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Finding and Counting Given Length Cycles 1 

N. Alon, 2 R. Yuster, 2 and U. Zwick 2 

Abstract. We present an assortment of methods for finding and counting simple cycles of a given length 
in directed and undirected graphs. Most of the bounds obtained depend solely on the number of edges in the 
graph in question, and not on the number of vertices. The bounds obtained improve upon various previously 
known results. 
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1. In t roduc t ion .  T h e p r o b l e m o f d e c i d i n g w h e t h e r a g i v e n g r a p h G  = (V, E)conta ins  
a simple cycle of length k is among the most natural and easily stated algorithmic graph 
problems. If the cycle length k is part of  the input, then the problem is clearly NP- 
complete as it includes in particular the Hamiltonian cycle problem. For every fixed k, 
however, the problem can be solved in either O(VE) time [11] or O(V ~ log V) [2], 
where w < 2.376 is the exponent of  matrix multiplication. 

The main contribution of this paper is a collection of  new bounds on the complexity 
of  finding simple cycles of length exactly k, where k > 3 is a fixed integer, in a directed 
or an undirected graph G = (V, E).  These bounds are of the form O (E ~k ) or of  the form 
O(E ~k .d(G)• where d(G) is the degeneracy of the graph (see below). The bounds 
improve upon previously known bounds when the graph in question is relatively sparse 
or relatively degenerate. 

We let Ck stand for a simple cycle of length k. When considering directed graphs, 
a Ck is assumed to be directed. We show that a Ck in a directed or undirected graph 
G = (V, E),  if one exists, can be found in O(E 2-2/k) time, if k is even, and in 
O(E 2-2/(k+1)) time, if k is odd. For finding triangles (C3's), we get the slightly bet- 
ter bound of O(E 2~176 = O ( E I 4 1 ) ,  where w < 2.376 is the exponent of  matrix 
multiplication. 

Even cycles in undirected graphs can be found even faster. A C4k-2 in an undirected 
graph G = (V, E),  if one exists, can be found in O(E 2-(l/2k)tl+l/k)) time. A Cak, if one 
exists, can be found in O(E 2-(l/k-t/(2k+~))) time. In particular, we can find an undirected 
Ca in O(E 4/3) time and an undirected C6 in O(E 13/8) time. 

The degeneracy d(G) of an undirected graph G ---- (V, E) is the smallest number d 
for which there exists an acyclic orientation of  G in which all the out-degrees are at 
most d. The degeneracy d(G) of a graph G is linearly related to the arboricity a(G) of 
the graph, i.e., a(G) = (-)(d(G)),  where a(G) is the minimal number of  forests needed 
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Table 1. Finding small cycles in directed graphs--some of the new results. 

Cycle Complexity Cycle Complexity 

C3 E TM, E.d(G) C7 E 1'75, E3/2"d(G) 
C4 E 15 , E.d(G) C8 E 175, E3/2.d(G) 
C5 E 1'67, E.d(G) ~ C9 E 18 , E3/2.d(G) 3/2 
C6 E 1'67. E3/2.d(G) I/2 CIo E 1'8 , Es/3"d(G)2/3 

to cover all the edges of G. The degeneracy of a directed graph G = (V, E)  is defined 
to be the degeneracy of the undirected version of G. The degeneracy of  a graph is an 
important parameter of  the graph that appears in many combinatorial results. It is easy 
to see that for any graph G = (V, E) we have d(G) < 2E 1/2. For graphs with relatively 
low degeneracy we can improve upon the previously stated results. A C4k in a directed 
or undirected graph G = (V, E)  that contains one can be found in O(E 2-1/k .d(G)) 
time. A C4k+l  , if one exists, can be found in O(EZ-I/k.d(G) J+j/~) time. Similar  results 
are obtained for finding Cak-2's and C4k-t 's .  In particular, C3's and C4's can be found 
in O(E.d(G))  time and Cs 's  in O(E .d(G) 2) time. Some of the results mentioned are 
summarized in Tables 1 and 2. 

As any planar graph has a vertex whose degree is at most 5, the degeneracy of any 
planar graph is at most 5. As a consequence of the above bounds we get, in particular, 
that C3's, C4's, and Cs 's  in planar graphs can be found in O(V) time. This in fact holds 
not only for planar graphs but for any nontrivial minor-closed family of  graphs. 

Another contribution of  this paper is an O(V ~) algorithm for counting the number 
of  Ck's, for k < 7, in a graph G = (V, E). 

A preliminary version of this work appeared in [1 ]. 

