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Abstract

A proper coloring of the edges of a graph G is called acyclic if there is no 2-colored cycle in G.
The acyclic edge chromatic number of G, denoted by a′(G), is the least number of colors in an
acyclic edge coloring of G. For certain graphs G, a′(G) ≥ ∆(G) + 2 where ∆(G) is the maximum
degree in G. It is known that a′(G) ≤ 16∆(G) for any graph G (see [2],[10]). We prove that
there exists a constant c such that a′(G) ≤ ∆(G) + 2 for any graph G whose girth is at least
c∆(G) log ∆(G), and conjecture that this upper bound for a′(G) holds for all graphs G. We also
show that a′(G) ≤ ∆ + 2 for almost all ∆-regular graphs.

1 Introduction

All graphs considered here are finite and simple. A coloring of the vertices of a graph is proper if no
pair of adjacent vertices are colored with the same color. Similarly, an edge-coloring of a graph is
proper if no pair of incident edges are colored with the same color. A proper coloring of the vertices
or edges of a graph G is called acyclic if there is no 2-colored cycle in G. In other words, if the union
of any two color classes induces a subgraph of G which is a forest. The acyclic chromatic number of
G introduced in [7] (see also [8, problem 4.11]), denoted by a(G), is the least number of colors in an
acyclic vertex coloring of G. The acyclic edge chromatic number of G, denoted by a′(G), is the least
number of colors in an acyclic edge coloring of G.

1.1 Lower and Upper Bounds

For a graph G, let ∆ = ∆(G) denote the maximum degree of a vertex in G. Any proper edge coloring
of G obviously requires at least ∆ colors, and according to Vizing [12] there exists a proper edge
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coloring with ∆ + 1 colors. It is easy to see that any acyclic edge coloring of a ∆-regular graph uses
at least ∆+1 colors. There are cases where more than ∆+1 colors are needed for coloring the edges
acyclically:

a′(K2n \ F ) ≥ 2n+ 1 = ∆(K2n \ F ) + 2, (1)

where K2n is the complete graph on 2n vertices and F ⊂ E(K2n) such that |F | ≤ n − 2. This is
because at most one color class can contain n edges (a perfect matching), and all other color classes
can contain at most n− 1 edges each.

Alon et al. [2] proved that a′(G) ≤ 64∆, and remarked that the constant 64 can be reduced.
Molloy and Reed [10] showed that a′(G) ≤ 16∆ using the same proof. The constant 16 can, in fact,
be further improved. We conjecture that the lower bound in (1) is an upper bound for all graphs,
that is:

Conjecture 1 a′(G) ≤ ∆(G) + 2 for all graphs G.

Conjecture 1 is interesting for graphs G with ∆(G) ≥ 3. Burnstein [6] showed that a(G) ≤ 5 if
∆(G) = 4. Since any acyclic vertex coloring of the line graph L(G) is an acyclic edge coloring of
G and vice-versa, this implies that a′(G) = a(L(G)) ≤ 5 if ∆(G) = 3. Hence conjecture 1 is true
for ∆ = 3. We have found another proof for this case, which also yields a polynomial algorithm for
acyclically coloring the edges of a graph of maximum degree 3 using 5 colors.

The only graphs G for which we know that a′(G) > ∆(G)+1 are the subgraphs of K2n that have
at least 2n2− 2n+ 2 edges (see (1)). Therefore it might even be true that if G is a ∆-regular graph1

then

a′(G) =

{
∆ + 2 for G = K2n

∆ + 1 otherwise.

1.2 Complete Graphs

A conjecture closely related to the problem of determining a′(G) for complete graphs G = Kn is the
perfect 1-factorization conjecture (see [9],[13],[14]):

Conjecture 2 (perfect 1-factorization [9]) For any n ≥ 2, K2n can be decomposed into 2n − 1
perfect matchings such that the union of any two matchings forms a Hamiltonian cycle of K2n.

