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Abstract

We are motivated by the analogue of Turán’s theorem in the hypercube Qn: how
many edges can a Qd-free subgraph of Qn have? We study this question through its
Ramsey-type variant and obtain asymptotic results. We show that for every odd d it
is possible to color the edges of Qn with (d+1)2

4 colors, such that each subcube Qd is
polychromatic, that is, contains an edge of each color. The number of colors is tight up
to a constant factor, as it turns out that a similar coloring with

(
d+1
2

)
+ 1 colors is not

possible. The corresponding question for vertices is also considered. It is not possible to
color the vertices of Qn with d + 2 colors, such that any Qd is polychromatic, but there
is a simple d + 1 coloring with this property. A relationship to anti-Ramsey colorings is
also discussed.

We discover much less about the Turán-type question which motivated our investi-
gations. Numerous problems and conjectures are raised.

1 Introduction

For graphs G and H, let ex(G, H) denote the maximum number of edges in a subgraph
of G which does not contain a copy of H. The quantity ex(G, H) was first investigated
in case G is a clique. Turán’s Theorem resolves the problem precisely, when H is a clique
as well.

In this paper, we study these Turán-type problems, when the base graph G is the n-
dimensional hypercube Qn. This setting was initiated by Erdős [8] who asked how many
edges can a C4-free subgraph of the hypercube contain. He conjectured the answer is
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(1
2 + o(1))e(Qn) and offered $100 for a solution. The current best upper bound, due to

Chung [6], stands at ≈ .623e(Qn). The best known lower bound is 1
2 (n +

√
n) 2n−1 (for

n = 4r) due to Brass, Harborth and Nienborg [5].
Erdős [8] also raised the extremal question for even cycles. Chung [6] obtained that

ex(Qn,C4k)
e(Qn)) → 0 for every k ≥ 2, i.e. cycles with length divisible by 4, starting from 8 are

harder to avoid than the four-cycle. She also showed that

1
4
e(Qn) ≤ ex(Qn, C6) ≤ (

√
2− 1 + o(1))e(Qn).

Later Conder [7] improved the lower bound to 1
3e(Qn) by defining a 3-coloring of the

edges of the n-cube such that every color class is C6-free. On the other hand it is shown
in [1] that for any fixed k, in any k-coloring of the edges of a sufficiently large cube there
are monochromatic cycles of every even length greater than 6. Note, however, that the
Turán problem for cycles of length 4k + 2 is still wide open. For k ≥ 2, it is not even
known whether ex(Qn, C4k+2) = o(e(Qn)).

In the present paper we consider a generalization of the C4-free subgraph problem
in a different direction, which we feel is the true analogue of Turán’s Theorem in the
hypercube. For arbitrary d we give bounds on ex(Qn, Qd). For convenience we will
talk about the complementary problem: i.e., let f(n, d) denote the minimum number
of edges one must delete from the n-cube to make it d-cube-free. Obviously f(n, d) =
e(Qn) − ex(Qn, Qd). By a simple averaging argument one can see that for any fixed d
the function f(n, d)/e(Qn) is non-decreasing in n, so a limit cd exists. (In fact this limit
exists for an arbitrary forbidden subgraph H, instead of Qd). Erdős’ conjecture then
could be stated as c2 = 1

2 .
Trivially f(d, d) = 1, so by the above cd ≥ 1

d2d−1 . On the other hand, if one deletes
edges of the hypercube on every dth level, one obtains a Qd-free subgraph. For this,
observe that every d-dimensional subcube must span d + 1 levels. Thus cd ≤ 1

d .
In the present paper we improve on these trivial bounds.

Theorem 1.

Ω
(

log d

d2d

)
= cd ≤

{
4

(d+1)2
if d is odd

4
d(d+2) if d is even.

We conjecture that our construction is essentially optimal for d = 3.

Conjecture 2.

c3 =
1
4
.

The best known lower bound on c3 is 1 −
(

5
8

)1/4 ≈ 0.11 and follows from some
property of the 4-dimensional cube. (A Q3-free subgraph of Q4 cannot contain more
than 10 vertices of degree 4; see the paper of Graham, Harary, Livingston and Stout
[10]).