2, Comparison with Previous Works. Monien [11 ] obtained, for any fixed k >_ 3, 
an O(VE) algorithm for finding Ck's in a directed or undirected graph G = (V, E).  
In a previous work [2] we showed, using the color-coding method, that a Ck, for any 
fixed k > 3, if one exists, can also be found in O(V ~ expected time or in O ( W  ~ log V) 
worst-case time, where w < 2.376 is the exponent of matrix multiplication. 

Our new O(E 2 -e/k) algorithm is better than both the O(VE) and the O(V ~ algo- 
rithms when the input graph G = (V, E) is sufficiently sparse. It is interesting to note 
that, for k _< 6, Monien 's  O(VE) bound is superseded by either the O ( W  ~ algorithm, 
when the graph is dense, or by the O(E 2 -I/Fk/21) algorithm, when the graph is sparse. 

Table 2. Finding small cycles in undirected graphs-- 
some of the new results. 

Cycle Complexity Cycle Complexity 

C4 E 1.34 C8 E 1.7 
C6 E 1.63 C 10 E 1.78 
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For every k _> 7, each one of the four bounds (including the bound that involves the 
degeneracy) beats the others on an appropriate family of graphs. 

In a previous work [ 161 we have also shown that cycles of an even length in undirected 
graphs can be found even faster. Namely, for any even k > 4, if an undirected graph G = 
(V, E) contains a Ck, then such a Ck can be found in O ( V 2) time. Our O (E 2-(l/2k)(l+ 1/~)) 
bound for C4k-2 and O(E 2-(I/~-l/t2k+l))) bound for C4k are again better when the graph 
is sparse enough. 

Itai and Rodeh [8] showed that a triangle (a C3) in a graph G = (V, E) that contains 
one can be found in O(V ~ or O(E 3/2) time. We improve their second result and show 
that the same can be done, in directed or undirected graphs, in O(E 2'~176 = O ( E  1"41 ) 

time. 
Chiba and Nishizeki [6] showed that triangles (C3's) and quadrilaterals (C4's) in 

graphs that contain them can be found in O(E.d(G)) time. As d(G) = O(E 1/2) for 
any graph G, this extends the result of Itai and Rodeh. We extend the result of Chiba 
and Nishizeki and show that C4k-i's and C4k's can be found in O(E 2-1/k .d(G)) time. 
We also show that C4k+l'S can be found in O(E 2-1/k .d(G) 1+Ilk) time. This gives, in 
particular, an 0 (E.d(G) 2) algorithm for finding pentagons (Cs's). Our results apply to 
both directed and undirected graphs. 

Itai and Rodeh [8] and also Papadimitriou and Yannakakis [13] showed that C3's in 
planar graphs can be found in O(V) time. Chiba and Nishizeki [6] showed that C3's as 
well as C4's in planar graphs can be found in O(V) time. Richards [ 14] showed that Cs's 
and C6's in planar graphs can be found in O(V log V) time. We improve upon the result 
of Richards and show that C5 's in planar graphs can be found in O (V) time. In a previous 
work [2] we showed, using color-coding, that, for any k >_ 3, a Ck in a planar graph, if 
one exists, can be found in either O(V) expected time or O(V log V) worst-case time. 

The fact that the number of triangles in a graph can be counted in O(V ~ time is 
trivial. In [2] we showed, using color-coding, that, for any k >_ 3, a C~, if one exists, can 
be found in either O(W ~ expected time or in O(V ~ log V) worst-case time. Here we 
show that for any k _< 7 the number of Ck's in a graph can be counted in O(V ~') time. 
The counting method used here yields, in particular, a way of finding Ck's for k _< 7, in 
O (V ~~ worst-case time. 

Sundaram and Skiena [15] have recently presented some more fixed-subgraph iso- 
morphism algorithms. The results presented here, and in [2] and [16], improve some of 
their results. 

Eppstein [7] has recently shown that the fixed-subgraph isomorphism problem for 
planar graphs, i.e., given a fixed graph H and a planar graph G = (V, E), find a 
subgraph of G isomorphic to H, can be solved, for every fixed H, in O(V) time. 

3. Finding Cycles in Sparse Graphs. Monien [11 ] obtained his O (VE) algorithm by 
the use of representative collections. Such collections are also used by our algorithms. 
In what follows, a p-set is a set of size p. 

