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Abstract

Let H = (V, E) be an r-uniform hypergraph and let F C 2. A matching M of H is (a, F)-
perfect if for each F' € F, at least «|F| vertices of F' are covered by M. Our main result is
a theorem giving sufficient conditions for an r-uniform hypergraph to have a (1 — ¢, F)-perfect
matching. As a special case of our theorem we obtain the following result. Let K(n,r) denote
the complete r-uniform hypergraph with n vertices. Let t and r be fixed positive integers where
t > r > 2. Then, K(n,r) can be packed with edge-disjoint copies of K (t,7) such that each

vertex is incident with only o(n"~!) unpacked edges. This extends a result of Ridl [9].

1 Introduction

A hypergraph H is an ordered pair H = (V, E) where V is a finite set (the vertex set) and E is a
family of distinct subsets of V' (the edge set). A hypergraph is r-uniform if all edges have size 7.
In this paper we only consider r-uniform hypergraphs where r > 2 is fixed. A subset M C E(H) is
a matching if every pair of edges from M has an empty intersection. A matching is called perfect
if [M| = |V|/r. A vertex v € V is covered by the matching M if some edge from M contains v.
Let F ¢ 2V and let 0 < a < 1. A matching M is (a, F)-perfect if for each F € F, at least a|F)|
vertices of F' are covered by M. Thus, a (1,{V})-perfect matching is simply a perfect matching.
A seminal result of Pippenger strengthening an earlier result of Frankl and Rodl [3] on near
perfect coverings and matchings of uniform hypergraphs gives sufficient conditions for the existence
of a (1 — €,{V})-perfect matching. For z,y € V let d(x) denote the number of edges containing
x (the degree of z) and let d(z,y) denote the number of edges that contain both x and y (the
co-degree of x and y). Let A(H),0(H) and Ay(H) denote the maximum degree, minimum degree
and maximum co-degree of H, respectively. The following is an unpublished result of Pippenger,

strengthening a theorem proved in [3].
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Theorem 1.1 (Pippenger) For an integer r > 2 and a real € > 0 there exists a real pn = u(r,€)
so that the following holds: If the r-uniform hypergraph H on n vertices satisfies:

(i) 6(H) > (1 - ) A(H),

(ii) Da(H) < pA(H),

then H has a matching that covers all but at most en vertices. |

In other words, if H is nearly regular and the maximum co-degree is relatively small compared to
the maximum degree then an almost perfect matching is guaranteed to exist. We note that the
proof also applies to the analogous covering version. Furthermore, as noted in [4], the statement
of Theorem 1.1 remains valid even if we allow a small fraction of the vertices to have degrees that
deviate significantly from the average degree.

The main result in this short paper is a variant of Theorem 1.1, giving sufficient conditions for
the existence of a (1 — €, F)-perfect matching. We show that essentially the same conditions of
Theorem 1.1 suffice to guarantee a (1 — €, F)-perfect matching even if F is quite large and even if
the sizes of the elements of F vary significantly.

For F C 2V let s(F) = minges |F|, and for a hypergraph H let g(H) = A(H)/Aa(H).

Theorem 1.2 For an integer r > 2, a real C > 1 and a real € > 0 there exist a real p = u(r,C,¢€)
and a real K = K(r,C,€) so that the following holds: If the r-uniform hypergraph H = (V, E) on
n vertices satisfies:

(i) (H) > (1 — ) A(H),

(i) g(H) > ma{1/ps , K(nn)®},

then for every F C 2V with | F| < CIEM =D g d with s(F) > 5g(H)Y/Cr=3)1n(|F|g(H)) there is
a (1 — €, F)-perfect matching in H. [ ]

The proof of Theorem 1.2, which is presented in the following section, relies on probabilistic argu-
ments and on a result of Pippenger and Spencer concerning the chromatic index of nearly regular
hypergraphs with small co-degrees [8]. In the final section we describe some applications of Theorem
1.2. The main one is an extension of a result of Rodl on packing the complete n-vertex r-uniform
hypergraph with a complete r-uniform hypergraph of fixed size [9]. We show that there is always

such a packing for which every vertex of K(n,r) is incident with only o(n"~!) unpacked edges.

2 Proof of the main result

The chromatic indez of a hypergraph S, denoted ¢(5), is the smallest integer ¢ such that the set
of edges of S can be partitioned into ¢ matchings. The following result of Pippenger and Spencer
[8] gives sufficient conditions on S which guarantee that ¢(S) is very close to the maximum degree
of S.



