triangle and such a path if they are disjoint, so we must subtract appropriate
occurrences of C3,//5, and H6.

Finding and Counting Given Length Cycles 221

14.

~-~ (l a j 3,)
nG(Hll) = ~_ i --2riG(H6).

i=1

15. Since we have already shown how to compute nG(H) for all the 6-cyclic graphs,
excluding C6, we can use (1) to compute riG(C6).

16.

17.

18.

19.

r iG(HI2)= ~ al 2) _{3) �9 aij - 9nG(C3) -- 2nG(/-/5) -- 4nG(H6).
(i,j)~E

Here we count the number of triangles through (i, j) and multiply each triangle by
the number of walks of length 3 between i and j . Since these walks need not be
simple, or may intersect the triangle, we may actually be counting C3's, Hs's, or
H6's. Therefore, we subtract the appropriate values.

/a!?)'~
nG(Hl3) = ~ ~ ~) .

(i,j)~E

gl

na(Hi4) = ~__~(di - 2) �9 Bi - 2nG(Hl2),
i=1

where Bi is the number of C5's passing through i. The expression for Bi is

' [- lOa~) - 4 a ~ 3 i) (d i - 2) - 2 Bi = ~ a~)
L

E a~Y)(dj - 2) - 2. ~ -1 (3)] t gajj a~ 2)) �9
(i,j)~E (i,j)~E _1

~--% 1 (3). nG(His) = , ~ , T a i i) - 6nG(H6) -- 2n6(Hi2) -- 6n6(H13). []
i=1

Using slightly more effort, it can be shown that, in O (V ') time, we can also count
the number of Ck's, for 3 < k < 7, that pass through each vertex of G. We have, in fact,
done this in the preceding proof for k = 3, 4, 5. If the graph G contains a Ck, for some
3 < k < 7, we can therefore find, in O(W") time, a vertex through which such a Ck
passes. We can then locate a Ck in the graph in additional O (E) time using Monien's
method (Lemma 3.3).

Similar formulae can be obtained, of course, for the number of octagons (C8's) and
even larger cycles. To compute the number of octagons, however, we have to compute
first the number of Ka'S in the graph, since a K4 is 8-cyclic. We do not know how to do
this is O (V ') time.

222 N. Alon, R. Yuster, and U. Zwick

It is easy to count the number of K4's in a graph in O(V ~ time: for each vertex,
count the number of triangles among its neighbors, sum these numbers, and divide by 4.
Counting the number of Ka's in a graph, or, in fact, deciding whether a graph contains
a K4, in o(V ~ time, is an interesting open problem.

For counting the number of larger cycles using our method, we would have to count
the number of larger cliques in the graph. Ne~e~ril and Poljak [12] give an O(V'~ -

time algorithm for deciding whether a graph G = (V, E) contains a Kt. It is easy to
check that their method can also be used to count the number of such cliques contained
in the graph. By combining the method of Nege~ril and Poljak [12] with the ideas used
in Section 4, we get the following result.

THEOREM 6.4. The number o f Kt 's in an undirected graph G = (V, E) can be counted
in either 0 (V . (d(G)) '~ 1)/31) or 0 (E . (d (G)) '~) time.

Using an idea similar to the one used in Theorem 3.5, Kloks et al. [9] have recently
obtained an O (E t'~ = O(E 1"69) time algorithm for counting the number of Ka's

contained in a graph G = (V, E). They also obtain improved results for finding larger
cliques and other induced subgraphs.

References

[1] N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Proceedings of the 2nd
European Symposium on Algorithms, Utrecht, Lecture Notes in Computer Science, Vol. 855, pages 354-
364. Springer-Verlag, 1994.

[21 N. Alon, R. Yuster0 and U. Zwick. Color-coding. Journal of the ACM, 42:844-856, 1995.
13] B. Bollob,'ts. On generalized graphs. Acta Mathematica Academiae Scientarium Hungaricae, 16:447-

452, 1965.
[4] B. Bollob,'is. Extremal Graph Theol.. Academic Press, New York, 1978.
[5] J.A. Bondy and M. Simonovits. Cycles of even length in graphs. Journal of Combinatorial Theory.,

Series B, 16:97-105, 1974.
[6] N. Chiba and L. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on Computing,

14:210-223, 1985.
[7] D. Eppstein. Subgraph isomorphism in planar graphs and related problems. Proceedings of the

6th Annual ACM-SIAM Symposium on Discrete Algorithms, San Francisco, CA, pages 632---640,
1995.

[8] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. SIAM Journal on Computing, 7:413-423,
1978.

[9] T. Kloks, D. Kratsch, and H. MUller. Finding and counting small induced subgraphs efficiently. Proceed-
ings of the 21st International Workshop on Graph-Theoretic Concepts in Computer Science, Aachen,
Lecture Notes in Computer Science, Vol. 1017, pages 14-23. Springer-Verlag, 1995.

II0l D.W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms.
Journal of the ACM, 30:417-427, 1983.

[I I] B. Monien. How to find long paths efficiently. Annals of Discrete Mathematics, 25:239-254, 1985.
ll2] J. Ne~etfil and S. Poljak. On the complexity of the subgraph problem. Commentationes Mathematicae

Universitatis Carolinae, 26(2):415-419, 1985.
[13] C. H. Papadimitri•u and M. Yannakakis. The c•ique pr•b•em f•r p•anar graphs. •nf•rmati•n Pr•cessing

Letters, 13:131-133, 1981.

Finding and Counting Given Length Cycles 223

[14] D. Richards. Finding short cycles in a planar graph using separators. Journal of Algorithms, 7:382-394,
1986.

[151 G. Sundaram and S. S. Skiena. Recognizing small subgraphs. Networks, 25:183-191, 1995.
[I 6] R. Yuster and U. Zwick. Finding even cycles even faster. Proceedings of the 2 I st International Col-

loquium on Automata, Languages and Programming, Jerusalem, Lecture Notes in Computer Science,
Vol. 820, pages 532-543. Springer-Vedag, Berlin, 1994. Journal version to appear in SIAM Journal on
Discrete Mathematics.