DEFINITION 3.1 [1 1]. Let .T" be a collection of p-sets. A subcollection ~" __ )t- is q- 
representative for .T" if, for every q-set B, there exists a set A ~ .T" such that A fq B = 13 
if and only if there exists a set A ~ ~ with this property. 
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It follows from a combinatorial lemma of Bollob~is [3] that any collection .Y" of p-sets,  
no matter how large, has a q-representative subcollection of  size at most (P+q) Monien x p .," 

[l l] describes an O ( p q .  ~q=0 pi .  13vl)_time algorithm for finding a q-representative 
q i subcollection of 0 v whose size is at most Y~-i=0 P �9 Relying on Monien's  result we obtain 

the following lemma: 

LEMMA 3.2. Let Sg be a collection of  p-sets and let G be a collection of  q-sets. Consider 
p and q to befired. In O(I.7-1 + I~1) time, we can eitherfind two sets A ~ .F and B ~ 
such that A n B = ~ or decide that no two such sets exist. 

PROOF. We use Monien 's  algorithm to find a q-representative subeollection ~" of 3 r 
whose size is at most Y~fl=0 pi and a p-representative subcollection ~ of ~ whose size 
is at most Y~-/P=0 qi. This takes only O(13rl + IGI) time (as p and q are constants). 

It is easy to see that if there exist A 6 5 r and B 6 G such that A n B = ~, then 
there also exist A'  6 ~ and B' ~ ~ such that A'  N B' = 0. To see this note that if 
A f3 B = ~, then, by the definition of  q-representatives, there must exist a set A'  ~ .~" 
such that A'  N B = ~ and then there must exist a set B'  6 ~ such that A' n B' = (6 as 
required. 

After finding the representative collections ~ and ~ it is therefore enough to check 
whether they contain two disjoint sets. This can be easily done in constant time (as p 
and q are constants). [] 

We also need the following lemma that follows immediately from the work of 
Monien [ 11 ]. 

LEMMA 3.3 [1 l]. Let G = ( V, E) be a directed or undirected graph, let v E V, and 
let k >_ 3. A Ck that passes through v, if one exists, can be found in O ( E )  time. 

We are finally able to present our improved algorithm. 

THEOREM 3.4. Deciding whether a directed or undirected graph G = (V, E) contains 
simple cycles o f  length exactly 2k - 1 and o f  length exactly 2k, and finding such cycles 
if it does, cart be done in O ( E  2-1/k) time. 

PROOF. We describe a n  O ( E  2-1 /k ) - t ime  algorithm for finding a C2k in a directed graph 
G = (V, E). The details of  all the other cases are similar. Let A = El/*. A vertex 
in G whose degree is at least A is said to be of high degree. The graph G = (V, E) 
contains at most 2 E / A  = O ( E  I-Ilk) high-degree vertices. We check, using Monien 's  
algorithm (Lemma 3.3), whether any of these high-degree vertices lies on a simple 
cycle of length 2k. For each vertex this costs O ( E )  operations and the total cost is 
O ( E 2 / A )  = O ( E 2 - 1 / k ) .  If one of these vertices does lie on a cycle of  length 2k we are 
done. Otherwise, we remove all the high-degree vertices and all the edges adjacent to them 
from G and obtain a subgraph G'  that contains a C2k if and only if G does. The maximum 
degree of  G '  is at most A = E I/k and there are therefore at most E . A  k- I  = E 2-1/k 

simple directed paths of length k in G'.  We can find all these simple paths in O ( E  2 l/k) 
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time. We divide these paths into groups according to their endpoints. This can be done 
using radix sort in O(E 2-1/k) time and space. We get a list of  all the pairs of  vertices 
connected by simple directed paths of  length exactly k. For each such pair u~ v, we g e t  
a collection ,T'u,~ of  (k - 1)-sets. Each (k - 1)-set in 5t-u,o corresponds to the k - 1 
intermediate vertices that appear on simple directed paths of  length k from u to v. For 
each pair u, v that appears on the list, we check whether there exist two directed paths 
of  length k, one from u to v and the other from v to u, that meet only at their endpoints. 
Such two paths exist if there exist A ~ 5vu,~ and B 6 Fv,u such that A tq B = 13. This 
can be checked, as shown in Lemma 3.2, in O (l~-,,v I + I~-o,, I) time. As the sum of the 
sizes of  all these collections is O (E2-1/k), the total complexity is again O(E2-1/k). This 
completes the proof. [] 

In the case of  triangles we can get a better result by using fast matrix multiplication. 

THEOREM 3.5. Deciding whether a directed or an undirected graph G = (V, E) con- 
tains a triangle, and finding one if it does, can be done is O(E 2~~176 = O(E  1'41) 
time. 

