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Abstract

Let χ1(n) denote the maximum possible absolute value of an entry of the inverse of
an n by n invertible matrix with 0, 1 entries. It is proved that χ1(n) = n( 1

2 +o(1))n. This
solves a problem of Graham and Sloane.

Let m(n) denote the maximum possible number m such that given a set of m coins
out of a collection of coins of two unknown distinct weights, one can decide if all the
coins have the same weight or not using n weighings in a regular balance beam. It is
shown that m(n) = n( 1

2 +o(1))n. This settles a problem of Kozlov and Vũ.
Let D(n) denote the maximum possible degree of a regular multi-hypergraph on n

vertices that contains no proper regular nonempty subhypergraph. It is shown that
D(n) = n( 1

2 +o(1))n. This improves estimates of Shapley, van Lint and Pollak.
All these results and several related ones are proved by a similar technique whose

main ingredient is an extension of a construction of H̊astad of threshold gates that
require large weights.

1 Introduction

For a real matrix A, the spectral norm of A is defined by ‖A‖s = supx 6=0 |Ax|/|x|. If A is
invertible, the condition number of A is c(A) = ‖A‖s‖A−1‖s. This quantity measures the
sensibility of the equation Ax = b when the right hand side is changed. If c(A) is large,
then A is called ill-conditioned. For the above reason, ill-conditioned matrices are important
in numerical algebra, and have been studied extensively by various researchers (see, e.g.,
[7], [16] and their references). In [10], Graham and Sloane consider the special case of ill-
conditioned matrices, whose entries lie in the set {0, 1} or in the set {−1, 1}. These special
cases are of interest not only in linear algebra, since (0, 1) and (−1, 1) matrices are basic
objects in combinatorics and related areas. In their paper Graham and Sloane study the
most ill-conditioned (0, 1) (or (−1, 1)) matrices, which they call anti-Hadamard matrices.
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For matrices with such restricted entries, many quantities are equivalent to the condition
number. Let A be a non-singular (0, 1) matrix and put B = A−1 = (bij). The following
quantities are considered in [10], where in both cases the maximum is taken over all invertible
n by n matrices with 0, 1 entries.
• χ(A) = maxi,j |bij | and χ(n) = maxA χ(A)
• µ(A) =

∑
i,j b

2
ij and µ(n) = maxA µ(A).

It is shown in [10] that c(2.274)n ≤ χ(n) ≤ 2(n/4)n/2 for some absolute positive constant
c, and consequently that c2(5.172)n ≤ µ(n) ≤ 4n2(n/4)n, and the authors raise the natural
problem of closing the gap between these bounds.

Our first result here determines the asymptotic behaviour of χ(n), as well as that of the
analogous quantity for (−1, 1)-matrices. It turns out that this function is n( 1

2
+o(1))n in both

cases, where the o(1) term tends to 0 as n tends to infinity. This implies that the maximum
possible condition numbers of such n by n matrices is also n( 1

2
+o(1))n.

Our lower-bound is by an explicit construction of appropriate ill conditioned matrices.
This construction is based on a (modified version of) a construction of H̊astad [11] and an
extension of it.

It turns out that this result has many interesting applications to several seemingly
unrelated problems, listed below.

• Flat simplices: We show that the minimum possible positive distance between a vertex
and the opposite facet in a nontrivial simplex determined by (0, 1) vectors in Rn is
n−( 1

2
+o(1))n. This answers another question suggested in [10].

• Threshold gates with large weights: A threshold gate of n inputs is a function F :
{−1, 1}n 7→ {−1, 1} defined by

F (x1, . . . , xn) = sign(
n∑
i=1

wixi − t),

where w1, . . . , wn, t are reals called weights, chosen in such a way that the sum∑n
i=1wixi − t is never zero for (x1, . . . , xn) ∈ {−1, 1}n. Threshold gates are the

basic building blocks of Neural Networks, and have been studied extensively. See,
e.g., [12] and its references. It is easy to see that every threshold gate can be realized
with integer weights. Various researchers proved that there is always a realization
with integer weights satisfying |wi| ≤ n( 1

2
+o(1))n, and H̊astad [11] proved that this is

tight (up to the o(1) term) for all values of n which are powers of 2. Here we extend
his construction and show that this upper bound is tight for all values of n.

• Coin weighing: Let m(n) denote the maximum possible number m such that given a
set of m coins out of a collection of coins of two unknown distinct weights, one can
decide if all the coins have the same weight or not using n weighings in a regular
balance beam. We prove that m(n) = n( 1

2
+o(1))n. This is tight up to the o(1)-term

and settles a problem of Kozlov and Vũ [14]. A similar estimate holds when there
are more potential weights , but they satisfy a certain generic assumption, and even
when there is no assumption on the possible weights of the coins, but there is a given
coin which is known to be either the heaviest or the lightest among the given coins.
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• Indecomposable hypergraphs: An (multi-) hypergraph is indecomposable if it is regular,
but none of its proper subhypergraphs is regular. Let D(n) be the maximum possible
degree of an indecomposable hypergraph on n points. The problem of estimating
D(n) is motivated by questions in Game Theory and has been considered by many
researchers (see [8] for a survey). Here we show that D(n) = n( 1

2
+o(1))n.

All problems above are closely related, and the lower-bounds for all of them are obtained
by applying an appropriate ill-conditioned (0, 1) or (−1, 1) matrix. All the upper-bounds
rely on Hadamard inequality, which is the following well known fact.

Lemma 1.1. If A is a matrix of order n, then |detA| ≤
∏n
i=1(

∑n
j=1 a

2
ij)

1/2, where aij is
the entry in row i and column j. 2

The rest of this paper is organized as follows. In the rest of this section we introduce some
(mostly standard) notation. In Section 2 we construct ill conditioned matrices with (0, 1)
entries and with (−1, 1) entries. Section 3 contains the proofs of all the above mentioned
applications and the final section 4 contains some concluding remarks and open problems.

Notation.
For a matrix B, bij denotes the entry in row i and column j, and Bij denotes the

submatrix obtained from B by deleting the row i and column j. Jn and In are the all-one and
the identity matrix of order n, respectively. Ill-conditioned matrices are always non-singular

square matrices. The direct sum of two square matrices A and B is A⊕B =

(
A 0
0 B

)
.

The coordinates of a vector x of length n are denoted by lower-indexed letters x1, x2, . . . , xn,
and x is written in the form x = (x1, x2, . . . , xn), or sometimes in the form x = (xi)ni=1. We
denote by 1n the all-one vector of length n. The l1 and l∞ norms of x are ‖x‖1 =

∑n
i=1 |xi|

and ‖x‖∞ = maxni=1 |xi|, respectively. A vector is integral if all of its coordinates are
integers. {0, 1}n and {−1, 1}n denote the sets of all vectors of length n, with coordinates
from the sets {0, 1} and {−1, 1}, respectively. It is convenient to note that each of these
sets is the set of vertices of the corresponding hypercube in Rn.

As usual, θ(n) represents a quantity satisfying c1n ≤ θ(n) ≤ c2n, where 0 < c1 < c2 are
constants. Since most results in terms of n in this paper are asymptotic, we always assume
that n is sufficiently large, whenever this is needed. All logarithms used in the paper are in
base 2. A real function f is called super-multiplicative if it satisfies f(m + n) ≥ f(m)f(n)
for all admissible m,n.

In the proofs we apply the following simple and well-known elementary equalities, whose
proofs are omitted.

