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CONSTRUCTING WORST CASE INSTANCES FOR SEMIDEFINITE
PROGRAMMING BASED APPROXIMATION ALGORITHMS*

NOGA ALONT, BENNY SUDAKOV%, AND URI ZWICKS$

Abstract. Semidefinite programming based approximation algorithms, such as the Goemans
and Williamson approximation algorithm for the MAX CUT problem, are usually shown to have
certain performance guarantees using local ratio techniques. Are the bounds obtained in this way
tight? This problem was considered before by Karloff [SIAM J. Comput., 29 (1999), pp. 336-350]
and by Alon and Sudakov [Combin. Probab. Comput., 9 (2000), pp. 1 12]. Here we further extend
their results and show, for the first time, that the local analyses of the Goemans and Williamson
MAX CUT algorithm, as well as its extension by Zwick, are tight for every possible relative size of
the maximum cut in the sense that the expected value of the solutions obtained by the algorithms
may be as small as the analyses ensure. We also obtain similar results for a related problem. Our
approach is quite general and could possibly be applied to some additional problems and algorithms.
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1. Introduction. MAX CUT is one of the most natural combinatorial opti-
mization problems. An instance of MAX CUT is a graph. The goal is to partition
the vertices of the graph into two sets such that the number, or the total weight, of
the edges that cross the cut formed by this partition is maximized. Goemans and
Williamson [GW95] describe an elegant approximation algorithm for the MAX CUT
problem and show that its performance guarantee is at least @ = min g<p<r %ﬁ =
0.87856 ... . No polynomial time approximation algorithm for MAX CUT can have
a performance ratio of more than 12, unless P=NP (Hastad [Has97], Trevisan et
al. [TSSW96)).

The MAX CUT approximation algorithm of Goemans and Williamson [GW95]
uses a semidefinite programming relaxation of the problem. In this relaxation, every
vertex ¢ of the graph has a unit vector v; € R™ associated with it. The algorithm solves
this relaxation and then uses a simple randomized rounding technique to convert the
constellation of unit vectors obtained into a cut. To get a lower bound on the perfor-
mance ratio of the algorithm, Goemans and Williamson consider the worst possible
ratio between the probability that a given edge is in the cut and the contribution of
that edge to the optimal value of the semidefinite program. This worst case local ratio
is attained when the angle ) between the two vectors v; and v; that correspond to
the two endpoints of the edge is equal to 6y = argmin0<ggﬂ%l_5ﬁ ~2.331122....
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Is the local analysis of the MAX CUT approximation algorithm of Goemans and
Williamson [GW95] globally tight? In other words, are there graphs for which the
optimal value of the relaxation is equal to the size of the maximum cut and for which
there is an optimal solution of the relaxation in which the angle between every two
vectors that correspond to vertices in the graph that are connected by an edge is
exactly, or very close to, 6?7 Karloff [Kar99] was the first to construct graphs that
satisfy these conditions and therefore show that the local analysis of the MAX CUT
approximation algorithm of Goemans and Williamson is indeed tight. Karloff’s result
was simplified by Alon and Sudakov [AS00].

Goemans and Williamson [GW95] give a better lower bound on the performance
guarantee of their algorithm for graphs that have relatively large cuts. More specifi-
cally, for a graph G = (V. E), let A be the relative size of the maximum cut of G, i.e.,
the ratio between the size (or weight) of the maximum cut and the number of edges
(or total weight of the edges) of G. Note that 1/2 < A < 1. It is shown in [GW95] that
it A >ty ~ 0.84458, where tq = argmin ., h(t)/t and h(t) = arccos(1 —2t)/m, then
the performance ratio of the MAX CUT algorithm is at least a(A) = h(A)/A > a.
Karloff [Kar99] and Alon and Sudakov [AS00] show that this lower bound is again
tight for every tg < A < 1.

What happens on graphs with 1/2 < A < t,? Goemans and Williamson [GW95]
can show only that the performance ratio of their algorithm on such graphs is at
least o. Zwick [Zwi99] presents a modification of the algorithm of Goemans and
Williamson [GW95] that has a performance guarantee o’ (A) strictly larger than o ~
0.87856 for any 1/2 < A < to. Furthermore, o/(A) approaches 1 as A decreases
towards 1/2.

In this paper we show, among other things, that the local analysis of the al-
gorithms of Goemans and Williamson [GW95] and of Zwick [Zwi99] in the range
1/2 < A < 1y is again tight. Showing that the analysis of the MAX CUT algorithm
is tight in the range 1/2 < A < tg is a more challenging task than the corresponding
task for the range to < A < 1. To accomplish this task we construct, for any rational
—1 < 1 < 0 and any rational % <a< PT", a graph G = (V, E) for which the size
of the maximum cut is exactly a|E|, for which the optimal value of the relaxation
is also equal to a|E|, and for which there is an optimal solution vq,vs,...,v, of the
relaxation such that for every {i,j} € E we have either v; - v; = n or v; - v; = 1.
(Note that the requirement that the value of the relaxation be a|E| determines the
proportion of the edges for which the inner product should be v; - v; = 1.)

The graphs used by Alon and Sudakov [AS00] to show that the analysis of the
MAX CUT algorithm is tight in the range t9 < A < 1 are graphs arising from
Hamming association schemes over the binary alphabet. (Karloff [Kar99] uses the
related Kneser graphs.) The graphs we use here to show that the analysis is also
tight in the range % < A < ty are obtained by composing Hamming graphs and
expander graphs. More specifically, if H is an appropriate Hamming graph and B is
an appropriate bipartite expander with b vertices on each of its sides, then the graph
that we use is obtained by replacing each vertex of H by a clique on b vertices and

replacing each edge of H by a copy of B.