Lemma 2.1 (Pippenger and Spencer [8]) For an integer v > 2 and a real v > 0 there exists
a real B = [(r,7y) so that the following holds: If an r-uniform hypergraph S has the following
properties for some t:

(i) (1 — B)t < d(z) < (1+ B)t holds for all vertices,

(ii) d(z,y) < Bt for all distinct x and y,

then q(S) < (1 +~)t. [ ]

Better estimates for the error term and some extensions have been proved subsequently in [6, 7]
Proof of Theorem 1.2: Fix an integer r > 2 and reals ¢ > 0 and C > 1. Let H(x)

—zlogz — (1—x)log(1—z) be the entropy function. Let ¢ be chosen such that ¢ < (2-#(€©C—1)1/e,
Let v be chosen sufficiently small so that 2(1 — (1 — 3)/(1 4+ v))/e < ¢ where 3 = (3(r,7) is the
constant from Lemma 2.1. Let p be chosen such that p + p*> = 3. Let u = p'?/(r — 1)®. Let ¢, be

a (small) constant depending only on p. We choose ¢, during the proof. Let K = (r/c,)".

Suppose H = (V, E) is an n-vertex r-uniform hypergraph satisfying the conditions of Theorem
1.2. Let F C 2V where |F| < C9IDY* ™ and s(F) > 5g(H)YG=3) In(|F|g(H)). We need to
show that H has a (1 — €, F)-perfect matching.

Our proof proceeds as follows. In the first stage we randomly color the vertices with m colors.
Our goal is to choose m large while still guaranteeing that with high probability, for each i =
1,...,m, the subhypergraph S; of H induced by the vertices colored i satisfies the conditions of
Lemma 2.1. We also want the random coloring to guarantee, with high probability, that each F' € F
has roughly |F'|/m vertices in each color. By showing these, we may fix a coloring and fix Si,..., Sn
having these properties. In the second stage we pick, for each S;, an arbitrary edge-coloring with
the properties guaranteed to exist by Lemma 2.1. We then pick a random color class, M;, which
is a matching of S;. In the final stage, we prove that, with positive probability, M1 U---U M, is a
(1 — ¢, F)-perfect matching. We now describe each stage in detail.

Let m = g(H )1/ (3r=3) (in the sequel we shall ignore floors and ceilings whenever appropriate as
this does not affect the asymptotic nature of our result; hence me may assume m is an integer), and
let p=1/m. Each v € V selects a color from {1,...,m} at random. The choices made by distinct
vertices are independent. Let V; be the set of vertices with color i. Let S; be the subhypergraph of
H induced by V;. For z,y € V;, let d;(x) be the degree of x in S; and let d;(z,y) be their co-degree
in S;.

Claim 2.2 With probability at least 0.5, for some t and for alli=1,...,m,
(1) (1 = B)t < di(x) < (1+ B)t holds for all x € V;,
(i) di(x,y) < Bt for all distinct x,y € V;.



Proof: Let t = A(H)g(H)~'/3. For this choice of ¢, the requirement (ii) clearly holds (determin-
istically). Indeed,

di(z,y) < d(z,y) < Do(H) = A(H)/g(H) = tg(H)™/* < tp** < tp < 1.

For z € V;, let A, denote the event that d;(x) ¢ [(1— )¢, (14 5)t]. In order to prove (i) (and hence
the claim), it suffices to show that A, holds with probability less than 1/(2n).
Fix x € V;. For each e € E with x € e, we have Prle € S;] = p"~!. Thus,

Eldi(x)] = d(x)p"™" = d(x)g(H)""/>.

Let N(z) denote the set of edges of H incident with x. Consider the graph G, whose vertex set is
N(x). We connect e, f € N(z) in G if and only if |eN f| > 2. Notice that A(G,) < (r —1)Az(H).
In particular, x = x(G;) < (r — 1)Ag(H). Let Ry,..., Ry be a partition of N(z) such that R; is
a delta system with petal « for j = 1,...,x. Notice that |Ri| 4+ --- + |Ry| = [N(z)| = d(z). Let
Ni(z) be the set of edges of S; incident with  and let N; j(x) = N;(z) N R;. Put d; j(z) = |N; ().
Clearly, d;(z) = ;<:1 d; j(z). Furthermore, E[d; j(z)] = |R;|p""!. Given that x € V;, for any two
distinct edges e, f € Rj, the event that e € N; j(z) is independent of the event that f € N; ;(x).
Thus, by a large deviation inequality of Chernoff (cf. [1] Appendix A), there exists a positive

constant ¢, depending only on p such that
Pr [|d;(z) = [Rjlp" | = p|Rylp" '] < 2exp(—co|Rylp" ") = 2exp(—c,|R;lg(H) %), (1)

We call R; large if |R;| > g(H)'/2. Otherwise, R; is small. By (1) we have that for large Rj,

T— r— 1
Pr[|di;(z) — |R;|p 1‘ > p|R;lp" ] < 26Xp(_cpg(H)1/6) PR

o (2)

Notice that the last inequality follows from the fact that g(H) > K(Inn)%. The sum of the sizes of
the small R; is relatively small. Indeed,

> IR < xg(H)? < (e ) As(H)g(H) 3)
i |Rj|<g(H)Y?