Lemma 1.2.
(1) For any positive integer m:

∑m
k=0

(m
k

)
= 2m and

∑m
k=1 k

(m
k

)
= m2m−1

(2)
∑∞
i=1 i(2

1−i) = 4. 2

2 Ill conditioned matrices

The purpose of this section is to estimate the maximum possible condition numbers of (0, 1)
and (−1, 1) matrices. First, let us introduce some notation. Let A1

n and A2
n denote the sets
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of invertible (0, 1) and (−1, 1) matrices of order n, respectively. For an invertible matrix
A, let χ(A) denote the maximum absolute value of an entry of A−1. It is easy to see that
χ(A) is invariant under permutations and sign changes of rows and columns of A. Though
this is not true for arbitrary matrices, it will be shown in subsection 3.1 that the condition
numbers of (0, 1) and (−1, 1) matrices A have the same order of magnitude as χ(A); large χ
implies that the condition number is large, and thus that the matrix is very ill-conditioned.
Thus we use here χ(A) to measure how ill-conditioned the matrix A is.

Define χi(n) = maxA∈Ain χ(A), where i = 1, 2. The following theorem determines the
asymptotic behaviour of χi(n). Since all the results in Section 3 are based on this theorem,
we call it the main theorem. We emphasize in the second part of the theorem that the
lower-bound is constructive; this will play a role in the applications.

The Main Theorem. For i = 1, 2,
1. The functions χi(n) are super-multiplicative and satisfy

2
1
2
n logn−n(1+o(1)) ≥ χi(n) ≥ 2

1
2
n logn−n(2+o(1)).

2. One can construct explicitly a matrix Ci ∈ Ain such that

χ(Ci) ≥ 2
1
2
n logn−n(2+o(1)).

By explicit construction we mean here the existence of an algorithm that constructs,
given n, an n by n matrix satisfying the above inequality in time which is polynomial in n.

The upper-bound for χ2(n) is quite easy. Consider A ∈ A2
n, and let bij be an element

of B = A−1. By Cramer’s rule bij = (−1)i+j detAij/detA, thus |bij | = |detAij/detA|.
Since Aij is a (−1, 1) matrix of order (n − 1), by Hadamard inequality detAij ≤ (n −

1)(n−1)/2 = 2
1
2
n logn−o(n). On the other hand, |detA| is at least 2n−1. To see this, one can

add the first row of A to each other row, thus getting rows with 2, 0 and −2 entries. Thus,
the determinant of A is divisible by 2n−1, and hence |detA| ≥ 2n−1. This implies that
|bij | ≤ 2

1
2
n logn−n(1+o(1)).

The proof of the Main Theorem will be presented in the following steps. In subsection
2.1 we construct a matrix A ∈ A2

n for n = 2m, such that χ(A) differs from the upper-bound
by a sub-exponential factor only. This construction is based on the ideas of H̊astad in [11].
However, our construction is somewhat simpler and the proof of its properties is slightly
more direct than that given in [11].

In subsection 2.2 we describe a simple, known connection between the two classes A1
n−1

and A2
n. Using this, we obtain the upper-bound for χ1(n), as well as (0, 1) matrices of

orders n = 2m− 1 with large χ. In subsection 2.3 we establish the super-multiplicativity of
χi(n). We complete the proof of the theorem in subsection 2.4, where we construct (0, 1)
and (−1, 1) matrices of arbitrary order n, for which the lower-bound holds, by combining
the supermultiplicativity with the constructions for powers of 2.
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2.1 Ill-conditioned (−1, 1) matrices of order 2m

Theorem 2.1.1 For n = 2m there is a matrix A ∈ A2
n such that

χ(A) = 2
1
2
n logn−n(1+o(1)).

Proof. The matrix A is constructed explicitly as follows. Let Ω be a set of m elements.
Order the subsets αi, i = 1, .., 2m of Ω in such the way that |αi| ≤ |αi+1| and |αi4αi+1| ≤ 2,
where |α| denotes the cardinality of α and α4β denotes the symmetric difference between
the two sets α and β. To achieve such an ordering, it suffices to order all the subsets of the
same cardinality, and this can be easily done by induction. For a detailed proof, we refer to
Lemma 2.1 in [11]. It is convenient to let α0 denote the empty set. Our matrix A is defined
by the following simple rules. For every 1 ≤ i, j ≤ n:

(1) If αj ∩ (αi−1 ∪ αi) = αi−14αi and |αi−14αi| = 2, then aij = −1.
(2) If αj ∩ (αi−1 ∪ αi) 6= ∅ but (1) does not occur, then aij = (−1)|αi−1∩αj |+1.
(3) If αj ∩ (αi−1 ∪ αi) = ∅, then aij = 1.

We next prove that A has the required property.
Let Q be the n by n matrix given by qij = (−1)|αi∩αj |. It is easy and well known that Q

is a symmetric Hadamard matrix, that is Q2 = nIn. Next, we construct a matrix L row by
row as follows. For the ith row of L (i > 1), consider the set αi. define Ai = αi−1∪αi. Define
also Fi = {αs|αs ⊂ Ai, |αs ∩ (αi−14αi)| = 1} if |αi−14αi| = 2 and Fi = {αs|αs ⊂ Ai} if
|αi−14αi| = 1. Note that if |αi| = k, then |Fi| = 2k in both cases.

Set lij = 0 iff αj 6∈ Fi. Among the remaining 2k entries of the row, let li,i−1 = 1
2

k−1− 1,
and let all others be 1/2k−1. By the property of the ordering, it is clear that if j > i then
αj /∈ Fi. For i = 1, a11 = 1 is the only non-zero element of the first row. Thus L is a lower
triangular matrix.

Lemma 2.1.2 A has the following factorization: A = LQ.

Proof. Consider the inner product of the ith row of L and the jth column of Q

n∑
s=1

lisqsj =
∑
s,lis 6=0

(1/2k−1)(−1)|αs∩αj | + (−1)(−1)|αi−1∩αj |

= (1/2k−1)
∑
αs∈Fi

(−1)|αs∩αj | + (−1)|αi−1∩αj |+1 = Σij + (−1)|αi−1∩αj |+1.

Consider three subcases according to the definition of A. If (1) occurs, then each term
in Σij is −1/2k−1, so Σij = −2. Moreover, the second summand is 1 so the inner product
is −1. If (2) occurs, then by symmetry, half of the members of Fi have an odd (even)
intersection with αj , so half of the terms in Σij are −1/2k−1, and hence Σij = 0 and the
inner product is equal to the second summand. Finally, if (3) occurs, all the terms in Σij

are 1/2k−1 and Σij = 2, the second summand is −1, and thus the product is 1. This proves
the Lemma.2

Let i0 be the first index such that αi0 has three elements. Let δ be the (0, 1) vector of
length n, in which i0 is the only non-zero coordinate. Consider the equation Lx = δ. For
i > 1, its ith row equation reads
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∑
αj∈Fi

(1/2k−1)xj − xi−1 = δi

or equivalently,
xi = (2k−1 − 1)xi−1 −

∑
αj∈Fi\{αi−1,αi}

xj + 2k−1δi

Observe that for i < i0, δi = 0, thus xi = 0. Furthermore, xi0 = 23−1δi0 = 4 and
xi0+1 = (22 − 1)xi0 = 3xi0 . By induction we next show that |xi| > (2k−1 − 2)|xi−1| for
i > i0. Indeed if the statement holds for i − 1 then |xi−1| > 2|xi−2| > 4|xi−3|..., hence the
above sum of the elements xj is majorized by the sum

∑∞
t=1(1/2t)|xi−1| = |xi−1|. Thus we

have,

|xi| ≥ (2k−1 − 2)|xi−1|+ |xi−1| −
∑

αj∈Fi\{αi−1,αi}
|xj | > (2k−1 − 2)|xi−1|.

This proves the statement for i, completing the induction.
One can deduce from here that all the numbers xi are non-negative. By the statement

just proved it follows that:

xn >
m∏
k=3

(2k−1 − 2)(
m
k ) =

m∏
k=3

2(k−1)(mk )
m∏
k=3

(1− 2
2k−1

)(
m
k )

Using the equalities in Lemma 1.2, the first product is

2
∑m

k=1
(k−1)(mk )−(m2 ) = 2m2m−1−2m+1−O(m2)

= 2(1/2)n logn−n−O(log2 n) = 2(1/2)n logn−n(1+o(1))

The reader can verify that the second product is at least 2−o(n). In fact it can be lower-
bounded by e−n

β
= 2−o(n), for some β < 1. This can be done by observing that 1−x > e−2x

for x < 1/2 and by some simple manipulations (see [11] for the detailed computation.) Thus
we have xn ≥ 2(1/2)n logn−n(1+o(1)).