We believe that the technique developed in this paper could be used to construct
worst, case instances for other semidefinite programming based approximation algo-
rithms. To demonstrate it, we use our technique to show that local analysis of the
MAX NAE-{3}-SAT algorithm of Zwick [Zwi99] is also tight. This is an even more
demanding task, as will be explained later.
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An instance of MAX NAE-{3}-SAT in the variables x1,xa, ..., x, is a weighted
collection of triplets of the form (z1, 23, 23), where each z; is a literal, i.e., one of
the variables x1, xs,...,x, or a negation of one of the variables, and the weights are
nonnegative. The three literals appearing in a triplet must be distinct. A triplet
(21,22, 23) is satisfied by an assignment of 0-1 values to the variables x1,za,..., 2y,
if at least one of the literals in the triplet is assigned the value 0 and at least one is
assigned the value 1. MAX NAE-{3}-SAT is an interesting problem as it can be seen
as a generalization of both MAX CUT and of the problem of finding a maximum cut
in 3-uniform hypergraphs.

The rest of this paper is organized as follows. In the next section we quickly
review the MAX CUT approximation algorithm of Goemans and Williamson [GW95]
and its extension by Zwick [Zwi%9]. In section 3 we present the construction of the
graphs that show that the local analysis of the MAX CUT algorithms of [GW95]
and [Zwi99] are tight. In section 4 we review the MAX NAE-{3}-SAT approximation
algorithm of Zwick [Zwi99]. In section 5 we modify the construction of section 3 to
show that the local analysis of the MAX NAE-{3}-SAT approximation algorithm is
again tight. We end in section 6 with some concluding remarks and open problems.

It is worth noting that our results here merely show that the analyses of the al-
gorithms discussed are tight and do not exclude the possibility that these algorithms
(or some variants of them) may have a better performance either by showing that
with nonnegligible probability the rounding will output a solution that exceeds the
expectation significantly or by proving that one can obtain other solutions to the cor-
responding semidefinite programs, solutions that may behave better in the rounding
phase. Yet, the results here do show that some essentially novel ideas will be needed
in order to improve the performance guarantees of the algorithms discussed.

2. Approximation algorithms for the MAX CUT problem. Let G =
(V,E) be a graph, where V. = {1,...,n}. We let OPT(G) denote the size of the
maximum cut of G. The Goemans and Williamson approximation algorithm for
MAX CUT starts by solving the following semidefinite programming relaxation of
the problem:

1 —vlv;
max E -
llvi[>=1 2

{ij}er

where each v; ranges over all n-dimensional unit vectors. (All our vectors are consid-
ered to be column vectors, and hence v'u is simply the inner product of v and w.) Tt is
easy to see that the optimal value z* of this program is at least as large as OPT(G),
the size of the maximum cut of G.

The algorithm of Goemans and Williamson [GW95] then rounds an optimal so-
lution vq, ..., v, of the semidefinite program by choosing a random unit vector r and
defining S = {i | r*v; < 0}. This supplies a cut (S,V—39) of the graph G. Let W
denote the size of the random cut produced in this way and let E[W] be its expec-
tation. By linearity of expectation, the expected size is the sum, over all {i,j} € E,
of the probabilities that the vertices ¢ and j lie in opposite sides of the cut. This

last probability is precisely arccos(viv;)/m. Thus the expected value of the weight of
Ty
%(U”’J) However, the optimal value z* of the
l—vaj
2

the random cut is exactly >0, 1 cp

semidefinite program is equal to z* = ) (ij1€E . Therefore the ratio between



CONSTRUCTING WORST CASE INSTANCES 61
E[W] and the optimal value z* satisfies

EW] > (i, jyem arceos(viv;) /T . arccos(viv;) /7

> min
& Zpigyen(l —viv;)/2 {igreE (1 —vlv;)/2

Denote a@ = ming<p<r %ﬁ. An easy computation shows that the minimum «
is attained at 8 = 6y = 2.3311.., the nonzero root of cosf + #sinf = 1, and that
a € (0.87856,0.87857). Thus, E[W] > « - z*, and since the value of z* is at least as
large as the weight OPT of the maximum cut, we conclude that E[W] > a - OPT.
It follows that the Goemans—Williamson algorithm supplies an a-approximation for
MAX CUT. Moreover, by the above discussion, the expected size of the cut produced
by the algorithm is not better than « - OPT if OPT = z* and if vy,...,v, is an

optimal solution of the semidefinite program that satisfies %
{i,j} € E. '

If the value of the semidefinite program is a large fraction of the total number
of edges of GG, the above reasoning, together with a simple convexity argument, is
used in [GW95] to show that the performance of the algorithm is better. Let h(t) =
arccos(1—2t)/m and let tg be the value of ¢ for which h(t)/t attains its minimum in the

interval (0, 1]. Then t, is approximately 0.84458. Define a = z*/|E|. If a > tq, then,
as shown in [GW95], E[W] > @z* > @OPT. Note that A = OPT/|E| < a. As