PROOF. Let A - ~ -  E (w-l)/(~~ A vertex is said to be of  high degree if its degree is 
more than A and of low degree otherwise. Consider all directed paths of  length 2 in G 
whose intermediate vertex is of low degree. There are at most E. A such paths and they 
can be found in O(E. A) time. For each such path, check whether its endpoints are 
connected by an edge in the appropriate direction. If  no triangle is found in this way, 
then any triangle in G must be composed of three high-degree vertices. As there are 
at most 2E/A high-degree vertices, we can check whether there exists such a triangle 
using matrix multiplication in O((E/A) ~ time. The total complexity of  the algorithm 
is therefore 

O (E.  A + ( E )~ = O( E2~176 

This completes the proof. [] 

We have not been able to utilize matrix multiplication to improve upon the result of  
Theorem 3.4 for k > 4. This constitutes an interesting open problem. 

4. Finding Cycles in Graphs with Low Degeneracy. An undirected graph G : 
(V, E) is d-degenerate (see p. 222 of  [4]) if there exists an acyclic orientation of  it in 
which dout(V) < d for every v ~ V. The smallest d for which G is d-degenerate is called 
the degeneracy or the max-rain degree of G and is denoted by d(G). It can be easily seen 
(see again [4]) that d(G) is the maximum of the minimum degrees taken over all the 
subgraphs of G. The degeneracy d(G) of a graph G is linearly r~lated to the arboricity 
a (G) of  the graph, i.e., a(G) = | (d(G)),  where a (G) is the minimal number of  forests 
needed to cover all the edges of G. The degeneracy of a directed graph G = (V, E) 
is defined to be the degeneracy of  the undirected version of G. It is easy to see that 
the degeneracy of  any planar graph is at most 5. Clearly, if G is d-degenerate, then 
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[EI < d.IVI. The following simple iemma, whose proof is omitted, is part of  the folklore 
(see, e.g., [10]). 

LEMMA4.1. LetG = (V, E) be a connected undirected graph G = (V, E).Anacyclic 
orientation of G such that for every o ~ V we have dour(V) < d(G) can be found in 
O ( E) time. 

The main result of  this section is the following theorem: 

THEOREM4.2. Let G = (V, E) be a directed or an undirected graph. 

(i) Deciding whether G contains a simple cycle of  length exactly 4k - 2, and finding 
such a cycle if it does, can be done in O(E2-1/k.d(G) l-l/k) time. 

(ii) Deciding whether G contains simple cycles of length exactly 4k - 1 and of  length 
exactly 4k, and finding such cycles if  it does, can be done in 0 ( E 2- I / k .d ( G ) ) time. 

(iii) Deciding whether G contains a simple cycle of  length exactly 4k + 1, and finding 
such a cycle if it does, can be done in O(E 2-1/k .d(G)I+l/t,) time. 

PROOF. We show how to find a C4k+l in a directed graph G = (V, E), if one ex- 
ists, in O(E 2- Ilk. d(G)I+l/k) time. The proofs of the other claims are easier. If  d(G)  > 
E I/(z~+ t) , we can use the algorithm of Theorem 3.4 whose complexity is O (E 2- l/(2k+ l)) < 
O( E 2-1/k .d(G)l+l/k). Assume therefore that d(G) < E I/t2k+l). 

Let A = El/k/d(G)l+l/k.  As d(G) < E l/(21+l), we have that d(G) < A. A vertex 
is said to be of  high degree if its degree is more than A and of low degree otherwise. 
As in the proof of Theorem 3.4, we can check in O(E2/A)  time whether any of  the 
high-degree vertices lies on a Cak+l. If none of  them lies on a Cak+l, we can remove all 
the high-degree vertices along with the edges adjacent to them from G and obtain a graph 
whose maximal degree is at most A. The degeneracy of  a graph can only decrease when 
vertices and edges are deleted and d(G) is therefore an upper bound on the degeneracy 
of the graph obtained. 

Suppose therefore that G is a graph with maximal degree A and degeneracy d(G). 
To find a C4k+l in G, it is enough to find all directed simple paths of  length 2k and 
2k + 1 in G and then check, using the algorithm described in the proof of  Lemma 3.2, 
whether there exist a path of  length 2k and a path of  length 2k + 1 that meet only at their 
endpoints. 

In O(E) time we can get an acyclically oriented version G'  of G in which the out- 
degree of  each vertex is at most d(G). The orientations of the edges in G and G'  may 
be completely different. 

The number of paths, not necessarily directed, of  length 2k -t- 1 in G, is at most 

2 ' 2 E ' i ~  ~  . =  Aid (G)~- i  = O(EA~d(G)k).  