For arbitrary d we are less confident; it would certainly be very interesting to deter-
mine how fast cd tends to 0, when d tends to infinity.
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Problem 3. Determine the order of magnitude of cd.

We tend to think that cd is larger than inverse exponential, but feel that we are
very far from understanding the truth. In fact all our arguments are set in the related
Ramsey-type framework, rather than the original Turán-type. A coloring of the edges
of Qn is called d-polychromatic if every subcube of dimension d is polychromatic (i.e.
it has all the colors represented on its edges). Let pc(n, d) be the largest integer p
such that there exists a d-polychromatic coloring of the edges of Qn in p colors. Clearly,
pc(n, d) ≤ d2d−1 and f(n, d) ≤ e(Qn)/pc(n, d). Since pc(n, d) is a non-increasing function
in n, it stabilizes for large n. Let pd be this limit, then we have cd ≤ 1/pd. We can
determine pd up to a factor of 2.

Theorem 4. (
d + 1

2

)
≥ pd ≥

{
(d+1)2

4 if d is odd
d(d+2)

4 if d is even.

The lower bound implies the upper bound in Theorem 1. It would be interesting to
resolve the following problem.

Problem 5. Determine the asymptotic behaviour of pd.

The lower bound in Theorem 1 is a consequence of some known results on the analo-
gous problem for vertices of the cube. Let g(n, d) be the minimum number of vertices one
must delete from the n-cube to make it d-cube-free. Clearly g(n, d) ≤ f(n, d). Again,
simple averaging shows that for any fixed d the function g(n, d)/2n is non-decreasing in
n, so a limit c0

d exists.
The problem of determining g(n, d) was investigated early and widely by several

research communities mostly in a dual formulation under the different names of t-
independent sets [12], qualitatively t-independent 2-partitions [14] and (n, t)-universal
vector sets [16], where t = n − d. These investigations mostly deal with the case when
d is large, i.e. very close to n. The lone result we are aware of about g(n, d) for d small
compared to n is due to E. A. Kostochka [13], who prove that c0

2 = 1/3, (the same result
has been obtained later and independently by Johnson and Entringer [11]). In both
papers it is also shown that the unique smallest set breaking all copies of Q2 is in the
form of every third level of the cube. In general we know very little.

Proposition 6.
1

d + 1
≥ c0

d ≥
log d

2d+2
.

Again, the Ramsey analogue of the problem is more clear. In fact we have here a
precise result. A coloring of the vertices of Qn is called d-polychromatic if every subcube
of dimension d has all the colors represented on its vertices. Let pc0(n, d) be the largest
integer p such that there exists a d-polychromatic coloring of the vertices of Qn in p
colors. Clearly, pc0(n, d) ≤ 2d and g(n, d) ≤ 2n/pc0(n, d). Since pc0(n, d) is a non-
increasing function of n, it stabilizes for large n. Let p0

d be this limit, then we have
c0
d ≤ 1/p0

d. We can determine p0
d for every d.

Theorem 7.
p0

d = d + 1.
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1.1 Relation to rainbow colorings

In this subsection we point out a relation between the established notion of anti-Ramsey
coloring and the one of polychromatic coloring introduced in this paper. We also note
how Theorem 4 could be applied to improve a result of [2].

An edge-coloring r : E(H) → {1, 2, . . .} of a graph H is called rainbow if no two
edges of H receive the same color. A coloring c of the edges of graph G is called H-anti-
Ramsey if the restriction of c to any subgraph H0 ⊆ G, H0

∼= H, is not rainbow. Let
ar(G, H) be the largest number of colors used in an H-anti-Ramsey coloring of G. The
function ar(G, H) was introduced by Erdős, Simonovits and T. Sós [9]. It is well-known
that ar(G, H) ≤ ex(G, H) since taking one arbitrary edge from each color class of an
H-anti-Ramsey coloring one must obtain an H-free subgraph of G.

For any graph G and H, we call a p-coloring c : E(G) → {1, . . . p} of the edges of G
H-polychromatic if every subgraph H0 ⊆ G, H0

∼= H, has all the p colors represented on
its edges. Let pc(G, H) be the largest number p such that there is an H-polychromatic
coloring of the edges of G. The following proposition establishes a relationship between
H-anti-Ramsey and H-polychromatic colorings.