= (r—1)A(H)g(H)™Y? = (r — 1)tg(H)/S.

We therefore have
> IRj| > d(z) — (r — 1)tg(H) /S, (4)

3 |Rj|>g(H)'/?
It follows from (2), (3) and (4) that with probability at least 1 — 1/(2n),

X

di(w) =) dij(e) < d(z)(L+p)p"" + (r = Ltg(H) ™/
j=1



= d(@)(1+ p)g(H) ™ + (r = Dtg(H)™V/0 < (1 + p+ pP)t = (1 + B)t

(we used here the fact that p> = (r — 1)u/® > (r — 1)g(H)~/6) and also

di(w) =Y dij(w) = (d(x) = (r = Dtg(H) /) (1 - p)p"

7j=1
= d(z)(1 = p)g(H)™* = (r = 1)(1 = p)tg(H)™"? = (1 = p)t(1 — p — (r — 1)g(H)~"/?)
> (1= p)t(l—p*) > (1 - Pt

In particular, A, holds with probability at most 1/(2n). [ ]

For F € F, let F; = FNV;. We say that F is deviating if for some i, |F;| > 2|F|/m. The

following simple claim gives an upper bound for the probability that some F' is deviating.
Claim 2.3 The probability that some F € F is deviating is less than 0.5.

Proof: Fixi € {1,...,m} and fix ' € F. The expectation of |F;| is |F'|/m. As each vertex chooses
its color independently, we have by a Chernoff inequality (cf. [1]) that

F F 2 |F 2 s(F
Pr [’Fl’_|m| > |mq < exp <_27|m|> < exp <—27 (m)>

By the last inequality and the assumption that s(F) > 5g(H)Y® =3) In(|F|g(H)), the probability
that some F' € F is deviating is less than

| Flmexp(—2s(F)/(27m)) < 0.5.
|

By Claim 2.2 and Claim 2.3 we may fix a coloring of the vertices of H such that all the
subhypergraphs S; satisfy the conditions of Lemma 2.1 and such that for each F' € F, the number
of vertices colored i is at most 2|F|/m. For each S; let ¢; = ¢(S;) and let M(i,1),...,M(i,q;) be a
partition of the edges of S; to ¢; matchings. By Lemma 2.1 we have ¢; < (14v)A(H)g(H)~ /3. For
eachi=1,...,m we pick at random, and independently, a matching M (¢, j). Let M = U" M (i, j).
Notice that M is a matching of H. Let F' € F. In order to complete the proof of Theorem 1.2 it

suffices to prove the following claim.

Claim 2.4 With probability greater than 1 —1/|F|, at least (1 — €)|F| vertices of F' are covered by
M.



Proof: Let F; = FNV; fori=1,...,m. We say that F; is badly covered by M if more than
€| F;|/2 vertices of F; are uncovered by M(i,7). Let £ denote the number of badly covered F;. We
first notice that if £ < em/4 then M covers at least (1 — €)|F| vertices of F. Indeed, the total size
of all the badly covered subsets is at most 2¢|F'|/m. The remaining subsets have total size at least
|F'|(1 —2¢/m) and hence at least (1 —¢/2)|F|(1 —2¢/m) > (1 — €)|F| vertices of F' are covered by
M. It remains to show that the probability that F' has more than em/4 badly covered subsets is
less than 1/|F|. Notice that if ¢ # j, the event that F; is badly covered is independent of the event
that F} is badly covered. Thus, if ¢ is an upper bound for the probability that F; is badly covered,

and ( is independent of 4, it suffices to prove that

m om 1
(€m>< <A

Since d;(z) > (1 — B)t for all x € V; and since ¢; < (1 4+ )t we have that the expected number of
vertices of F; covered by M(i,7) is at least %|FZ| Therefore, the probability that there are less
than 1 — €/2 vertices of |F;| covered by M (i, j) is at most 2(1 — (1 — 3)/(1 ++))/e < (. However,
recall that ¢ was chosen such that ¢ < (2= H()C~1)1/¢. We therefore have

m C5m<i<i
em cm T F!
|

By Claim 2.3 we have that with positive probability, M is an (1 — €, F)-perfect matching. We
have therefore completed the proof of Theorem 1.2. [ ]