To see this, consider the orientations, in G', of  the edges on a (2k + l)-path in G. In 
at least one direction, at most k of  the edges are counterdirected. The number of  paths 
of  length 2k + 1 in which exactly i among the last 2k edges are counterdirected is at 
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most 2E.  (2/~)Aid(G) zk-` . The binomial coefficient (27) stands for the possible choices 
for the position of the counterdirected edges in the path. Similarly, the number of paths 
of length 2k in G is O(EA~d(G)k- l ) .  

We can lower the number of paths of  length 2k + 1 and 2k we have to consider by 
utilizing the fact that a Cak+l can be broken into two paths of length 2k + 1 and 2k 
in many different ways. In particular, let C be a directed C4k+l in G and consider the 
orientations of  its edges in G'.  As 4k + 1 is odd and as G'  is acyclic, C must contain three 
consecutive edges ezk, ezk+l, and e2k+2, the first two of which have the same orientation 
while the third one has an opposite orientation. It is therefore enough to consider all 
(2k + 1)-paths that start with at least two backward oriented edges and all 2k-paths 
that start with at least one backward oriented edge. The orientations referred to here 
are in G'.  

The number of paths of length 2k + 1 in G whose first two edges are backward oriented 
in G' is O (EA k- l d(G)k+l). To see this, note that any such path is composed of a directed 
path {e2k, e2k+l} of length 2, attached to an arbitrarily oriented path {el . . . . .  e2k-i } of 
length 2k - 1. The number of paths of length 2k - 1 is, as shown earlier, at most 
O (E Ak-I d (G)  ~-1) and the number of  directed path of  length 2 with a specified starting 
point is at most d (G)  2. Similarly, there are at most O(EAk-~d(G)  k) 2k-paths that start 
with a backward oriented edge. 

It should be clear from the above discussion that all the required (2k + 1)- and 2k-paths, 
whose total number is O(EAk-ld(G)k+l) ,  can be found in O(E A k - ld (G)  k+l) time. 
Paths which are not properly directed, in G, are thrown away. Properly directed paths are 
sorted, using radix sort, according to their endpoints. Using Lemma 3.2 we then check 
whether there exist a directed (2k + l)-path and a directed 2k-path that close a directed 
simple cycle. All these operations can again be performed in O (EAk- ld (G)  k+l) time. 

Recalling that A = EU~/d(G) I+Uk, we get that the overall complexity of the 
algorithm is 

o(E-~--A+E.Ak-ld(G) ~+;) =O(E2-1/kd(G)l+l/k) .  

This completes the proof of  the theorem. [] 

As an immediate corollary we get: 

COROLLARY 4.3. If  a directed or undirected planar graph G = (V, E) contains a 
pentagon (a C5), then such a pentagon can be found in O(V)  worst-case time. 

By combining the ideas of this section, the O(E 2~176 algorithm of Theorem 3.5, 
and the color-coding method [2] we can also obtain the following result. 

THEOREM 4.4. Let G = (V, E) be a directed or undirected graph. A C6 in G, if one 
exists, can be found in either O ( ( E .d ( G) ) 2~/C~ l)) = O ( ( E .d ( G) ) 1"41) expected time 
or O((E.d(G))  2~~176 .log V) = O((E.d(G))1.41 log V) worst-case time. 

PROOF. We show how to find a C6 in an undirected graph G = (V, E), if one exists, 
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el I A,~ el3 el,t A s A~? 

Fig. 1. The possible orientations of C6 in G'. 

in O ( ( E . d ( G ) )  2'~/1~ expected time, or O ( ( E . d ( G ) )  2~'/~'+1) log V) worst-case time. 
The proof  of  the directed case is similar. 

In O(E)  time we can get an acyclically oriented version G '  = (V, E')  of  G in which 
the out-degree of  each vertex is at most d(G).  Suppose that G contains a C6. The six 
possible nonisomorphic orientations of  this C6 in G '  are shown in Figure I. We refer to 
these orientations as Ai . . . . .  A6. Our algorithm checks, for each 1 < i < 6, whether G '  
contains an Ai and if so finds one. 

We show how to find an A 1 in G' ,  if one exists. The other cases are similar, and in fact 
easier. As in [2], we color the vertices of  G '  randomly using six colors (i.e., every vertex 
receives a number between 1 and 6, all numbers equally likely). Let c(v) denote the color 
of vertex v. Let A be a specific copy of  an A i in G'.  We say that A is well-colored if 
its vertices are consecutively colored by 1 through 6, and the color 1 is assigned to one 
of  the three vertices having only outgoing edges in A. (By "consecutively colored" we 
mean that each v �9 A with c(v) < 6 has a neighbor u �9 A with c(u) = c(v) + 1). The 
probability that A is well-colored is 6/66. We now show how to detect a well-colored 
copy of  an A ~ deterministically, if one exists. 