We complete the proof by considering the equation Ay = δ. By Cramer’s rule |yi| =
|detAi0j/detA|. On the other hand, A = LQ, so Qy = x or y = Q−1x. As mentioned
in the beginning of the proof Q−1 = (1/n)Q, thus we have y = (1/n)Qx or equivalently
yi = 1/n

∑
j qijxj . Since |qij | = 1, and since xn > 4xn−1 > 8xn−2 > ... we conclude that

|yi| > (1/n)(1/2)xn. Therefore |yi| = 2
1
2
n logn−n(1+o(1)). In other words, all the elements of

the ith0 column of A−1 have the required order of magnitude.
If one chooses any j0 > i0 so that the product

∏m
k=|αj0 |

(2k−1 − 2)(
m
k ) has order of

magnitude 2
1
2
n logn−θ(n), then the corresponding terms detAi0j/detA also have this order

of magnitude. This shows that A−1 has, in fact, many columns consisting of large entries.
2

Remark. The matrix A constructed above has minimal determinant detA = 2n−1. Indeed,
observe that detA = detLdetQ. Moreover, detQ = nn/2 = 2m2m−1

, since Q is a Hadamard
matrix. Furthermore, L is lower-triangular, implying that
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detL =
n∏
i=1

lii =
m∏
k=1

2−(k−1)(mk ) = 2(2m−1)−m2m−1

This yields detA = detLdetQ = 22m−1 = 2n−1.

2.2 The connection between A1
n−1 and A2

n

In this subsection we describe a simple connection between the two classes A1
n−1 and A2

n.
Consider the map Φ which assigns to any matrix B ∈ A1

n−1 a matrix Φ(B) ∈ A2
n in the

following way:

Φ(B) =

(
1 1n−1

−1T
n−1 2B − Jn−1

)
This map has a nice and simple geometric interpretation. Let Pi be the point in Rn−1

represented by the ith row of B, i = 1, 2, . . . , n − 1. Similarly, let Qi be the point in Rn

represented by the (i + 1)th row of Φ(B), for i = 0, 1, . . . , n − 1. Now identify the unit
hypercube of Rn−1 with the unit hypercube of the hyperplane x1 = 0 in Rn. Then Pi will
be identified with the midpoint of the segment Q0Qi.

The above map is clearly invertible, and by simple row operations (see [6]) it follows
that |det Φ(B)| = 2n−1|detB|. If B is invertible, so is Φ(B), and

Φ(B)−1 =

(
1− 1

21n−1B
−11T

n−1 −1
21n−1B

−1

1
2B
−11T

n−1
1
2B
−1

)
Moreover, note that every matrix in A2

n can be normalized to have the first column and
row like those in a typical Φ(B); all one has to do is to multiply some rows and columns by
−1, if needed. Thus, in a loose sense, Φ is a bijection. Multiply all the rows of the matrix
A constructed in subsection 2.1, except the first one, by −1 to get a matrix A1 whose first
column is (1,−1,−1, ..,−1) and whose first row is the all 1 vector. Therefore, there is a
(0, 1) matrix A′ of order (n− 1) such that Φ(A′) = A1.

By the above formula for Φ(B)−1, for every entry of A−1
1 which is not in the first row

or in the first column, the corresponding entry of A′−1 has the same absolute value up to a
factor of 2.

By the discussion in subsection 2.1, we know that A−1
1 contains many columns of large

entries (and in particular the ith0 column). It follows that A′−1 also has many columns
of large entries, and χ(A′) = 2

1
2
n logn−n(1+o(1)). The formula of Φ(B)−1 also proves the

upper-bound for χ1(n), as a consequence of the upper-bound for χ2(n).
Corollary 2.2.1. For every n = 2m − 1 there is a matrix A′ ∈ A1

n such that χ(A′) ≥
2

1
2
n logn−n(1+o(1)).

The matrix 11⊕A′ is of order n+ 1 = 2m and satisfies χ(11⊕A′) = χ(A′). Since it will be
more convenient to use matrices of order power of 2 in subsection 2.4, we reformulate the
last corollary as follows

Corollary 2.2.2. For every n which is a power of 2 there is a matrix A′ ∈ A1
n such that

χ(A′) ≥ 2
1
2
n logn−n(1+o(1)).
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Note that since we are interested in asymptotic formulas, there is no difference between
n and n+ 1

Remark. Since A and A1 have determinants with minimum possible absolute value,
detA = −detA1 = 2n−1, A′ also has a determinant with minimum possible absolute value,
|detA′| = 1, by the property of the map Φ.

2.3 The super-multiplicativity of χi(n)

We first prove that χ1(n) is super-multiplicative. To this end, it suffices to show that
for any two matrices S ∈ A1

n1
and T ∈ A1

n2
, there is a matrix R ∈ A1

n1+n2
, such that

χ1(R) ≥ χ1(S)χ1(T ). The main ingredient in the proof of this fact is the following operation,
denoted by �, which glues S and T together.

Let S and T be two non-singular matrices of orders n1 and n2, respectively. We define
S � T as follows. First rearrange the rows and columns of S and T in such a way that
χ(S) = |detS1n1/detS| and χ(T ) = |detT1n2/detT |. Suppose now that S and T have
this property, then R = S � T has order n1 + n2 and is obtained from S ⊕ T by switching
the element rn1+1,n1 from zero to one. Therefore, R looks as follows:

R =



s11 . . . s1n1 0 . . . 0
s21 . . . s2n1 0 . . . 0
. . . . . . . . . .
. . . . . . . . . .

sn11 . . . sn1n1 0 . . . 0
0 0 . . . 0 1 t11 . . . t1n2

0 0 . . . 0 0 t21 . . . t2n2

. . . . . . . . . .

. . . . . . . . . .
0 0 . . . 0 0 tn21 . . . tn2n2


The following Lemma shows that R has the required property.
Lemma 2.3.1 χ(S � T ) ≥ χ(S)χ(T )
Proof First we need the following notion. A matrix M is called near lower-triangular if

it has the form

(
A 0
C B

)
, where A and B are square matrices. Similarly, M is near

upper-triangular if it has the form

(
A C
0 B

)
Obviously, if M is either near lower-triangular or near upper-triangular as above, then

detM = detAdetB.
Consider the matrix R = S � T . It has order n = n1 + n2. By the construction,

R is a near lower-triangular matrix of the form

(
S 0
C T

)
. Thus, detR = detS detT .

Furthermore, consider the submatrix R1,n1+n2 of R. Again by the construction, this has

a near upper-triangular form

(
S′ D
0 T ′

)
, where S′ is the submatrix S1n1 of S, and T ′ is
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obtained from T by deleting its last column and by adding a column (1, 0, . . . , 0) to its
left. Since the first column of T ′ has only one non-zero element t′11 = 1, it is clear that
detT ′ = detT ′11 = detT1n2 . Hence detR1,n1+n2 = detS′ detT ′ = detS1n1 detT1n2 .
To conclude the proof of the Lemma observe that

χ(R) ≥ |detR1n

detR
| = |detS11 detT11

detS detT
| = χ(S)χ(T ),

as needed.
We can use a similar idea to prove the super-multiplicativity of χ2(n). In fact, χ2 satisfies
a stronger inequality: χ2(n1 + n2 − 1) ≥ 2χ2(n1)χ2(n2). The glueing operation in this
case is a little more technical. Consider two (−1, 1) matrices S and T of sizes n1 and n2,
respectively. By changing signs of columns and rows, we can suppose that every element of
the last column and the last row of S is (1, 1, . . . , 1), the first row of T is (1, 1, . . . , 1) and
the first column of T is (1,−1, 1, . . . , 1) (the second coordinate of the last vector is the only
−1). Moreover, we can suppose that χ(S) = |detS1n1/detS| and χ(T ) = |detT2n2/detT |.