h(a)/a is an increasing function of a, for A > ¢y, we have also that E[W] > @OPT.
Here, as before, the actual expected size of the cut produced by the algorithm is not
better than @OPT if OPT = z* and if vq,...,v, is an optimal solution of the
semidefinite programming problem that satisfies vfv; = 1 — 2a for every {i,j} € E.
Karloff [Kar99] and Alon and Sudakov [AS00] showed that the analysis of the
algorithm of Goemans and Williamson [GW95] is tight for every to < a < 1. More
precisely, for any rational t¢ < a < 1, there are infinitely many graphs for which
the size of the maximum cut OPT is equal to z* and also E[W] = (h(a)/a)z* =
(h(a)/a)OPT. In the next section we extend this result even further and show that
the analysis of the algorithm of Goemans and Williamson is tight for all 1/2 < a < 1.
To show that the analysis of Goemans and Williamson [GW95] is also tight in
the range 1/2 < a < ty, we construct, for every rational a in this range, an infinite
sequence of graphs for which the size OPT of the maximum cut and the optimal
value z* of the relaxation are both a|E| and for which the relaxation has an optimal
solution v1,v2,...,v, such that for every {i,j} € E we have either viv; = cosfy
or vfv; = 1. Indeed, the randomized rounding for such a solution satisfies E[W] =
#to")z* = %EO)OPT, as for any edge ij for which % # 0 we have viv; = cosf.
Zwick [Zwi99] describes a modification of the algorithm of Goemans and William-
son [GW95] that has a better performance guarantee in the range 1/2 < a < tq. His
algorithm works as follows. After solving the relaxation and obtaining a, which is
assumed to satisfy a < to, the algorithm finds the unique solutions ¢ = ¢(a) and

t = t(a) of the following two equations:

= «a for every

arccos(c(l — 2t)) — arccos(c) 2c - 1—-2t
t VIl 262" Vi-e 121212
The algorithm then constructs a sequence of unit vectors wy,ws,...,w, such that

t _ t . .
wiw; = c(viv;) for every ¢ # j. The vectors wq,ws,...,wy, and not the vectors
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V1,032, ..., Uy, are then rounded using a random hyperplane. It is shown in [Zwi99],
using local analysis, that the performance ratio achieved by this algorithm is at least

/ _ 1 _ L hC(a) (t(a))
o/(a) = ( )) ey (0) + @)

a tla t(a)

where h.(t) = arccos(c(1 — 2t))/n. It is also shown there that this analysis is tight if
the size of the maximum cut in the graph is a|E| and if for every {i,j} € F we have
either vfv; = 1 — 2t(a) or viv; = 1. It is not difficult to see that a < t(a) for every
1/2 < a < ty.

3. Worst case instances for the MAX CUT algorithms. In this section
we prove the following theorem.

THEOREM 3.1. Let —1 <n <0 and < a < 7 be rational numbers. Then,
for infinitely many values of n there e:m'sts a graph G (V,E), V=A{1,...,n} and
a sequence Ui, Us, - - -, U, of unit vectors such that either ufuj =n or ufuj =1 for all
{i,j} € E, and the size of mazimum cut in G is equal to

1 — ot 1 — ulu;
max E ——3 = E 7 —q|E]|.
[lvi]|2=1,v;€R™ 2 2

{i.j}eE {i.g}eE

By the discussion in the previous section, it follows that the analyses of the
algorithms of Goemans and Williamson [GW95] and of Zwick [Zwi99] are tight also
in the range 1/2 < a < to.

To prove Theorem 3.1 we first need to establish a connection between the smallest
eigenvalue of a graph and the semidefinite relaxation of the MAX CUT problem. This
is done in the following well-known lemma, whose proof we include here for the sake
of completeness.

LEMMA 3.2. Let G be a multigraph on the set V. = {1,2,...,n}, with adjacency
matriz A = (a;;), where a;j corresponds to the multiplicity of the edge between i and j.
Let Ay > --- > Xy, be the eigenvalues of A = (a;;). Then

— vty 1 1 1 1
Yyttt < SIEG)] = PV = SIEG) - jhan
1<J

for any set v1,...,v, of unit vectors in RF,k > 0. In addition let B = (bij) be the
n X k matriz whose Tows are the vectors vt, ... vl. Then equality holds if and only if
each column of B is an eigenvector of A with eigenvalue \,,.

Note that for every loopless graph G with edges, A\, < 0, as the sum of the
eigenvalues is the trace of A, which is 0.

Proof. Let y1,...,y; be the columns of B. By definition we have Zle |lyi

>4 0% = 22y llvill® = n. Therefore

S = N LS ety = f|E|~ZytAyz.

i<j 1<j

I* =

By the variational definition of the eigenvalues of A, for any vector z € R", 2zt Az >
Anllz]|? and equality holds if and only if Az = \,z. This implies that

k
— vty 1 1 1 1
Moyt < GIE = g Y Il = 1Bl A n
i=1

1<j
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Equality holds in the last expression if and only if each y; is an eigenvector of A with
eigenvalue \,,. ]

The main ingredient of our constructions are graphs arising from the Hamming
association scheme over the binary alphabet. Let V' = {v1,vs,...} be the set of all
vectors of length m over the alphabet {—1,41}. For any two vectors z,y € V denote
by d(x,y) their Hamming distance, that is, the number of coordinates in which they
differ. The Hamming graph H = H(m,b) is the graph whose vertex set is V' and in
which two vertices x,y € V are adjacent if and only if d(x,y) = b. Here we consider
only even values of b which are greater than m/2. We may and will assume, whenever
this is needed, that m is sufficiently large.

Consider any two adjacent vertices of H(m,b), v;, and v;. By the definition of
H, the inner product v}v; is m — 2b. Choose m and b such that b > m/2 is even and
mﬁzb = n. This is always possible since 7 is a rational number, —1 < 1 < 0. Let
w; = ﬁvi for all ¢; thus ||w;]|? = 1 and wiw; = n for any pair of adjacent vertices.