It is easy to implement the proof of Theorem 1.2 as a polynomial time randomized algorithm.
In fact, all the details of the proof are easily seen to be algorithmic and the only “black box” that
is used is Lemma 2.1. Fortunately, Grable [5] gave an algorithmic proof of the Pippenger-Spencer
theorem. It is possible to derandomize the algorithm using the method of conditional probabilities
[1]. The only obstacle is that when we implement Claim 2.3 (constructing the vertex coloring) and
Claim 2.4 (constructing the matchings M (i, j)), the method of conditional probabilities requires
that we scan all elements of F in every step. Thus, the derandomized algorithm is only polynomial
in |F| 4+ n (one may argue that this is fine since the input should contain a list of all elements of F,
but in practice one should think of F as being described implicitly). In applications where |F| is
bounded by a polynomial in n (such as the applications given in the next section), the derandomized

algorithm runs in polynomial (in n) time.

3 Remarks and Applications

e Already a special case of Theorem 1.2 enables us to prove the following strengthening of a

theorem of R6dl [9]. Let K (n, k) denote the complete k-uniform hypergraph with n vertices. A



K(t, k)-packing of K(n,k) is a set of edge-disjoint copies of K(¢,k) in K(n, k). Let p(n,t, k)
denote the maximum size of a K(t,k)-packing of K(n,k). Clearly, p(n,t,k) < (Z)/(,i)
Solving a longstanding conjecture of Erdés and Hanani, R6dl proved that for every € > 0, and
for fixed integers ¢, k with ¢t > k > 1, if n is sufficiently large then p(n,t, k) > (1 — ¢€) (Z)/(fc)
Notice that such an almost-optimal packing may still be “unfair” to some vertices. In fact, a
vertex might still have ©(n*~1) incident edges that are unpacked. Using Theorem 1.2 we are

able to prove that there always exists an almost-optimal packing which is fair.

Theorem 3.1 Let t, k be fived integers witht > k > 1, and let ¢ > 0. For n sufficiently large
there is a K(t,k)-packing of K(n,k) such that each vertex is incident with at most E(Z:})
unpacked edges.

Proof: We apply Theorem 1.2 with ¢, r = (2) and, say, C = 1.1. Given K(n,k) we
create another hypergraph H = H(n,k) as follows. The vertices of H are the edges of
K(n,k). The edges of H are the K(t,k) copies of K(n,k). Notice that H is r-uniform
and has N = (}) vertices. Also, A(H) = §(H) = (?:;:) Notice also that any two edges
of K(n,k) appear together in at most (?:,f:ll) copies of K(t,k). Thus, Ay(H) = (’t‘__]f:ll)
and g(H) = (n — k)/(t — k). For each vertex v € {1,...,n} of K(n,k) let F, be the set of
edges incident with v. Note that F), is also a subset of vertices of H with |F,| = (Z:}) Let
F ={F, |v=1,...,n}. Thus, |F| =n and s(F) = (Zj) Let K and p be the constants
from Theorem 1.2. It is easy to see that for n sufficiently large (and hence N sufficiently
large), the conditions of Theorem 1.2 are satisfied. Therefore, H has a (1 — ¢, F)-perfect
matching. This, in turn, implies that there is a K(t, k)-packing of K (n, k) such that each

vertex is incident with at most e(’;j) unpacked edges. [ ]

A similar reasoning enables us to obtain the following strengthening of the main result of
Frankl and Firedi in [2].

Theorem 3.2 Let H = (U,F) be a fized k-uniform hypergraph with |F| = f edges and fix
e > 0. Then for all sufficiently large n there is a family H of copies Hy = (U1, F1),Hy =
(Ua, Fa), ... of H in the complete k-uniform hypergraph K on n vertices such that

\UsNU;| <k for alli # j,

If\lUinUj| =k and U;NU; = B then B ¢ F;, B ¢ Fj.

k—

Fach vertex of K is incident with less than en*~! edges that do not belong to any member of

H.

The proof is by choosing a random subhypergraph K’ of K, where each edge is chosen,
randomly and independently, with probability p = 1 — ¢, for an appropriate small §. We next



consider the hypergraph whose vertices are the edges of the random subhypergraph K’, where
each induced copy of H in K’ forms an edge. One can now complete the proof by applying
Theorem 1.2 to this last hypergraph, with the obvious choice of the members of F. We omit
the details.

e The proof of Theorem 1.2 can be modified to supply a similar variant of Lemma 2.1 in which
each matching in the coloring will cover almost all vertices of each member of a family F.
Another possible modification in the proof enables one to formulate a version of Theorem
1.2 in which g(H) does not have to grow with n, assuming the family F satisfies appropriate

regularity assumptions that will enable us to apply the Local Lemma. We omit the details.
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