Now consider the matrix R of order n = n1 + n2 − 1 which has S as its (1, 2, . . . , n1)
principal submatrix, and T as its (n1, n1 + 1, . . . , n1 + n2 − 1) principal submatrix, and all
non-defined entries are 1. By subtracting the nth1 row from the rows 1, 2, . . . , n1− 1 one can
prove that |detR| = |detS detT |. Furthermore, by subtracting the same row from rows
n1 + 1, . . . , n1 + n2 − 1 one can show that |detR1n| = 2|detS1n1 detT2n2 |. This proves the
desired inequality. The (simple) details are left to the reader. 2

2.4 Ill-conditioned matrices of arbitrary order

Let n be a large positive integer. We construct a matrix C in A1
n which satisfies χ(C) ≥

2
1
2
n logn−n(2+o(1)).

Write n as a sum of powers of 2, n =
∑r
i=1 2qi , where q1 > q2 > . . . > qr ≥ 0. Let ni = 2qi .

Let Ai be an ill-conditioned matrix of order ni constructed in subsection 2.2 which satisfies
χ(Ai) = 2

1
2
ni logni−ni(1+o(1)). Consider the (0, 1) matrix C = A1 � (A2 � (. . . (Ar−1 �Ar)) . . .).

By the definition of the operation �, C has order
∑r
i=1 ni = n. To estimate χ(C) we apply

Lemma 2.3.1 and conclude that

χ(C) ≥
r∏
i=1

χ(Ai) = 2
∑r

i=1
1
2
ni logni−

∑r

i=1
ni(1+o(1))

In order to estimate the right hand side properly, we need the following Lemma:

Lemma 2.4.2. If q1 > q2 > . . . > qr ≥ 0 are integers, and ni = 2qi, N =
∑r
i=1 ni then

ζ(N) =
1
N

(
r∑
i=1

ni logN −
r∑
i=1

ni log ni) ≤ 2

Proof. We call the set Υ = {q1, q2, . . . , qr} full if it contains all non-negative integers not
larger than q1. The proof follows from the following two facts.
Fact 1. If Υ is full, then ζ(N) ≤ 2.
Fact 2. If Υ is not full, q is a non-negative integer less than q1 not in Υ, and n∗ = 2q, then
ζ(N + n∗) ≥ ζ(N).
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Fact 1 is straightforward. We prove Fact 2. First, we rewrite ζ in a more convenient form,

ζ(N) =
r∑
i=1

ni
N

log
N

ni

=
r∑
i=1

ni
N

log
N

n1

n1

ni

=
r∑
i=1

ni
N

log
n1

ni
+ log

N

n1

By this, we have,

ζ(N + n∗) =
r∑
i=1

ni
N + n∗

log
n1

ni
+

n∗
N + n∗

log
n1

n∗
+ log

N + n∗
n1

Hence,

ζ(N + n∗)− ζ(N) =
n∗

N + n∗
log

n1

n∗
+ log

N + n∗
N

−
r∑
i=1

n∗ni
N(N + n∗)

log
n1

ni

We prove ζ(N + n∗) > ζ(N) by showing that in fact,

n∗
N + n∗

log
n1

n∗
−

r∑
i=1

n∗ni
N(N + n∗)

log
n1

ni
> 0

By a simplification and a rearrangement, this is equivalent to

N log
n1

n∗
>

r∑
i=1

ni log
n1

ni

Since N =
∑r
i=1 ni, the last inequality is equivalent, after some simplification and rear-

rangement of terms, to

r∑
i=1

ni log
ni
n∗

> 0,

that is
r∑
i=1

2qi(qi − q) > 0.

Now note that the sum of the positive terms in
∑n
i=1 2qi(qi−q) is at least 2q1 . Furthermore,

the absolute value of the sum of the negative terms is at most 2q1−2 + 2(2q1−3) + 3(2q1−4) +
. . .+ (q1 − 1). So the proof is complete if one can show that,

2q1 ≥ 2q1−2 + 2(2q1−3) + 3(2q1−4) + . . .+ (q1 − 1).

The last inequality follows directly from the fact that
∑q1−1
i=1 i · 21−i <

∑∞
i=1 i · 21−i = 4

(Lemma 1.2). This completes the proof of the Lemma. 2

Using this Lemma, it follows that
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χ(C) ≥
r∏
i=1

χ(Ai) = 2
∑r

i=1
1
2
ni logni−

∑r

i=1
ni(1+o(1))

> 2
∑r

i=1
1
2
ni log(

∑r

i=1
ni)−

∑r

i=1
ni−n(1+o(1))

= 2
1
2
n logn−n−n(1+o(1))

= 2
1
2
n logn−n(2+o(1)).

Thus we have a (0, 1) matrix C of order n, with χ(C) of the required order of magnitude.
To obtain a (−1, 1) matrix, simply apply the map Φ described in subsection 2.2. Of course,
the matrix Φ(C) has order (n + 1), but since we are dealing with asymptotic behaviour,
this does not make any difference. This completes the proof of the Main Theorem. 2

Remark Since det(S � T ) = detS detT , and all the basic matrices of order 2ni we use
have determinant −1 (see Remark at the end of subsection 2.2), the (0, 1) matrix C we just
constructed has determinant of absolute value 1, and |det Φ(C)| = 2n−1. This means that
all the matrices constructed have minimum possible determinants.

3 Applications

3.1 Maximal norms of inverse matrices

In this subsection we estimate the maximum possible norms of inverses of (0, 1) and (−1, 1)
matrices of order n. This is motivated by possible applications in numerical algebra. In
particular, we answer the problem of Graham and Sloane mentioned in section 1. We
also observe here that several quantities, including these norms, are closely related to the
condition number of a matrix with (0, 1) or (−1, 1)-entries.

Let B be a matrix of order n. The L1, L2, and spectral norms of B are defined as follows

‖B‖1 = max
i

n∑
j=1

|bij |, ‖B‖2 =
√∑

ij

b2ij , ‖B‖s = sup
x 6=0

|Bx|
|x|

.

Let λi(B) and σi(B) be the eigenvalues and singular values of B in decreasing order of
absolute value. Thus, σi(B) =

√
λi(BtB). The ratio c(B) = σ1(B)/σn(B) is an alternative

formula for the condition number of B. It is useful to note that B and B−1 have the same
condition number. The following properties are standard facts in linear algebra,

σn ≤ |λn|, ‖B‖s = σ1 ≥ |λ1| and ‖B‖22 =
n∑
i=1

σ2
i

Let Bin = {A−1|A ∈ Ain, A invertible}. Denote by fi(n), ei(n), si(n) and ci(n) the following
quantities: maxB∈Bin ‖B‖1, maxB∈Bin ‖B‖2, maxB∈Bin ‖B‖s and maxB∈Bin c(B), respectively.
As shown below, all these quantities are closely related to the last one which is the maximum
possible condition number of a matrix in Ain. Moreover, e2

1(n) = µ(n), where µ is defined
in section 1.
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Theorem 3.1.1.For i = 1, 2, fi(n), ei(n), si(n), ci(n) have order of magnitude 2
1
2
n logn−θ(n).

More precisely, each of these quantities can be lower-bounded by 2(1/2)n logn−n(2+o(1)), and
upper-bounded by 2

1
2
n logn−n(1+o(1)).

Proof. By the definitions, and the above properties, ‖B‖1, ‖B‖2 and ‖B‖s satisfy:

χ(B−1) ≤ ‖B‖i ≤ nχ(B−1)

for i = 1, 2, and

n−1/2‖B‖2 ≤ σ1 = ‖B‖s ≤ ‖B‖2.