Note that by definition, H(m,b) is the Cayley graph of the multiplicative group
Zy = {=1,41}™ with respect to the set U of generators formed by all vectors with
exactly b coordinates equal to —1, where vectors in the group multiply coordinate-
wise. Therefore (see, e.g., [Lov93], Problem 11.8 and the hint to its solution) the
eigenvectors of the adjacency matrix of H(m,b) are the multiplicative characters
of Z3*, where x1(x) = [[;c; %s, and I ranges over all subsets of {1,...,m}. The
eigenvalue corresponding to x7 is >, xz(z). The eigenvalues of H are thus equal
to the so-called binary Krawtchouk polynomials (see [CHLLI7])

(3.1) (k) = zk:(—nj (’“) (TZ__;“), 0<k<m.

=0 J

The eigenvalue P;"(k) corresponds to the characters x; with [I| = k and thus has
multiplicity (). Since H(m,b) is a regular graph with degree d = ('), its largest
eigenvalue is equal to d and its corresponding eigenvector is (1,1,...,1). In addition it
was proved in [AS00] that if m is big enough, then the smallest eigenvalue of H(m, b)
is A = Pn(1) = ™=2b(""). By the above discussion this eigenvalue has multiplicity

m
(T) = m and eigenvectors yi,...,Yym with £1 coordinates, where for each vertex
v; = (Vj1,...,Ujm), ¥i(vj) = vj;. Therefore the columns of the matrix, whose rows

are the vectors w;, are the eigenvectors \/—%yl of A(H) corresponding to the eigenvalue
A

Let A = (a;;) be an s X s matrix and B = (bpq) be a t X t matrix; then the tensor
product of A and B is the st x st matrix

allB algB e alSB

ang aggB e CLQSB
A®B = . . . :

as1B asaB ... assB

We need the following well-known properties of eigenvalues and eigenvectors of tensor
products of matrices.

LEMMA 3.3. Let A be a square matriz of order s with eigenvalues o, ..., oy
and eigenvectors e1,...,es and let B be a square matriz of order t with eigenvalues
B1....,0: and eigenvectors fi,...,f:. Then the eigenvalues of the matric A @ B
are equal to o; 35,1 = 1,...,5,j = 1,...,t, and their corresponding eigenvectors are
€; ® fj'
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We also need the following result.

LeEMMA 3.4. For every two integers 0 < Y < X and every integer L > 0, there
is an integer g such that L divides the binomial coefficient (Z}}f)

Proof. If S, T are two positive integers and R is their sum, then for every prime
p the maximum power of p that divides (I;) = % is p", where h = Y",o, (| R/p"| —
|S/p'| — |T/p']). For each i, the ith term in the sum above is either 0 or 1, and
it is 1 if and only if there is a carry in the ith rightmost digit when S and T are
represented in base p and are being added to get R. Therefore in order to prove the
lemma it suffices to show that for every finite collection of primes P and for every
positive integer u the following holds. There is an integer g such that for Z =X -V,
and for every p € P, when gY and gZ are being added in base p there is a carry in
at least u places. We proceed with a proof of this fact.

Fix a prime p € P and consider the representations of Y and Z in base p. If
the rightmost nonzero digit in both of them appears at the same place, then there is
some g; > 0 such that the rightmost nonzero digit of g1Y is p — 1, and as the digit of
g1Z in the same place is nonzero as well, there will be a carry in this position while
the two numbers will be added. Otherwise assume, without loss of generality, that
the rightmost nonzero digit of Y is to the right of the rightmost nonzero digit of Z.
Choose g1 > 0 such that the rightmost nonzero digit of g1 7 is p — 1. If the digit of
g1Y in this position is nonzero, then when adding ¢;Y and ¢g; Z there will be a carry
here. Otherwise, by defining g7 = ¢1(1 + p®), where s is chosen so that the rightmost
nonzero digit of g1 Yp® is at the same place as the rightmost nonzero digit of g1 7, we
conclude that when adding ¢1Y and g;Z we have a carry in this place. We have thus
shown that in all cases there is some positive g; such that when adding ¢;Y and g1 Z
there is a carry in at least one position. To get a carry in at least u positions we now
take a sufficiently large integer m and define g, = g1 (1 + p™ + p?™ + - - - 4 ple—Dm),
If m is sufficiently large (as a function of Y, Z, g1), then the representation of g,Y
in base p consists of u pairwise disjoint blocks separated by zeros, where each block
contains the representation of g1Y. As the same description applies to gZ as well, we
conclude that indeed when adding g,Y and g,Z in base p there will be a carry in at
least u places.

It remains to combine all the different numbers g, and obtain the required g. For
each p € P, let p' be a power of p satisfying p’» > max{g,Y,g,Z}. Note that if
g = gp (mod p'r), then the right part of the representation of g} in base p is identical
to the representation of g,Y in base p, and the same holds for gZ. By the Chinese
remainder theorem there is an integer g satisfying g = g, (mod p'») for all p € P. It
follows that p* divides (gif) for all p € P, completing the proof. a

Having finished all necessary preparations, we are now ready to complete the
proof of Theorem 3.1.