Apart from proving that the conjecture holds for certain values of n, for instance if n is prime [9]
(see [13] for a summary of the known cases), this conjecture of Kotzig [9] and others is still open.
If such a decomposition of K2n+2 (called a perfect one-factorization) exists, then by coloring every
perfect matching using a different color and removing one vertex we obtain an acyclic-edge-coloring
of K2n+1 with 2n + 1 = ∆(K2n+1) + 1 colors. Such a coloring is best possible for K2n+1 since it is
2n-regular.

1There always is a ∆-regular graph G′ which satisfies a′(G′) = max{a′(G) : ∆(G) = ∆}.
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A decomposition of K2n+1 into 2n + 1 matchings each having n edges, such that the union of
any two matchings forms a Hamiltonian path of K2n+1 is called a perfect near-1-factorization. As
shown above, if K2n+2 has a perfect 1-factorization then K2n+1 has a perfect near-1-factorization,
which in turn implies that a′(K2n+1) = 2n + 1. It is easy to see that the converse is also true: if
K2n+1 has an acyclic edge coloring with 2n + 1 colors then this coloring corresponds to a perfect
near-1-factorization of K2n+1 which implies that K2n+2 has a perfect 1-factorization. Therefore the
following holds:

Proposition 3 The following statements are equivalent:

1. K2n+2 has a perfect 1-factorization.

2. K2n+1 has a perfect near-1-factorization.

3. a′(K2n+1) = 2n+ 1.

By removing another vertex from the above colored K2n+1 we obtain an acyclic-edge-coloring
of K2n with 2n + 1 = ∆(K2n) + 2 colors, which is best possible for K2n. Thus, if the perfect one-
factorization conjecture is true, then a′(K2n) = a′(K2n+1) = 2n+ 1 for every n. It may be possible
to show the converse, i.e. that if a′(K2n) = 2n+ 1 then K2n+2 has a perfect 1-factorization. It may
even be true that any acyclic edge coloring of K2n with 2n+1 colors can be completed into an acyclic
edge coloring of K2n+1 without introducing new colors.

The authors of [2] observed that a′(Kp) = a′(Kp−1,p−1) = p, where p > 2 is prime. The fact that
a′(Kp) = p corresponds to the known construction proving that Kp has a perfect near-1-factorization
[9]. Note that even finding the exact values of a′(Kn) for every n seems hard, in view of proposition 3
and conjecture 2.

1.3 High Girth and Random Graphs

Using probabilistic arguments (the Lovász Local Lemma) we can show that conjecture 1 holds for
graphs having sufficiently high girth in terms of their maximum degree, and for “almost all” d-regular
graphs. Recall that the girth g(G) of a graph G is the minimum length of a cycle in G. Let G be a
graph of maximum degree ∆ = ∆(G).

Theorem 4 There exists c > 0 such that if g(G) ≥ c∆ log ∆ then a′(G) ≤ ∆ + 2.

Let Gn,d denote the probability space of all d regular simple graphs on n labelled vertices (dn is
even), where all graphs have the same probability. We consider d fixed and n → ∞ and say that
some event in this space occurs almost surely (a.s.) if the probability of this event tends to one when
n tends to infinity. Using known properties of random graphs we can prove the following.

Theorem 5 Let G ∈ Gn,d be the random d-regular graph on n labelled vertices. Then a.s. a′(G) ≤
d+ 1 for even n and a′(G) ≤ d+ 2 for odd n.
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In section 2 we present the proof of theorem 4, and in section 3 we present the proof of theorem 5.
Section 4 contains some concluding remarks.

2 Proof of Theorem 4

Let G be a graph with maximum degree d. We do not attempt to optimize the constants here and
in what follows. In this section we show that if g(G) ≥ 2000d log d where g(G) is the girth of G (the
minimum length of a cycle in G) then there exists an acyclic edge coloring of G with d+ 2 colors.