Proposition 8.

ar(G, H) ≥
(

1− 2
pc(G, H)

)
e(G).

Proof. Given an H-polychromatic coloring c of G with p = pc(G, H)-colors, we
define an H-anti-Ramsey coloring r of G with at least (1 − 2/p)e(G) colors. Let F be
the set of edges formed by the union of the two smallest color classes of c. The coloring
r will be chosen constant on F , say all edges in F receive color 1. All other edges of
G will receive distinct colors. Then we used at least

(
1− 2

p

)
e(G) + 1 colors. Also, the

coloring r defined this way is H-anti-Ramsey since each copy of H in G contains at least
two edges of F , and thus at least two edges receive the color 1 in every copy of H. �

In a recent paper [2], Axenovich, Harborth, Kemnitz, Möller, and Schiermeyer inves-
tigated Qd-anti-Ramsey colorings of Qn. Lower and upper bounds for ar(Qn, Qd) are
found. In particular for fixed d, the leading terms of their bounds amount to(

1− 4
d2d

)
e(Qn) ≥ ar(Qn, Qd) ≥

(
1− 1

d

)
e(Qn).

One can improve the upper bound applying Theorem 1, and the lower bound using the
polychromatic coloring of Theorem 4 .

Corollary 9.(
1− Ω

(
log d

d2d

))
e(Qn) ≥ ar(Qn, Qd) ≥

(
1− 8

d2
−O

(
1
d3

))
e(Qn).

Notation. We consider the cube as a set of n-dimensional 0− 1-vectors, where the
coordinates are labeled by the first n positive integers, [n] = {1, . . . , n}. A d-dimensional
subcube of the n-dimensional cube is denoted by a vector from {0, 1, ?}n which contains d
?-entries; the stars represent the non-constant coordinates of the subcube. For a subcube
D of the n-dimensional cube we denote by ONE(D), ZERO(D), and STAR(D) the set
of labels of those coordinates which are 1, 0, and ?, respectively.
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2 Qd-free subgraphs of Qn

In this section we give a proof of the lower bound in Theorem 4.

Proof. First assume that d is odd. We define a (d+1)2

4 -coloring of the edges of Qn, which
is d-polychromatic.

We color the edges of Qn with elements of Z d+1
2
× Z d+1

2
in the following way. The

edge e with a star at coordinate a is colored with the vector whose first coordinate is
|{x ∈ ONE(e) : x < a}| (mod d+1

2 ) and whose second coordinate is |{x ∈ ONE(e) : x >

a}| (mod d+1
2 ).

Now consider a d-dimensional subcube C of Qn with STAR(C) = {a1, . . . , ad}, where
a1 < a2 < · · · < ad. Let s be the vertex of C with the least number of ones. So for each
vertex x of C we have that ONE(s) ⊆ ONE(x) ⊆ ONE(s) ∪ {a1, . . . , ad}.

We will show that all (d+1)2

4 colors appear on edges of C whose star is at position
a d+1

2
. Let (u, v) be an arbitrary element of Z d+1

2
× Z d+1

2
.

Let l := |{x ∈ ONE(s) : x < a d+1
2
}| (mod d+1

2 ) and

r := |{x ∈ ONE(s) : x > a d+1
2
}| (mod d+1

2 ). Choose any k ≡ u− l (mod d+1
2 ) elements

K from {a1, . . . , a d+1
2

−1} and any p ≡ v−r (mod d+1
2 ) elements L from {a d+1

2
+1, . . . , ad}.

Define s′ by ONE(s′) = ONE(s)∪K ∪L. Then the edge incident to s′ and having star
at position a d+1

2
has color (u, v).

For even d a similar construction works; the only difference is that we take the number
of ones left of the label of the edge modulo d

2 and the number of ones to the right modulo
d+2
2 . Then one can prove that among the edges with label d

2 all colors appear.