Create a new undirected graph G* = (V*, E*) defined as follows: 

V* = {v �9 V: c(v) �9 {2,4,6}} 

E* = {(u, v): c(u) = 6, c(v) = 2, (3 w E V) (c(w) = 1, (w, u), (w, v) �9 E')]  

U {(u, v): c(u) = 2, c(v) = 4, (3 w �9 V) (c(w) = 3, (w ,u ) ,  (w, v) �9 E')} 

U {(u, v): c(u) = 4, c(v) = 6, (3 w �9 V) (c(w) = 5, (w, u), (w, v) �9 E')}. 

Clearly, V* < V. To create G*, we examine each edge (w, u) E E '  with c(w)  odd. 
Suppose c(w)  = i and c(u) = 6. We create edges in G* between u and all vertices 
v such that (w, v) E E '  and c(v) = 2. There are at most d(G)  - I such vertices. We 
therefore have E* < E . d ( G )  and G* can be constructed in O ( E . d ( G ) )  time from G'. 
Clearly, there exists an undirected triangle in G* iff there exists a well-colored A i in G'.  
We can detect such a triangle in G* in O((E*)  2~ = O ( ( E d ( G ) )  2'~/(0~+1)) time 
using the algorithm of Theorem 3.5. If such a triangle is not found, we repeat the whole 
process using a new random coloring. If G '  contains an A 1, then such an A i will be 
found after an expected number of  65 = 7776 attempts. 

We have thus shown how to detect an At in G' ,  if one exists, in O ( ( E d ( G ) )  2C~176 = 
O ( ( E . d ( G ) )  z~176 expected time. As shown in [2], such a coloring scheme can be 
derandomized at the price of an O(log V) factor. [] 
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5. Finding Cycles in Sparse Undirected Graphs. To obtain the results of this section 
we rely on the following combinatorial lemma of  Bondy and Simonovits 15]. 

LEMMA 5.1 [5]. Let G = (V, E) be an undirected graph. I f  IEI > lOOk. [VI I+l/k, 
then G contains a C2~ for every, integer g E [k, n I/k ]. 

By combining the algorithm described in the proof of  Theorem 4.2 with an algorithm 
given in [16] we obtain the following theorem. 

THEOREM 5.2. Let G -~ (V, E) be an undirected graph. 

(i) A C4k-2 in G, if one exists, can be found in O( E 2-~1/2k)~1+1/~)) time. 
(ii) A Cak in G, if one exists, can be found in O(E 2-~l/k-t/t2k+l))) time. 

PROOF. We prove the second claim. The proof of the first claim is similar. Let d = 
2OOk. E l/~2k+l). If d(G) >__ d, then, by the definition of  degeneracy, there is a subgraph 
G'  = (V', E')  of G in which the minimal degree is at least d. Such a subgraph can be 
easily found in O(E) time (see, e.g., 1101). Clearly, E' > dV ' /2  > lOOk. V'. E 'l/t2k+l) 
and therefore E '  > (lOOk. V') l+l/2k > iOOk.(V') l+l/2k. By Lemma 5.1 we get that G'  
contains a Cak and such a Cak can be found in O(V '2) ----- O(E 2-2/~2k+11) time using 
the algorithm given in [16]. If, on the other hand, d(G) < d, then a Cak in G, if one 
exists, can be found in O(E 2-1/k .d) = O(E 2-1j/k-I/~2k+l))) time using the algorithm 
of Theorem 4.2. It is easy to check that E 2-2/~2~+j) < E 2-~I/k-~/t2k+~)) with equality 
holding only i fk = 1. In both cases the complexity is therefore O(E 2-~/k-~/C2k+l))) as 
required. [] 

COROLLARY 5.3. Let G = (V, E) be an undirected graph. 

(i) A quadrilateral (C4) in G, if one exists, can be found in O(E 4/3) time. 
(ii) A hexagon (C6) in G, if one exists, can be found in O(E 13/8) time. 

6. Count ing Small Cycles. Let G = (V, E) be a simple undirected graph and let 
A = Ac be the adjacency matrix of  G. Assume for simplicity that V = {1 . . . . .  n}. 
Denote by a~; ~ = (Ak)ij the elements of  the kth power of A. The trace tr(A ~) of  A k, 
which is the sum of the entries along the diagonal of  A k, gives us the number of  closed 
walks of  length k in G. If we could also compute the number of  nonsimple closed walks 
of length k in G we would easily obtain the number of  simple closed paths of  length k 
in G. This number is just 2k times the number of  Ck's in G. 