Proof of Theorem 3.1. Let H = H(m,b) with m%% = 7 and adjacency matrix
A(H). By the above discussion this is a d = ('}') regular graph on 2" vertices, and the

smallest eigenvalue of A(H) is equal to A = m;fb (") = nd. Choose an appropriate m

such that 17327" (")) is an even, nonnegative integer. This is always possible, by
Lemma 3.4, since a and 7 are rational numbers and a < (1 —n)/2. Pick H; to be
any d; regular graph on n; = 173‘;7"dd1 + 1 vertices such that if g3 < ps < --- <
Uny—1 < fin, = di are all eigenvalues of A(Hy) and p = max{|p1|, |tn,-1]}, then
uw < 2‘;—;1(11. There are several known constructions of such expander graphs. In
particular, a random d; regular graph on n, vertices with high probability satisfies

that u = O(v/dy) (see, e.g., [Fri91] and [FKS89]). By taking d; and n; sufficiently
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large we obtain a graph with the desired properties. Denote by I the identity matrix
of order 2™ and by K,, a complete graph on n; vertices. It is easy to see that the
eigenvalues of the adjacency matrix A(K,,) are equal to n; — 1 and —1 (the latter
with multiplicity n; — 1) and the corresponding eigenvectors are the all one vector
1,, and any maximal set of independent vectors in R™* whose sums of coordinates
equal zero. This implies that the adjacency matrices of H; and K, have a common
basis of eigenvectors.

Finally, let G be a graph on n = 2™n; vertices with the following adjacency
matrix:

A(G) = A(H) @ A(Hy) + T ® A(K,,).

In other words, G is obtained by replacing each vertex of H by a copy of K,, and
replacing each edge of H by (the double cover of) a copy of Hy. By the definition,
A(G) is a symmetric matrix with all entries equal to either 1 or 0 and for every row of
A(G) the sum of its entries is equal to d’ = ddy +(ny —1). Therefore it is an adjacency
matrix of a d’ regular graph. The matrices A(H) and I and also the matrices A(H)
and K,, have a common basis of eigenvectors. Thus by Lemma 3.3 we obtain that
the same is true for A(G), A(H)® A(H1), and I ® A(K,,,). Next, we need to compute
the smallest eigenvalue of A(G). By Lemma 3.3 it is easy to see that the only two
possibilities for its value are Ady + (ny —1) or —ud—1. Since —=1 < <0 and d = ()
is large enough, an easy computation shows that

12— 1-2¢)(1 -
Mo+ (1 — 1) = nddy 4 -2 g, = L2200 =1 4
2a 2a
1-2
<L——th—l<—ﬂd—L
2a

where in the penultimate inequality we used the fact that lgfanddl > 1 for all suf-
ficiently large d;, and in the last inequality we used that u < %dl. Therefore we
conclude that the smallest eigenvalue of A(G) is Ady + (n; — 1). Furthermore, by
Lemma 3.3 and the properties of H(m,b) this eigenvalue has multiplicity m and its
corresponding eigenvectors are equal to z1 = y1 @ Ly, .o oy 2m = Um @ Ly,

Clearly z; = (2i1,--.,2in) is a vector with +1 coordinates. Thus the coordinates

of z; correspond to a cut in GG of size equal to
1— zipzis
> (G)— =

k<j
1 1—2a— 1 1—2a—
_ @m+a"m0n—4(mm+anwgn

1 1 1
[B(G)| = ;4 AG)z: = Jd'n— 1 (s + (1 — 1) 1]

N | =

4 2a 2a
11-19 1,

- —-— = q— = E
5 5 ddin a2dn alE(G)],

where here we used the fact that d = dd; +n; — 1 = %ddl' Thus the size of a
maximum cut in G is equal to the optimal value of the semidefinite program (see
Lemma 3.2). On the other hand, let B be the 2™ X m matrix whose rows are the
vectors w; and thus its columns are equal to ﬁy, Denote by uq,...,u, the rows

of the matrix B ® 1,,. By definition, ||u;||*> = 1 and the columns of this matrix are
the eigenvectors ﬁyi ®1,, = ﬁzl of A(G) corresponding to its smallest eigenvalue
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Ady + (n1 — 1). Therefore by Lemma 3.2 it follows that

1—vlv; 1 1
max 3 ai(G) =5 = IE(G)] = { (M + (m = D)n = | E(G)|
i<j

1 — ubu,
:Z(Lw’in J .

1<j

To finish the proof of the theorem note that by definition each wu; is equal to one
of the vectors wy. In addition, if 4 and j are adjacent vertices in G, then u;,u; are
equal either to the same vector wy, and then ufu; = 1, or are equal to wy, w; which
correspond to adjacent vertices in H, and in that case ufu; = 7. O

4. Approximation algorithms for the MAX NAE-{3}-SAT problem.
An instance of the MAX 2-XOR (or MAX NAE-{2}-SAT) problem in the variables
X1,T2,...,%, is composed of a (weighted) collection of pairs of the form (zj, z3),
where the z;’s are literals. A clause (21, z2) is satisfied by a 0-1 assignment to the
variables x1, xs, ..., 2, if and only if z; # 25 under this assignment. It is easy to see
that instances of MAX CUT are just instances of MAX 2-XOR with no negations.
The approximation algorithms of [GW95] and [Zwi99] are, in fact, approximation
algorithms for MAX 2-XOR, not just for MAX CUT. The performance guarantees
obtained by these algorithms on MAX 2-XOR instances are the same as those obtained
on MAX CUT instances.

An instance of MAX NAE-{3}-SAT is easily converted into an instance of MAX
2-XOR. Simply replace each triplet (21, 22, 23) by the three pairs (21, 22), (21, 23), and
(22,23), giving each one of them a weight of 1/2. It is easy to check that the total
weight of the triplets/pairs satisfied by this transformation is unchanged. Thus, the
algorithm of [GW95] is also an approximation algorithm for MAX NAE-{3}-SAT with
a performance ratio of at least o ~ 0.87856.

A better performance guarantee for the MAX NAE-{3}-SAT problem can be
obtained as follows. It is convenient to adopt the notation z,,; = Z; for 1 <¢ < n. If
we let w;;, > 0 be the weight attached to the triplet (z;,z;,zr) in a MAX NAE-{3}-
SAT instance, then we can write the following semidefinite programming relaxation
corresponding to the instance:

3—vlv -7'u?vk7'ut-vk
max Dicj<k Wigh————3 " —
such that viv, =1, vlvp, =—1 for 1 <i<mn,

vivj + vivg + v;-vk >—1 for1<i,jk<2n.