3 Upper bound in the Ramsey problems.

First we prove the upper bound in Theorem 4.
Proof of Theorem 4 Suppose we have a d-polychromatic p-edge-coloring c of Qn

where n is huge. We will use Ramsey’s theorem for d-uniform hypergraphs with pd2d−1

colors. We define a pd2d−1
-coloring of the d-subsets of [n]. Fix an arbitrary ordering of

the edges of Qd. For an arbitrary subset S of the coordinates, define cube(S) to be the
subcube whose ? coordinates are at the positions of S and all its other coordinates are
0, i.e. STAR(cube(S)) = S and ZERO(cube(S)) = [n] \ S. Let S be a d-subset of [n]
and define the color of S to be the vector whose coordinates are the c-values of the edges
of the d-dimensional subcube cube(S) (according to the fixed ordering of the edges of
Qd). By Ramsey’s theorem, if n is large enough, there is a set T ⊆ [n] of d2 + d − 1
coordinates such that the color-vector is the same for any d-subset of T . Let us now fix
a set S of d particular coordinates from T : those ones which are the (id)th elements of
T for some i = 1, . . . , d. Hence any two elements of S have at least d− 1 elements of T
in between.

Claim 10. The c-value of an edge e of cube(S) depends only on the number of 1s to the
left of the ? of e and the number of 1s to the right of this ?.
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Proof. Let e1 and e2 be two edges of cube(S) such that they have the same number
of 1s to the left of their respective star and the same number of 1s to the right as well.
We can find d coordinates S′ from T such that STAR(e2)∪ONE(e2) ⊆ S′ (i.e., e2 is an
edge of cube(S′)), and the vector e2 restricted to S′ is equal to the vector e1 restricted to
S. Indeed, there are enough unused 0-coordinates of e2 in T between any two elements
of S.
Now, since every d-subset of T has the same color-vector, the corresponding edges of the
cubes cube(S) and cube(S′) have the same c-value. In particular the colors of e1 and e2

are equal. The claim is proved. �
To finish the proof of the upper bound in Theorem 4 we just note that there are

exactly 1+ . . .+d =
(
d+1
2

)
many ways to separate at most d−1 1s by a ?. By the Claim

a d-polychromatic edge-coloring is not possible with more colors. �
With a very similar argument one can prove the matching upper bound in the anal-

ogous question for vertices.
Proof of Theorem 7 Assume we have a d-polychromatic coloring of the vertices

of Qn. Let us define a d2d
-coloring of the d-tuples of [n]. For a d-subset S let the color

be determined by the vector of the 2d colors of the vertices of the subcube cube(S) with
STAR(cube(S)) = S and ZERO(cube(S)) = [n]\S (according to some fixed ordering of
the vertex set of Qd). By Ramsey’s theorem there is a set T of d2+d−1 coordinates such
that the color-vector is the same for any d-subset of T . Let us again fix d coordinates S
in T such that any two elements of S have at least d− 1 elements of T in between (in a
way similar to the one in the edge-coloring case).

Claim 11. The color of a vertex in cube(S) depends only on its number of 1s.

Proof. Let v1 and v2 be two vectors from cube(S) such that |ONE(v1)| = |ONE(v2)|.
We can find d coordinates S′ from T such that ONE(v2) ⊆ S′ and the vector v2 re-
stricted to S′ is equal to the vector v1 restricted to S. Indeed, there are enough unused
0-coordinates in T between any two elements of S to do this. Now, since T is monochro-
matic according to our color-vectors, the color of v1 and v2 is the same as well. The
claim is proved. �

To finish the proof of the upper bound in Theorem 7 we just note that there are
exactly d + 1 possible values for the number of 1s on d coordinates. By the Claim a
d-polychromatic coloring is not possible with more colors.

For the lower bound in Theorem 7 one can color each vertex of the cube by the
number of its non-zero coordinates modulo d + 1. This gives a d-polychromatic vertex
coloring in d + 1 colors. �

4 A lower bound on cd

The lower bound in Proposition 6 can be deduced from earlier results on the d-independent
set problem and is essentially stated (implicitly) in [10]. For completeness we sketch the
proof.