Before describing a way of  counting the number of nonsimple closed walks of  length k, 
where k < 7, in a graph G in O(W") time, we need the following definitions: 

DEFINITION 6.1. Let G I = (Vi, El) and G2 ----- (V2, E2) be two simple graphs. A 
mapping f :  V~ U E I  ~ V2UE2  is a homomorphism if for every v e Vl we have 
f ( v )  c V2 and for every e = (u, v) e El we have f ( e )  = ( f (u ) ,  f ( v ) )  ~ E2. If f is 
onto V2 U E2, we say that G2 is a homomorphic image of G j. 
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r'll l "~ 112 

Fig. 2. The 4-cyclic graphs. 

DEFINITION 6.2. A graph H = (V/4, EH) is said to be k-cyclic, for k > 3, if it is a 
homomorphic image of  the cycle C,. The number of  different homomorphisms from Ck 
to H is denoted by ck(H).  Clearly, H is k-cyclic if and only if ck(H) > 0. 

It is easy to check, for example, that C3 is k-cyclic for every k > 3 except k = 4. It 
is also not difficult to check that c3 (C3) = 6 (and more generally ck (Ck) = 2k for every 
k _> 3) and that c5(C3) ---- 30. The only 3-cyclic graph is C3 itself. The k-cyclic graphs, 
for 4 < k < 7, are given in Figures 2-5. 

Let nc  (H) denote the number of subgraphs of  G isomorphic to H. Clearly, the total 
number of  closed walks of  length k in G is 

tr(Ak) = Z ck(H)nc , (H) .  
H 

If ck(H) > 0, then H is connected and has at most k edges. Also, H cannot be a tree on 
k + 1 vertices as each edge leading to a leaf must be the image of at least two edges in 
Ck. Hence, I V HI <_ k and in fact, I Vtt I < k unless H = Ck. We therefore obtain, for an 
undirected graph G ---- (V, E): 

(1) l[ 1 nG(Ck) = ~ - t r ( A k )  - Z c k ( H ) n v ( H )  . 
IVnl<k .J 

A very similar formula can be obtained for directed graphs. We show how to compute 
n~(H) ,  for all k-cyclic graphs H with 3 < k < 7, in O ( V  ~) time. Hence, we obtain the 
following theorem. 

THEOREM 6.3. Then u m b e r o f C k ' s , f o r 3  < k < 7 inanundirected(ordirected)  graph 
G = (V, E), can befoutut  in O ( W  ~ time. 

PROOF. We consider the undirected case. The directed case is similar and, in fact, 
slightly simpler (as there are less k-cyclic graphs). Clearly, the traces tr(Ak), for 3 < 
k < 7, can be computed in O(V~ time using fast matrix multiplication. It remains to 
show how to find n o ( H )  for all k-cyclic graphs H,  where 3 < k < 7, excluding the 
cycles C3 . . . . .  C7 themselves, in O ( V  ~) time. 

The k-cyclic graphs shown in Figures 2-5, which are not simple cycles, are denoted 
by HI . . . . .  H15 (they are ordered according to the number of  edges they contain). 

11~ 

Fig. 3. The 5-cyclic graphs. 
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tI~ 112 

7! N 
II6 

A -= --Ha-" e 

1t9 

Fig. 4. The 6-cyclic graphs 

The following list shows how to obtain n 6 ( H i ) ,  for 1 _< 1 _< 15, and nG(Ck) , for 
3 < k _< 7. In all cases the formulae reference at most O(V 2) values ofa~} ') for some 

1 _< p _< k and can hence be computed in O ( V ~  time. We let di = a[ 2) denote the 
degree of vertex i. 

1. 

nG(C3) = l . t r (A3) .  

2. 

. 

4. 

. 

n G ( H , )  = IE[ = E a)) )" 
l<i<j<_n 

i=I 

1. [tr(A 4) _ 4rig ( / / 2 )  - -  2rig (HI)] .  na(C4)  = g 

nG(H3) = Z (di -- 1)(dj -- 1) -- 3n6(C3) .  
(i.j)~E 

A HI .V- 
tt,~ tt~ 117 

Ha alo live 

HI:~ H14 His 

Fig. 5. The 7-cyclic graphs. 
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6. 

7. 

8. 

. 

10. 

11. 

12. 

13. 
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nG(H4)=~-~(di) .  
i=1 

no(Hs) = ~'Li=I  

Note that aii(3) is twice the number of triangles that pass through vertex i 

no(C5) = ~ .[tr(A 5) - 10no(Hs) - 30n6(C3)1. 

n G ( H 6 ) =  Z (aCi))' 
(i,j)c-E 

Note that aly ) is the number of  common neighbors of  i and j ,  which is also the 
number of paths of length 2 between i and j .  

n(;(H7) = 7"Li~= l i i k  2 " 

n~-;(Hs) = Z a~) )(di -- 2)(dj - 2) -- 2riG(H6). 
(i . j)EF 

Note that we must subtract 2nG(H6) to avoid the case in which the two degree-one 
vertices of  H8 are, actually, the same vertex. 