Thus
n−1/2χ(B−1) ≤ σ1 = ‖B‖s ≤ nχ(B−1)

The estimate concerning the L1, L2 and spectral norms follow immediately from the
Main Theorem by taking the maxima in the inequalities above over the sets B ∈ Bin for
i = 1, 2.

To estimate c(n), first note that σn(B) = σ1(B−1). Moreover, σ1(B−1) ≤ ‖B−1‖2 ≤ n,
and σ1(B−1) ≥ |λ1(B−1)| ≥ |detB−1|1/n ≥ 1. Thus, 1/n ≤ σn(B) ≤ 1. This implies that

n−1/2χ(B−1) ≤ c(B) ≤ n2χ(B−1).

Again by maximizing over the sets Bin, we deduce the desired estimate for ci(n) from the
Main Theorem. 2

3.2 Flat simplices

In this subsection we estimate the minimum possible distance between a vertex and the
opposite facet in a nontrivial simplex determined by n+1 vertices P1, P2, . . . , Pn+1 of the unit
hypercube {0, 1}n . Let d(Pi) denote the distance from Pi to the hyperplane spanned by the
other n points. The quantity we are interested in is d(n) = minP1,P2,..,Pn+1 mini d(Pi), where
the minimum is taken over all indices i, and all possible configurations P1, P2, . . . , Pn+1.

Without loss of generality, one can suppose that in the optimum configuration Pn+1 = 0
and d(n) = d(Pn+1). Thus, the problem of determining d(n) is equivalent to the problem
of determining the minimum distance from the origin to a hyperplane spanned by vertices
of the unit hypercube that does not go through the origin.

Let P be the (0, 1) matrix of order n whose rows are the points Pi. The distance from
the origin to the hyperplane H spanned by the points Pi is

d(0,H) = (
n∑
i=1

(
n∑
j=1

uij)2))−1/2

as shown, for example, in [5], where uij are the entries of P−1.
The following bounds for d(n) are proved in [10], where the lower bound follows from

Hadamard Inequality, and the upper bound is established by an appropriate construction.
Proposition 3.2.1 [10] d(n) satisfies the following inequalities:
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1.618−n ≥ d(n) ≥ 1
2n3/2

(
4
n

)n/2.

The lower bound is asymptotically 2−
1
2
n logn+n(1+o(1)). Here we prove that d(n) is upper-

bounded by χ−1
1 (n), thus determining the asymptotic behaviour of d(n).

Theorem 3.2.2 d(n) satisfies:

2−
1
2
n logn+n(1+o(1)) ≤ d(n) ≤ χ−1

1 (n) ≤ 2−
1
2
n logn+n(2+o(1)).

Proof. We construct the required simplex explicitly. It suffices to show that for every
matrix C ∈ A1

n one can construct a simplex for which the distance between a vertex and
the opposite facet is at most χ(C)−1, since one can, in particular, take the matrix C ∈ A1

n

constructed in the proof of the Main Theorem. Given C, let vi be the point represented
by the ith column vector of C. By reordering the rows and columns we can assume that
|detC11/detC| = χ(C) ≥ 2(1/2)n logn−n(2+o(1)). Let us denote by v the vertex (1, 0, 0, .., 0)
of the hypercube. It is well known that |detC| = n! VolV1, where V1 is the simplex spanned
by 0 and v1, v2, .., vn. Similarly, |detC11| = n!Vol V2, where V2 is the simplex spanned by
0, v, and v2, .., vn. Denote by H the hyperplane through 0 and v2, v3, ..., vn. Then

χ(C)−1 =
|detC|
|detC11|

=
Vol V2

VolV1
=

dist(v1,H)
dist(v,H)

However, dist(v,H) ≤ dist(v,0) = 1. This implies that dist(v1,H) ≤ χ(C)−1, complet-
ing the proof.2

Remark. If n = 2m − 1, by subsection 2.2, there are matrices C for which C−1 has a
column in which every element is large, that is, |detC1i/detC| ≥ 2

1
2
n logn−n(2+o(1)) for

every 1 ≤ i ≤ n. This means that the above argument applies for all vi. In geometric
terms, it means that every vertex of V1 except 0 is very close to the opposite facet.

In order to find a hyperplane close to the origin, one can choose an element of the
automorphism group Aut{0, 1}n which maps v1 to 0. Then the images of the other n points
of V1 span a hyperplane determined by vertices of {0, 1}n, which is of distance d(v1,H) from
the origin. In terms of the matrix C, this can be described in the following way. Starting
with the matrix C in the proof, proceed as follows.
• Extend C to an (n+ 1)× n matrix C1 by adding the zero vector 0 as the last row.
• Subtract the first row v1 from each row of C1 to get a matrix whose first row is 0, and

whose remaining rows form an n× n matrix C2.
• In C2 replace all −1 entries by 1 entries, thus getting a (0, 1) matrix. The row vectors

of this matrix span a hyperplane with distance d(v1,H) from the origin.
The problem of finding a flat simplex in the unit hypercube (0, 1)n and that of finding a

flat simplex in the hypercube {−1, 1}n are the same, up to a factor of 2. But the hyperplane
problem is different, since the origin is not a vertex of {−1, 1}n. However, the latter problem
may also be solved easily, using the geometric interpretation of the map Φ, described in the
previous section. If the vertices Pi of (0, 1)n−1 span a hyperplane H1 with distance d from
the origin in Rn−1, then the vertices Qi of {−1, 1}n, defined as in section 2 by Φ, span a
hyperplane H2 with distance less than d from the origin, since all Pi are contained in H2.
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3.3 Threshold gates with large weights

A threshold gate of n inputs is a function F : {−1, 1}n 7→ {−1, 1} defined by

F (x1, . . . , xn) = sign(
n∑
i=1

wixi − t),

where w1, . . . , wn, t are reals called weights, chosen in such a way that the sum
∑n
i=1wixi−t

is never zero for (x1, . . . , xn) ∈ {−1, 1}n. Threshold gates are the basic building blocks of
Neural Networks, and have been studied extensively. See, e.g., [12] and its references. It
is easy to see that every threshold gate can be realized with integer weights, and it is
interesting to know how large these weights must be, in the worst case.

Let us call a threshold gate F : {−1, 1}n −→ {−1, 1} as above recognizable, and let
us say that it is recognized by the pair (w, t). Given such a function F , there are many
pairs (w, t) one can use to recognize F , and we are interested in the pair with minimum
weight vector w, i.e., with weight vector of minimum possible l∞ norm. We denote by w(F )
the l∞ norm of this vector. (Note that the weight t can always be chosen to be at most
||w||1 ≤ n||w||∞, and hence w(F ) supplies a bound for all weights.)

Let Fn be the set of all recognizable functions on {−1, 1}n. Define w(n) = maxF∈F w(F ).
Our purpose is to describe the asymptotic behaviour of w(n).

It has been proved by many researchers that if F is recognizable, then it can be recog-
nized by integer weights satisfying |wi| ≤ 2−n(n + 1)(n+1)/2 = 2

1
2
n logn−n(1+o(1)). (See, e.g.,

[15].) Therefore, w(n) ≤ 2
1
2
n logn−n(1+o(1)).

H̊astad [11] proved that this upper-bound is nearly sharp for the case n = 2m, by con-
structing a recognizable function which requires weights as large as (1/2n)e−4nβ2

1
2
n logn−n,

where β = log(3/2) < 1. We have exploited some of his ideas in the construction of
ill-conditioned matrices in subsection 2.1.

However, if n is not a power of 2, no construction which requires weights close to the
upper-bound is known. Of course, as suggested in [11], one may consider n0, the largest
power of 2 that does not exceed n, and use the construction for this number. This implies
that w(n) ≥ w(n0) = 2

1
2
n0 logn0−n0(1+o(1)). However, for n close to 2n0, this only gives

w(n) ≥ 2
1
4
n logn−n(1/2+o(1)), which is roughly the square root of the upper-bound.