If we round an optimal solution v1,vs,..., v, of the above relaxation using a random
hyperplane, then we still get a performance guarantee of only a ~ 0.87856. However,
for satisfiable instances of MAX NAE-{3}-SAT a performance guarantee of at least
B1 = 5 arccos(—3) ~ 0.91226 is obtained (see [AKMRI6], [Zwi98]). The performance
ratio obtained is no better than 3; if there exist unit vectors vy, va, ..., v, such that
viv; = vluy, = vﬁvk = —% for every triplet (z;,;,zy) of the instance with nonzero
wijk. (Due to the constraint viv; + vivg + vﬁvk > —1, such a collection of vectors is
automatically an optimal solution of the relaxation.) We show in the next sections
that such solutions do exist.

Zwick [Zwi99] obtains a performance guarantee of at least 8 ~ 0.908718 for gen-
eral, not necessarily satisfiable, instances of the problem by constructing a sequence of
vectors wi, wa, . . ., wy, such that wiw; = c¢(viv;), for every i # j, where ¢ ~ 0.9789916,
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and then rounding wy, ws, ..., wy,, and not vy, vs, ..., v,, using a random hyperplane.
More specifically, the constants § ~ 0.908718, ¢ ~ 0.9789916, and 1 ~ —0.74335866
are the solutions of the three equations

) _ 2 arccos(cn) + arccos(c)
’ ™

2 (7]2 + ﬁ247r2 =p6(1—1n), % arccos (fg) = f.

It is further shown in [Zwi99] that the performance ratio achieved by this algorithm
on a given instance is no better than ( if the optimal value of the relaxation is
equal to the optimal value of the instance (no integrality gap) and if for every triplet
(4,5, 7x) that appears in the instance either vjv; = vivy, = vivg = — 1 or two of the
inner products vjvj, vivg, and vivg are i and the third is 1. Furthermore, a fraction of
about r ~ 0.278797 of the triplets should be of the second type; otherwise an improved
ratio may be obtained by varying ¢. (We omit the exact equation defining r.) We are

again able to show that such instances do exist, and hence the analysis is again tight.

5. Worst case instances for the MAX NAE-{3}-SAT algorithms. Let
H = (V, E) be a 3-uniform hypergraph. (Every e € E satisfies e C V and |e| = 3.) A
cut of H is again a partition of V' into two sets S and V' — 5. A cut (S,V —5) is said
to cut a hyperedge e € E if and only if 0 < |eN S| < 3. A maximum cut of H is a cut
that cuts the largest number of edges. It is easy to see that the problem of finding a
maximum cut of H corresponds to a MAX NAE-{3}-SAT instance with no negations.
We show that the analyses of the MAX NAE-{3}-SAT algorithms described in the
previous section are tight even on such instances.

A hypergraph H = (V, E) has a cut of size | E| if and only if it is 2-colorable. The
MAX NAE-{3}-SAT instance corresponding to it is then satisfiable. The following
theorem shows that the bound of ) = -2 arccos(—3) =~ 0.91226 on the performance
ratio achieved by the MAX NAE-{3}-SAT approximation algorithm described in the
previous section on satisfiable instances is tight.

THEOREM b5.1. For infinitely many values of n, there exists a 2-colorable 3-
uniform hypergraph H = (V, E), such that V = {1,2,...,n}, and a sequence of unit
vectors wy, wa, . . ., wy, such that wiw; = wjwy, = whwy, = —3 for every {i,j, k} € E.

Proof. 1t is easy to construct such an example for n = 4. Simply let E be
composed of all subsets of V' = {1,2, 3,4} of size 3. It is easy to check that S = {1,2}

is a cut that cuts all the edges. Let wy, ws, w3, and wy be four unit vectors such that

whw; = —% for every 1 < i < j < 4. This can be done, for example, by taking w; =
%(1, L1 wy = %(1,4,*1)2 ws = %(4,1,*1)2 and wy = %(4,4, 1)t

This example is a special case of the following more general construction which
supplies an infinite family of satisfiable instances of a MAX NAE-{3}-SAT problem
for which the analysis from [Zwi98] is tight. Let H = H(m,b) with b = 2m/3. The
vertex set {vy,vs,...} of H consists of all +1 vectors of length m, and two vectors
are adjacent if the number of coordinates in which they differ is equal to 2m/3. Let
w; = \/—%vi for all i; thus ||w;||? = 1 and wiw; = % = —1/3 for any pair of
adjacent vertices in H. Let H be the 3-uniform hypergraph whose edges are triples
of the vertices in H that form a cycle of length 3. By definition, it is easy to see
that three vectors which form a triangle in the graph H cannot have the same first
coordinate. By partitioning vertices into two parts according to their first coordinate,
we therefore obtain a 2-coloring of H, as required. ]

We next show that the analysis of the performance of the MAX NAE-{3}-SAT

algorithm of Zwick [Zwi99] on general, not necessarily satisfiable, instances is also
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tight. By the discussion in the previous section, this follows from the following theo-
rem. Given a 3-uniform hypergraph H, we let OPT(H) be the size of the maximum
cut of H, and we let z*(H) be the optimal value of the semidefinite programming
relaxation of the corresponding MAX NAE-{3}-SAT instance.