= , _ _ . , ( d ,  - 2 )  , _ _ ,  . 

i=1 j ~ i  

a~2) 
Note that Y~q#i ( ~ ) is exactly the number of quadrilaterals in which i participates. 

X'~tJ _O), S"a!21 -- 6no(C3) - 2no(Hs)  - 4nc,(H6). nc;(Hio) = L. . .a ,St l i i  ) ~l.....a tj ] 
i=1 \ j ~ i  / 

1 (3)  Note that (Taii)(Y~,j~i a~ )).~ is simply the number of triangles through i times the 
number of paths of  length 2 that begin with i. However, we must only count such 
a triangle and such a path if they are disjoint, so we must subtract appropriate 
occurrences of  C3,//5, and H6. 
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14. 

~-~ ( l a j  3, ) 
nG(Hll) = ~_ i --2riG(H6). 

i=1 

15. Since we have already shown how to compute nG(H)  for all the 6-cyclic graphs, 
excluding C6, we can use (1) to compute riG(C6). 

16. 

17. 

18. 

19. 

r iG(HI2)= ~ al 2) _{3) �9 aij - 9nG(C3) -- 2nG(/-/5) -- 4nG(H6). 
(i,j)~E 

Here we count the number of triangles through (i, j )  and multiply each triangle by 
the number of walks of length 3 between i and j .  Since these walks need not be 
simple, or may intersect the triangle, we may actually be counting C3's, Hs's, or 
H6's. Therefore, we subtract the appropriate values. 

/a!?)'~ 
nG(Hl3) = ~ ~ ~ ) .  

(i,j)~E 

gl 

na(Hi4)  = ~__~(di - 2) �9 Bi - 2nG(Hl2),  
i=1 

where Bi is the number of C5's passing through i. The expression for Bi is 

' [ - lOa~ ) - 4 a ~ 3 i ) ( d i -  2 ) -  2 Bi = ~ a~) 
L 

E a~Y )(dj - 2 ) -  2. ~ -1 ( 3 )  ] t gajj a~ 2)) �9 
(i,j)~E (i,j)~E _1 

~--% 1 (3). nG(His)  = , ~ , T a i i  ) - 6nG(H6) -- 2n6(Hi2) -- 6n6(H13). [] 
i=1 

Using slightly more effort, it can be shown that, in O ( V ' )  time, we can also count 
the number of Ck's, for 3 < k < 7, that pass through each vertex of G. We have, in fact, 
done this in the preceding proof for k = 3, 4, 5. If the graph G contains a Ck, for some 
3 < k < 7, we can therefore find, in O(W")  time, a vertex through which such a Ck 
passes. We can then locate a Ck in the graph in additional O ( E )  time using Monien's 
method (Lemma 3.3). 

Similar formulae can be obtained, of course, for the number of octagons (C8's) and 
even larger cycles. To compute the number of octagons, however, we have to compute 
first the number of Ka'S in the graph, since a K4 is 8-cyclic. We do not know how to do 
this is O ( V ' )  time. 
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It is easy to count the number of K4's in a graph in O(V ~ time: for each vertex, 
count the number of triangles among its neighbors, sum these numbers, and divide by 4. 
Counting the number of Ka's in a graph, or, in fact, deciding whether a graph contains 
a K4, in o(V ~ time, is an interesting open problem. 

For counting the number of larger cycles using our method, we would have to count 
the number of larger cliques in the graph. Ne~e~ril and Poljak [12] give an O(V'~ - 

time algorithm for deciding whether a graph G = (V, E) contains a Kt.  It is easy to 
check that their method can also be used to count the number of such cliques contained 
in the graph. By combining the method of Nege~ril and Poljak [12] with the ideas used 
in Section 4, we get the following result. 

THEOREM 6.4. The number  o f  Kt  's in an undirected graph G = (V, E) can be counted 
in either 0 (V .  (d( G)  ) '~ 1)/31 ) or 0 ( E .  (d ( G)  ) '~ ) time. 

Using an idea similar to the one used in Theorem 3.5, Kloks et al. [9] have recently 
obtained an O ( E  t'~ = O(E  1"69) time algorithm for counting the number of Ka's 

contained in a graph G = (V, E). They also obtain improved results for finding larger 
cliques and other induced subgraphs. 
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