As an application of the Main Theorem we construct here, for every n, a recogniz-
able function F , which requires weights of absolute value at least 2

1
2
n logn−n(2+o(1)). This

determines the asymptotic behaviour of w(n) up to an exponential factor.
Theorem 3.3.1 w(n) has order of magnitude 2

1
2
n logn−θ(n). More precisely,

2
1
2
n logn−n(2+o(1)) ≤ w(n) ≤ 2

1
2
n logn−n(1+o(1)).

Proof. We have to prove the lower-bound. To this end, we construct an explicit function
which requires such large weights.

Consider an ill-conditioned (−1, 1) matrix C of order n constructed in the Main Theo-
rem, where χ(C) ≥ 2

1
2
n logn−n(2+o(1)). For convenience, suppose χ(C) = |detC11/detC|.

Let v1, v2, . . . , vn be the row vectors of C. Define F on the vi in the following way:
F (vi) = sign(−1)i+1 detCi1 detC if detC1i 6= 0, otherwise F (vi) = 1.
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Since F is defined on n independent vectors, one can extend F to a recognizable odd
function as follows. Choose a hyperplane H through the origin such that
• H does not contain any vertex of the cube {−1, 1}n.
• All the points vi, where F (vi) = 1 are on one side of H, and all the points with

F (vi) = −1 are on the other side.
Since the hyperplane spanned by the vi does not contain the origin, it is clear that such
an H exists. Therefore, there is a weight vector w′ such that F (vi) = sign < vi, w

′ >.
Now extend F to all the vertices of the cube by defining F (v) = sign < v,w′ > for all v.
Since w′ is not orthogonal to any vertex vector of the cube, F (v) is either −1 or 1, and
hence F is recognizable by the pair (w′, 0). We next show that w(F ) satisfies the required
lower-bound.

Let (w, t) be any integral pair that recognizes F . Since F is odd, sign(< v,w > −t =
−sign(< −v, w > −t) for all (−1, 1) vector v. Hence | < v,w > | > |t| for all v. This means
that the pair (w, 0) also recognizes F . Thus we may and will assume that t = 0.

Consider the vector a = Cw. Since w is integral, so is a. By the definition of F , it
follows that sign(ai) = F (vi). Now consider the equalities above as a system of linear
equations with the variables wi. By Cramer’s rule we have

w1 =
detC1

detC
=

r∑
i=1

(−1)i+1ai detCi1
detC

where C1 is the matrix obtained from C by replacing its first column by a. By the definition
of F (vi), all the terms in the right hand side are non-negative. Hence w1 is at least as large
as the first term:

w1 ≥ a1
detC11

detC
≥ χ(C),

since |a1| ≥ 1. This completes the proof.2

Remark. If n is a power of 2, a slightly better bound can be given, using the estimate in
subsection 2.1. This special case is essentially the result of Hastad [11], with a somewhat
different proof.

3.4 Coin weighing

Coin-weighing problems deal with the determination or estimation of the minimum possible
number of weighings in a regular balance beam that enable one to find the required infor-
mation about the weights of the coins. These questions have been among the most popular
puzzles during the last fifty years, see, e.g., [9] and its many references. Here we study the
following variant of the old questions, which we call the all equal problem.

Given a set of m coins, we wish to decide if all of them have the same weight or not,
when various conditions about the weights are known in advance.

The case of generic weights, considered in [14], will be of special interest. In this case
we assume that for the set {w1, w2, . . . , wt} of possible weights of a coin, there is no set
of integers λ1, . . . , λn not all zero satisfying

∑t
i=1 λi =

∑t
i=1 λiwi = 0. This assumption is

motivated by the the fact that if we assume that the differences between the weights, which
are supposed to be equal, are caused by effects of many independent sources, we should not
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expect any algebraic relation between the possible weights. In addition, the definition of
generic weights is general enough to contain the basic case of two arbitrary distinct weights;
every set {w1, w2}, (w1 6= w2) is generic.

Let m(n) denote the maximum possible number of coins of generic potential weights
for which the above problem can be solved in n weighings. It is not difficult to check (see
[13], [14]) that m(n) ≥ 2n. To see this, note that trivially m(1) = 2, and that if we already
know some m coins that have the same weight, then we can, in one additional weighing,
compare them to m new coins and either conclude that not all coins have the same weight,
in case the weighing is not balanced, or conclude that all 2m coins have the same weight,
in case the last weighing is balanced. Hence m(n+ 1) ≥ 2m(n) for every n, implying that
m(n) ≥ 2n.

Somewhat surprisingly, this is not tight. In [14] it is shown that m(n) > 4.18n and that
m(n) ≤ 3n−1

2 (n+ 1)(n+1)/2. A more general (though less explicit) bound for m(n) is given
in the following Theorem proved in [14].

Theorem 3.4.1. Define γ(n) = max{g(B), B ∈ B}, where g(B) denotes the minimum
l1 norm of a non-trivial integral solution of Bx = 0, and where B denotes the set of all
n× n+ 1 (−1, 0, 1) matrices of rank n. Then

3n − 1
2

γ(n) ≥ m(n) ≥ γ(n).

For a matrix B ∈ B, it is easy to see that the vector b = ((−1)i+1 detBi)n+1
i=1 , where Bi

is the square matrix obtained from B by deleting the ith column, satisfies Bb = 0. Since B
has rank n, every solution of Bx = 0 is a multiple of b. Hence

g(B) =
∑n+1
i=1 |detBi|

gcd{|detBi|}n+1
i=1

where gcd stands for greatest common divisor. The main result of this subsection presented
in Theorem 3.4.2 below, applies the above theorem together with our Main Theorem and
improves the lower-bound of m(n) up to only an exponential factor apart from the upper-
bound. We also slightly improve the upper-bound by a factor of roughly e1/2.

Theorem 3.4.2. 3n−1
2 (n+ 1)n(n−1)/2 ≥ m(n) ≥ 2

1
2
n logn−n(2+o(1)).

Proof. To prove the upper-bound, it suffices to show that γ(n) ≤ (n+1)n(n−1)/2. Consider
an n×(n+1) matrix B with entries 0,−1, 1. If there are at least two rows of B that contain
no zero entries, then each submatrix Bi contains at least two rows with {−1, 1} entries.
Adding one of them to the other, we get a matrix with a row all of whose entries are 0, 2 or
−2, and thus its determinant is divisible by 2. Hence all the numbers |detBj | are divisible
by 2. Thus, in this case g(B) ≤

∑n+1
j=1 |detBj |/2.

By adding to B a row (b1, . . . , bn+1) of {−1, 1} entries, where bj = sign(Bj), we obtain
a matrix B′ satisfying |det(B′)| =

∑n+1
j=1 |det(Bj)|. By Hadamard Inequality, |det(B′)| ≤

(n+ 1)(n+1)/2 and hence in this case

g(B) ≤ (n+ 1)(n+1)/2

2
< (n+ 1)n(n−1)/2,
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as needed.
It remains to bound g(B) in case each of the rows of B, but possibly one, contains at

least one zero. In this case, by Hadamard Inequality and with B′ as above,

g(B) ≤
n+1∑
j=1

|det(Bj)| = |det(B′)| ≤ (n+ 1)n(n−1)/2.

Since B was arbitrary, the desired result follows.
In order to prove the lower-bound, we construct, for every n, a (0, 1) and a (−1, 1)

matrix of size n × n + 1, the γ of which is at least the claimed lower-bound. In fact, our
construction has an even stronger property, which is described in the next Proposition. We
note that both constructions, that of a (0, 1) matrix as well as that of a (−1, 1) matrix
will be applied later, and we thus describe both although any one of them suffices to prove
Theorem 3.4.2.