THEOREM 5.2. Let —1 < n < —1/2 be a rational number and let 0 < r < 1 and
€ > 0. Then, for infinitely many values of |U| there exists a 3-uniform hypergraph
H = (U,E), where U = {uy,uz,...} and E = E1 U E3, and unit vectors wy, , Wy,, - . -
such that for every {w;,u;,ux} € By, we have w}, wy; = w}, wy, = wzjwuk = —3,
for every {u;, uj, up} € Ea exactly two of the inner products w}, Wy, Wy, Wy, , Wy Wy,
are n and the third is 1, and such that

¢ t ¢
3 = Wy, Wy — Wy, Wy, — Wy, Wy,

4

OPT(H) = z*(H) = Y

{i,j,k}eE

In addition |Es| is bounded by r|E| < |Es| < (r + €)|E|.

Proof. The hypergraph H = (U, E) that we construct is the union of two hyper-
graphs H, = (U, Ey) and Hy = (U, E»), that is, E = E; U E;. We begin with the
description of H;.

Let m and n be (large) integers. (Their values are specified at the end of the
proof.) Let Hj be the graph H; = H(m,b) with b = 2m/3 (we assume that m is
divisible by 3) and let I be an identity matrix of order n. Counsider a graph G,
with adjacency matrix A(G1) = A(H;) ® I. Clearly G; is just a disjoint union of n
copies of Hy. The vertex set U = {uj,ug,...} of this graph consists of all pairs
{(v,t)|v € {=1,1},1 <t < n}, and two vertices (v, t) and (v, t') are adjacent if and

only if t = # and v and ¢’ differ in exactly 2m/3 coordinates. Let w, = —=uv for

vm
all uw = (v, t); thus [|wy|? =1 and w! w,, = = —1/3 for any pair of adjacent
vertices in G1. Let H; be a 3-uniform hypergraph, whose edges are the triples of the
vertices in G; which form a cycle of length 3. It is easy to see that the number of
edges in H; is equal to %an (277’;1/3) (2:;’/33). Let A be a subset of U containing all
vertices (v,t) with first coordinate of v; equal to one and let B = U — A. It follows
easily from the definition that the three vertices of a 3-cycle in Gy cannot all have the
same first coordinate. Thus any 3-cycle in G; will intersect both A and B. Therefore
we obtain a cut in the hypergraph H; whose size is equal to the total number of edges
of Hy. Finally, since wy, wy; = wg, wu, = wy, wy, = —1/3 for any edge in H; and the
value of the semidefinite relaxation z*(H;) is always bounded by |E(H;)| we conclude
that

m—2b

t t t
3 — Wy, Wy, — Wy, Wy, — Wy, Wy,

> ; B B ()| = OPT(H) = =" (Hy)

{ui,uj,up YEE(H1)
1 m 2m/3
= — 2m .
6" <2m/3) <m/3)

The construction of Hs is more involved than that of H;. We start by constructing
an auxiliary multigraph Gs. Let Hs be the graph Ho = H(m,b) with b = k?"m.
(n is given at the statement of the theorem and can be made arbitrarily close to
—0.74335866. . ..) Let K, be a complete graph on n vertices. The graph H; is d regular

with d = ((177771)1777, /2), and, by the discussion in section 3, the smallest eigenvalue of its

adjacency matrix A(Hz) is A = %d = nd. Let G5 be a multigraph with adjacency
matrix equal to A(G2) = (A(H2) + dI/2) ® A(K,), where I is an identity matrix of
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order 2. The vertex set of Gy is again U = {(v,t)|v € {—1,1}"",1 <t < n}, and two
vertices (v,t) and (v/,t") are connected by a unique edge if ¢ # ¢’ and v and v’ differ
in exactly 1;’7m coordinates or they are connected by d/2 parallel edges if v = v” and
t # t'. By definition G5 is a (3d(n — 1)/2) regular multigraph and by Lemma 3.3 its
smallest eigenvalue is equal to (A+d/2)(n—1) = (n+1/2)d(n—1) < —3d/2 < 0, where
here we used the fact that n is sufficiently large. Let w, = ﬁv for all vertices (v, t)

be as before; thus |lw,||*> = 1 and w w,, = =22 =y or 1 for any pair of adjacent

vertices of Ga. In addition w}, w,, = 1 if and only if u; = (v,t) and u; = (v,s) with
t # s. Let B = (b;;) be the 2™n x m matrix whose rows are equal to the vectors
wy,,u € U. Note that the elements in B are :l:\/%. As in the proof of Theorem 3.1,

we can see that the columns of B are eigenvectors of A(G3) that correspond to the
smallest eigenvalue of A(G3). Let OPT(G2) be the size of the MAX CUT in Gs
and let z*(G3) be the value of the semidefinite programming relaxation. Then by
Lemma 3.2 we obtain that

t
Wy Wy

OPT(GQ) = Z*(Gg) = Zaij(Gz) 1= 9

= LIB(G) ~ {(n+1/2)dn = DIV(Ga)]

The coordinates of the first column of B produce the cut (A, B) (same as for H;)
and its size is equal to OPT(G3), since the first column of B is an eigenvector of the
smallest eigenvalue of A(G2).