Let G be a set of g vertices which intersects all d-cubes of the n-cube. This happens if
and only if, interpreting these vertices as subsets of an n-element base set X, G shatters
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all (n− d)-element subsets of X. (A family F of subsets shatters a given subset K, if all
the 2|K| subsets of K can be represented as K ∩F for some F ∈ F .) Now let MG be the
g × n 0 − 1-matrix whose rows correspond to the elements of G. Then the columns of
MG can be interpreted as a family L of n subsets of a g-element base set Y , such that
all the 2n−d parts of the Venn diagram of any n − d members of L are nonempty. (A
family L satisfying this property is usually called (n− d)-independent.)

Thus determining g(d+ t, d) is the same problem as determining the largest size of a
t-independent family. This was first done by Schönheim [15] and Brace and Daykin [4] for
t = 2 and later reproved and generalized by many others, e.g. Kleitman and Spencer [12].

It is known that g(d + 2, d) ≥ log d and thus the lower bound on c0
d follows by the

monotonicity of g(n, d)/2n. The lower bound in Theorem 1 also follows since f(d+2, d) ≥
g(d + 2, d) and f(n, d)/e(Qn) is non-decreasing.

5 Remarks and More Open Problems

Remark. The following Claim shows that if cd is indeed larger than inverse expo-
nential, then one has to search for the evidence in very large, i.e. doubly exponential,
dimensions.

For simplicity we write here the proof for c0
d (the vertex version); the argument for

cd follows along similar lines.
Claim. For any p ≤ 2d

2d , there is a d-polychromatic p-coloring of the n-cube, with

n = 1
2 exp

{
2d

2dp

}
. In particular, for any ε > 0 and n ≤ 1

2 exp
{
2(1−ε)d

}
,

g(n, d) ≤ 2d

2εd
· 2n.

Proof. We randomly color the vertices of Qn with p colors. For each vertex v select
a color uniformly at random from {1, . . . , p}, choices being independent from the choices
on all other vertices. For a d-cube D, let AD be the event that there is a color which
does not appear on the vertices of D. The probability of AD is at most p (1− 1/p)2

d

.
Each d-cube intersects less than 2d

(
n
d

)
other d-cubes. Obviously AD is independent from

the set of all events AD′ where D′ is disjoint from D.
For p ≤ 2d

2d and n = 1
2 exp

{
2d

2dp

}
,

e · p
(

1− 1
p

)2d

2d

(
n

d

)
≤ e

1+log p− 2d

p
+d log 2n = od(1).

Hence the Local Lemma implies that with nonzero probability all p colors are represented
on all d-cubes.

For the second part of the Claim, choose p = 2εd/2d and leave out the vertices of the
sparsest color class in a d-polychromatic p-coloring of the n-cube. �

Open Problems. Since f(n, 2) is known to be strictly larger than one third of the
number of edges in Qn for large n [6], it is clear that p2 = 2. Bialostocki [3] proved that in
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any 2-polychromatic edge-two-coloring of Qn the color classes are asymptotically equal.
The next natural question is the determination of p3, which is either 4, 5 or 6. Once p3

is known, it would be interesting to generalize Bialostocki’s theorem and decide whether
in any 3-polychromatic p3-edge-coloring of Qn, each color class contains approximately
1
p3

e(Qn) edges.
Everything above could be generalized, quite straightforwardly, but would not answer

the following problems:
Turán-type: Let f (l)(n, d) be the smallest integer f such that there is a family of f

l-faces of Qn, such that every d-face contains at least one member of this family. Again,
f (l)(n, d)/

(
n
l

)
2n−l is non-decreasing, so there is a limit c

(l)
d . Determine it!

Ramsey-type: A coloring of the l-faces of Qn is d-polychromatic if for every d-face S
and color s there is an l-face of S with color s. Let pc(l)(n, d) be the largest number of
colors with which there is a d-polychromatic coloring of the l-faces of Qn. Again, the
limit p

(l)
d of pc(l)(n, d) exists. Determine it!

Acknowledgment. We would like to thank an anonymous referee for pointing out
reference [2] to us.
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hypercube, Journal of Graph Theory, to appear.

[2] M. Axenovich, H. Harborth, A. Kemnitz, M. Möller, I. Schiermeyer, Rainbows in
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