To state the proposition, we need some new notation. Let B be an n × n + 1 ma-
trix of rank n, and let x be a non-trivial vector satisfying Bx = 0. Define ξ(B) =
max1≤i,j≤n+1,xj 6=0 |xi/xj |. Note that ξ is well defined and is independent of the choice
of x, since B has rank n. In fact, by a standard fact from linear algebra (mentioned above)
the vector ((−1)i+1 detBi)n+1

i=1 , where Bi is the square matrix obtained from B by deleting
its ith column, is a solution of the equation Bx = 0. Thus,

ξ(B) = max
1≤i,j≤n+1,detBj 6=0

|detBi/detBj |.

Proposition 3.4.3. For every n, there is a (0, 1) n× (n+ 1) matrix B of rank n such that
ξ(B) ≥ 2

1
2
n logn−n(2+o(1)). There is also a (−1, 1) matrix with the same property.

Proposition 3.4.3 easily supplies the lower bound in Theorem 3.4.2, since γ(B) is at least
ξ(B). This follows from the following observation. If x is a non-trivial integral vector such
that Bx = 0, and ξ(B) = |xp/xq|, then

∑n+1
i=1 |xi| ≥ xp ≥ ξ(B)|xq| ≥ ξ(B).

Proof of Proposition 3.4.3.
The (0, 1) case. Pick a (0, 1) ill-conditioned matrix C of order n, such that χ(C) =
|detC11/detC| ≥ 2

1
2
n logn−n(2+o(1)). The matrix B is obtained from C by adding to its

right a column a = (1, 0, 0, . . . , 0). Thus B has size n× (n+ 1) and rank n. Moreover,

ξ(B) ≥ | detB1

detBn+1
| = |

∑n
i=1(−1)n+iai detCi1

detC
|.

Observe that a1 = 1 and ai = 0 for all i > 1, implying that

ξ(B) ≥ |detC11/detC| = χ(C) ≥ 2
1
2
n logn−n(2+o(1)).

The (−1, 1) case. Again consider an ill-conditioned (−1, 1) matrix C with the same
property as above. The matrix B is obtained by adding to the right side of C a (−1, 1)
vector a, which will be defined later. As before, we have:

ξ(B) ≥ | detB1

detBn+1
| = |

∑n
i=1(−1)n+iai detCi1

detC
|.

17



Choose ai ∈ {−1, 1} such that each term in the sum in the numerator is non-negative.
Hence the numerator is at least detC11. Thus,

ξ(B) ≥ |detC11/detC| = χ(C) = 2
1
2
n logn−n(2+o(1)).

This completes the proof of Proposition 3.4.3 and implies the assertion of Theorem 3.4.2 as
well. 2

Although the existence of a weighing process follows from the last proposition by Theo-
rem 3.4.1, we describe it here, for the sake of completeness. Once a matrix B (either a (0, 1)
matrix or a (−1, 1) matrix) with the property described in Proposition 3.4.3 is found, the
weighing process for solving the all equal problem for at least ξ(B) coins using n weighings
is as follows:

Weighing process
• By changing the sign of some columns of B, if needed, we may assume that there is

a nontrivial solution of Bx = 0 which is non-negative. Choose such a solution w with the
minimum possible l1 norm. (This can be found by taking the smallest integral multiple of
the basic solution (detBi)n+1

i=1 with an appropriate sign.) Consider a set Ω of m =
∑n
i=1wi

coins. Clearly, m ≥ ξ(B). Let ui, i = 1, 2, . . . , n+ 1 denote the columns of B.
• Let W be the matrix obtained from B by duplicating each column ui wi times. Thus

W is an n ×m matrix. Index the columns of W by the coins of Ω. Let ri denote the ith

row of W , and let vj denote its jth column.
• To define the ith weighing ( 1 ≤ i ≤ n), consider the ith row ri of W . Let Li be the

set of coins corresponding to 1 entries, and let Ri be the set of coins corresponding to −1
entries in ri. In the ith weighing, we compare the weights of these two sets of coins.
• If there is an unbalanced weighing, we conclude that the coins are not weight-uniform.

If all weighings are balanced, we conclude that the coins are of the same weight.

The proof of the fact that this weighing process does solve the all equal problem for coins
of generic weights is not difficult. Here we sketch it for the case of two distinct weights.

Proof. Since Bw = 0, the number of 1 entries and −1 entries in any row of W is equal, and
thus if any weighing is unbalanced, we can conclude that there are unequal weights. Suppose
now all weighings are balanced. Indirectly, assume the coins are not weight-uniform. Let
Ω′ be the set of lighter coins. Since all weighings are balanced, Li and Ri must contain the
same number of lighter coins for all i. This implies that

∑
k∈Ω′ vk = 0. Since each vk is one

of the vectors ui, 1 ≤ i ≤ n + 1, this yields
∑n+1
i=1 w

′
iui = 0, where w′i is the multiplicity of

ui in the (multi-) set {vk, k ∈ Ω′}. But the last equation is equivalent to Bw′ = 0, where
w′ = (w′1, w

′
2, . . . , w

′
n+1). Moreover, since Ω′ is a proper nonempty subset of Ω, w′ is not

zero and ‖w′‖1 < ‖w‖1, a contradiction.2

The proof for the general case of more than 2 potential generic weights is similar. Let Ω′

be the set of coins of some fixed weight. By the generic assumption we still have |Ω′∩Li| =
|Ω′ ∩ Ri| for all i, and one can conclude the proof in the same way. On the other hand,
without the generic assumption, the situation changes drastically. Here is a brief discussion
of this case (for more details see [3], [4]).

Let m(n, k) denote the maximum possible number m such that given a set of m coins
out of a collection of coins of k unknown distinct weights, one can decide if all the coins have
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the same weight or not using n weighings in a regular balance beam. In particular, m(n, 2)
corresponds to the generic case considered above, in the special case there are two weights.
Surprisingly, it turns out that m(n, k) for k ≥ 3 is much smaller than m(n, 2) (= n( 1

2
+o(1))n.)

In [3] it is proved that for every 3 ≤ k ≤ n+ 1, m(n, k) = Θ(n log n/ log k). This indicates
that the generic assumption is crucial.

However, we can prove that in case there is no assumption about the weights of the
coins, our weighing process still works properly if we are given only one distinguished coin
known to be either the lightest or the heaviest one. Here is a description of this process.

Let M(n) denote the maximum possible number m such that given a set of m coins out
of a collection of coins of an arbitrary number of unknown distinct weights, and given a
distinguished coin which is known to be either the heaviest or the lightest one among the
given m coins, one can decide if all the coins have the same weight or not using n weighings
in a regular balance beam. Note that the distinguished coin may be either the heaviest or
the lightest, and it is not known in advance which of the two it is. If there are only two
possible weights, then any coin is distinguished, and hence this is a generalization of the
basic case of two potential weights.

Theorem 3.4.4. M(n) ≥ 2
1
2
n logn−n(2+o(1))

Proof. Suppose that the distinguished coin has the smallest weight (the proof is the same
for the other case). To prove the inequality we prove that in case the matrix B in the
weighing process is constructed from an ill-conditioned (0, 1) matrix C then the process
also applies in the present situation.