Now we are ready to construct Ha. Let Ha be the 3-uniform hypergraph on the
vertex set U = V(Gs2), whose edges are the following triples of the vertices of Ga;
{u;,uj,u,} belongs to E(Hs) if and only if u; = (v,t), u; = (v,t') and u, = (v",t")
such that t # ¢/ # t” and v and v” differ in exactly (1 —n)m/2 coordinates. Note that
by definition, the number of edges in Hs is equal to 3n(n — 1)(n — 2)2™ ((17$m/2)
and they form cycles of length 3 in G5. In addition every edge of G5 connecting
u; = (v,t) and u, = (v”,t”) (as above) is contained in exactly 2(n — 2) edges of Hs
and every pair of vertices u; = (v,t) and u; = (v,t’) (as above) is contained in exactly
d(n — 2) edges of Hz. Since in the multigraph G5 between the vertices u; = (v,t) and
uj = (v,t") we have d/2 parallel edges, we can distribute them equally between all
3-cycles which correspond to the edges of Hs containing this pair of vertices. By doing
this we obtain that every edge in the multigraph G5 is contained in exactly 2(n — 2)
edges of Hs. In this case the size of the MAX CUT in Hj is closely related to the
size of the MAX CUT of G5. Note that for any partition of the vertices (X,U — X),
the number of edges of Hs which crosses this cut is exactly n — 2 times the number
of edges of G5 with the same property. Indeed, any edge from G2 which connects
X with U — X is contained in 2(n — 2) triples from Ho. All of them also cross this
cut, but every such triple we counted twice, since it contributes two edges of G2 to
the cut. Therefore we can conclude that the value of MAX CUT of H, is equal to
OPT(Hz) = (n — 2)OPT(G2) and this value is obtained on the cut (A, B), the same
one as for the graph Gs. This, together with the above discussion implies that

3_y1t1'yu- —yﬁ.yu _yZ-yu
OPT(HQ) S Z*(HQ) S max Z i J 41 k j k
{ui,ujurYeE(H2)
1 L= yu, 1=y yue 1= Yy Yy
= 5 max Z 2 J + 2 + 2,7

{ui,uj,up}EE(Hz)



70 NOGA ALON, BENNY SUDAKOV, AND URI ZWICK

1=yl Y, Wy, Wy
o Dmex 3 SR o) P ey
{u;,u; }EE(G2) i<j

=(n—-2)2"(Ga) = (n—2)OPT(Gy) = OPT(Hs) .
Thus,

t t t
3 = Wy, Wy — Wy, Wy, — Wy, Wy,

4

OPT(Hs) = z*(Ha) = >
{wiyuj,up yEE(Hz2)

Also, we know that for every edge {u;, u;, ur } of Ha, two of the inner products wf” Wy,
Wy, Wy, , and wy, wy, are 1) and the third is 1.

Finally let ’H be the 3-uniform hypergraph with the same vertex set U and with
edge set F(H1) U E(Hz). We clearly have OPT(H) < 2*(H) < 2*(H1) + 2*(H2) =
OPT(H1)+OPT(Hsz). On the other hand, (4, B) isa MAX CUT of both Hy and Ha;
thus it is also a cut of H of size OPT'(H;1) + OPT(Hz). As the same vectors w,, were
used for the two hypergraphs, we get that

t t t
Z 3 — Wy, Way — Wy, Wy, — Wy, Wy,

1 = OPT(H1) + OPT(H2)

{ui,uj,ur YEE(H)
— OPT(H) = =*(H).

In addition, for every edge {u;,uj,ur} € E(H), either two of the inner products

W, Wy, , W wy,, and U)ijuk are 7 and the third is 1 (if {w;, uj,ux} € E(H2)) or

Wy, Wy = W, Wy, = Wi, Wy, = —3 (if {ui,uj,ux} € E(Hy)). Finally, recall that
m( m 2m/3 m m
|E(H1)| = &n2™ (,,5) (Crfs)) and that [E(Hs)| = 3n(n — 1)(n = 2)2™(,_1 o),

where m and n are (large) parameters that we are free to choose. By choosing appro-
priate values of m and n, and using the fact that

(ams) G ) > 2> (= )

for all sufficiently large m, it follows that we can control the proportion of the edges
of the second type, and make it arbitrarily close to r, as required. a

6. Concluding remarks. We have shown that lower bounds on the performance
guarantees of semidefinite programming based approximation algorithms for the MAX
CUT, MAX 2-XOR, and MAX NAE-{3}-SAT problems obtained using local ratio
arguments are indeed tight.

Furthermore, our constructions show that the analyses of these algorithms are
tight even if arbitrary collections of valid constraints are added to the semidefinite
programming relaxations of these problems. Let a;;,1 < i < j < n, and b be real

numbers. A constraint
t
Z aij(vivj) > b
i<j

is said to be walid if it is satisfied whenever each v; is an integer in {—1,1}. Feige
and Goemans [FG95] and Goemans and Williamson [GW95] proposed adding valid
constraints to the semidefinite relaxations in the hope of narrowing the gap between
the optimal value of the semidefinite program and the weight of the optimal solution.
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As all the coordinates of the vectors uy, us, . . . of section 3 and of the vectors wy, ws, . . .
of section 5 are equal to +1/4/m, it is not difficult to see that they satisfy any valid
constraint. Thus the proofs of Theorems 3.1, 5.1, and 5.2 show that the addition
of any collection of valid constraints does not improve the performance ratio of the
abovementioned approximation algorithms for the MAX CUT, MAX 2-XOR, and
MAX NAE-{3}-SAT problems.

It is shown in [KZ97] that the 7/8 lower bound on the performance ratio of the
MAX 3-SAT approximation algorithm, obtained again using a local ratio argument,
is also tight. Does local analysis always produce tight results? We see no reason why
this should always be the case. It would be interesting to find natural approximation
algorithms for interesting constraint satisfaction problems for which local analysis is
not tight. It would also be interesting to know whether the local analyses of the
approximation algorithms of Feige and Goemans [FG95] (see also [Zwi00]) for the
MAX 2-SAT and MAX DI-CUT problems are tight. This seems, however, to require
some additional techniques.
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