First note that when B is constructed from a (0, 1) matrix then the standard solution
(−1)i+1 detBi is minimal, since |detBn+1| = |detC| = 1 (see the remark at the end of the
proof of the Main Theorem). Thus, the last column of W has multiplicity 1. Associate this
column with the distinguished coin, and the other columns with the remaining coins. We
show that if all weighings are balanced, then all coins have the same weight. Let τi be the
weight of the coin associated to the column vi, and let τ be the vector with coordinates τi.
Since all weighings are balanced Wτ = 0. In addition, W1m = 0. Thus W (τ − τm1m) = 0.
Note that τm = min τi, implying that the vector τ−τm1m has non-negative coordinates and
its last coordinate is zero. Thus the product W (τ − τm1m) is a linear combination of the
first n columns of B, with non-negative coefficients. Since these n columns are independent
(in fact they are the columns of C), their linear combination is zero iff all the coefficients
are zero. This implies that τi − τm = 0 for all i, i.e., all coins have the same weight. 2

3.5 Indecomposable hypergraphs

A multi-hypergraph H on a set X of n vertices is a collection of (not necessarily distinct )
subsets of X, called edges. The degree of a vertex i in X is the number of subsets in the
collection containing it. A (not necessarily induced) sub-hypergraph of H is a sub (multi)-set
of H. A hypergraph is regular if all its vertices have the same degree. Let D(n) be the
maximum degree d so that there exists a regular hypergraph H with degree d, containing no
proper nontrivial regular sub-hypergraph. We call such a hypergraph H indecomposable.
The problem of estimating the value of D(n) is motivated by some questions in Game
Theory and was considered by various researchers (see [8] and its references). Huckeman
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and Jurkat proved that D(n) is finite, (this was reproved by Alon and Berman, [1], using a
different approach). The best known upper bound for D(n) was given by Huckeman, Jurkat
and Shapley (see [8])

D(n) ≤ (n+ 1)(n+1)/2.

In the other direction, Shapley showed that D(n) > 2n−1/(n− 1) for every n > 2. This was
improved by van Lint and Pollak, who showed that for all n > 2

D(n) ≥ 2n−3 + 1.

Here we improve this lower-bound by showing that D(n) ≥ 2
1
2
n logn−n(2+o(1)). This

determines the asymptotic behaviour of D(n) showing that it is n( 1
2

+o(1))n.

Theorem 3.5.1 D(n) has order of magnitude 2
1
2
n logn−O(n). More precisely,

2
1
2
n logn+o(n) ≥ D(n) ≥ 2

1
2
n logn−n(2+o(1)).

Proof. The upper-bound follows from the result of Huckeman, Jurkat and Shapley men-
tioned above. We thus have to prove the lower bound.

Consider a (0, 1), n× n matrix D and a non-negative integral vector w = (w1, . . . , wn).
A multi-hypergraph H = H(D,w) is defined by D and w as follows. The vertex-set of H
is {1, 2, . . . , n}. The edge-set consists of wj copies of the set {i|dij = 1}, for every j ≤ n.
Therefore, there are n multi-edges. In other words, H is the multi-hypergraph with D as
vertex-edge incidence matrix and the jth edge has multiplicity wj .

Now suppose D is a non-singular (0, 1) matrix of order n, for which the unique vector
x such that Dx = 1n is non-negative. Let N(D) be the minimal positive integer such
that wi = N(D)xi is integer for every index i. It is easy to verify that, in this case, the
multi-hypergraph H = H(D,w) is regular of degree N(D). Furthermore, by the minimality
of N , H is indecomposable. To estimate N(D), note that Nxj ≥ 1 ≥ xi, for every xi and
xj 6= 0, hence N ≥ maxi,j, xj 6=0 xi/xj .

In order to prove the Theorem, we construct a non-singular n × n matrix D such that
the unique solution of Dx = 1n is non-negative, and N(D) is large.

Consider an n × (n + 1) (−1, 1) matrix B, with the property described in proposition
3.4.3. Let w be a non-trivial vector satisfying Bw = 0. By reordering the columns, we can
assume that ξ(B)) = |w1/w2|

By changing the sign of some columns of B, if needed, one can assume that w is non-
negative. Moreover, by changing the sign of some rows, we can also assume that the last
column is −1n. Let ui denote the ith column vector. The equality Bw = 0 implies that∑n+1

i=1 wiui = 0
⇐⇒

∑n
i=1wiui = wn+11n

⇐⇒
∑n
i=1

wi
wn+1

ui = 1n
⇐⇒

∑n
i=1

wi
wn+1

(ui + 1n) = (1 +
∑n
i=1

wi
wn+1

)1n
⇐⇒

∑n
i=1 2 wi

wn+1
(1 +

∑n
i=1

wi
wn+1

)−1vi = 1n
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where vi = 1
2(ui + 1n). Note that the vi are (0, 1) vectors. Let D be the n× n matrix with

vi as column vectors. We next prove that D satisfies the required properties.
1. D is non-singular. Suppose there is a non-trivial linear relation

∑n
i=1 yivi = 0.

In terms of ui this means that
∑n
i=1 yi(ui + 1n) = 0, or equivalently that

∑n
i=1 yiui +∑n

i=1 yi1n = 0. The last equation means that the vector (y1, y2, . . . , yn,−
∑n
i=1 yi) is a

solution of the system Bx = 0, which is a contradiction, since every solution of this system
is either non-negative or non-positive. Thus D is non-singular.

2. The solution of Dx = 1n is x = (2 wi
wn+1

(1 +
∑n
i=1

wi
wn+1

)−1)ni=1. It is clear that x is
non-negative. Furthermore,

N ≥ max
1≤i,j≤n,xj 6=0

|xi/xj | = max
1≤i,j≤n,wj 6=0

2 wi
wn+1

(1 +
∑n
i=1

wi
wn+1

)−1

2 wj
wn+1

(1 +
∑n
i=1

wi
wn+1

)−1

= max
1≤i,j≤n,wj 6=0

wi/wj = w1/w2 = ξ(B)

Thus N(D) ≥ ξ(B) ≥ 2
1
2
n logn−n(2+o(1)). This completes the proof. 2

4 Concluding remarks

• In case n is a power of 2, all the bounds using ill-conditioned matrices in our theorems
can be improved, using Theorem 2.1.1, which gives a slightly better bound than the Main
Theorem.

• Although the function m(n, 2) is monotone by definition, it is not clear that so is the
following version of its inverse. For an integer m, let n(m) denote the minimum integer n
such that given a set of m coins out of a collection of coins of two unknown distinct weights,
one can decide if all the coins have the same weight or not using n weighings in a regular
balance beam. It is not clear if for m′ < m the inequality n(m′) ≤ n(m) holds, since the
existence of an efficient weighing algorithm for m does not seem to imply the existence of
an efficient one for a smaller number of coins. Using our techniques here we can, however,
determine the asymptotic behaviour of n(m) and show that

n(m) = (2 + o(1))
logm

log logm
,

where the o(1)-term tends to zero as m tends to infinity. A similar remark holds for the
more general case of generic weights.

• In subsection 3.5 we prove that for all n, there is a (0, 1) matrix D of order n such
that N(D) ≥ 2

1
2
n logn−n(2+o(1)). Here, too, considering an appropriate inverse function is

of interest. For every positive integer m, let t(m) be the smallest number such that there
is an invertible (0, 1) matrix D of order t(m), for which the equation Dx = 1t(m) has a
non-negative solution and N(D) = m. Our result implies that there are infinitely many
values of m for which

t(m) ≤ (2 + o(1))
logm

log logm
.
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It is not clear, however, that t(m) ≤ O(logm) holds for all m. The estimate of t(m) seems
to be more difficult than that of n(m). See [2] for some results on this question and on a
related combinatorial problem.
• One can show that M(n) is super-multiplicative by the following observation.

Put m1 = M(n1), m2 = M(n2). Given a collection of m1m2 coins together with
a distinguished one known to be either the heaviest or the lightest, we first apply the
algorithm to the first m1 coins (including the distinguished one), and use n1 weighings to
decide if all these coins have the same weight. If not, the algorithm ends. Otherwise, we
split all coins into groups of size m1, where the first group is the one consisting of the m1

coins we already know to be equal. Viewing the groups as new coins, note that the first
one must be either the heaviest or the lightest group. We can thus apply the algorithm and
check the m2 groups in n2 weighings. If all the groups have the same weight, so do all the
coins, and otherwise, not all coins are identical.

It is not clear if the function m(n) corresponding to weighing coins with generic potential
weights, the function D(n) representing the maximum possible degree of indecomposable
hypergraphs, or the function w(n) describing the maximum required size of weights of
threshold gates are super-multiplicative.
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