The proof is probabilistic, and consists of two steps. The edges of G are first colored properly
using d+ 1 colors (by Vizing [12]). Let c : E 7→ {1, . . . , d+ 1} denote the coloring. Next, each edge is
recolored with a new color d + 2 randomly and independently with probability 1/(32d). It remains
to show that with positive probability

(A) the coloring remains proper — no pair of incident edges are colored d+ 2, and

(B) the coloring becomes acyclic — every cycle of G contains at least three different colors.

This is proved using the Lovász local lemma. Before continuing with the proof, we state the
asymmetric form of the Lovász local lemma we use (cf., e.g. [3]).

The Lovász local lemma. Let A1, . . . , An be events in a probability space Ω, and let G = (V,E) be
a graph on V = [1, n] such that for all i, the event Ai is mutually independent of {Aj : (i, j) 6∈ E}.
Suppose that there exist x1, . . . , xn, 0 < xi < 1, so that, for all i, Prob[Ai] < xi

∏
(i,j)∈E(1 − xj).

Then Prob[∧Ai] > 0.

The following three types of “bad” events are defined in order to satisfy (A) and (B) above:

Type I: For each pair of incident edges B = {e1, e2} let EB be the event that both e1 and e2 are
recolored with color d+ 2.

Type II: For each cycle C which was bichromatic by the first coloring c, let EC be the event that
no edge of C was recolored with color d+ 2.

A simple cycle D having an even number of edges is called half-monochromatic if half its edges
(every other edge) are colored the same by the first coloring c. Note that this includes cycles which
are bichromatic by the first coloring.

Type III: For each half-monochromatic cycle D let ED denote the event that half the edges of D
are recolored with color d+ 2 (all “other” edges) such that D becomes (or stays) bichromatic.

Now suppose that no event of type I, II or III holds. We claim that both (A) and (B) are satisfied.
Clearly (A) is satisfied if no event of type I holds. Now suppose that (B) is not satisfied, i.e. there
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exists a cycle C which is bichromatic after the recoloring. If C does not contain edges of color d+ 2
then the event EC of type II holds, otherwise C is a half-monochromatic cycle and event EC of type
III holds. Therefore, if none of these events hold, both (A) and (B) are satisfied.

It remains to show that with positive probability none of these events happen. To prove this we
apply the local lemma. Let us construct a graph H whose nodes are all the events of the three types,
in which two nodes EX and EY (where each of X,Y is either a pair of incident edges, a bichromatic
cycle or a half-monochromatic cycle) are adjacent if and only if X and Y contain a common edge.
Since the occurance of each event EX depends only on the edges of X, H is a dependency graph for
our events. In order to apply the local lemma we need estimates for the probability of each event and
for the number of nodes of each type in H which are adjacent to any given node. These estimates
are given in the two lemmas below, whose proofs are straightforward and thus omitted (except for a
proof of lemma 7, part 3).

Lemma 6

1. For each event EB of type I, Prob[EB] = 1
1024d2 .

2. For each event EC of type II, where C is of length x, Prob[EC ] = (1− 1
32d)x ≤ e−x/32d.

3. For each event ED of type III, where D is of length 2x, Prob[ED] ≤ 2
(32d)x .

Lemma 7 The following is true for any given edge e.

1. Less than 2d edges are incident to e.

2. Less than d bichromatic cycles contain e.

3. At most 2dk−1 half-monochromatic cycles of length 2k contain e.

To prove part 3 of lemma 7, note that every half-monochromatic cycle of length 2k that contains
edge e = (v0, v1) can be constructed as follows. First, select a vertex v2 which is adjacent to v1 (d
possibilities). Next, decide if e or f = (v1, v2) belong to the “monochromatic edges” (2 possibilities).
Suppose e was chosen. Let vertex v3 be the vertex adjacent to v2 such that c((v2, v3)) = c(e), if one
exists. There is at most one such vertex v3 since the coloring c is proper. If such a vertex does not
exist, the number of cycles is smaller than the bound presented in the lemma. Now continue with
i = 2, . . . , k − 1: choose v2i to be any vertex adjacent to v2i−1 (d possibilities), and let v2i+1 be the
vertex adjacent to v2i such that c((v2i, v2i+1)) = c(e). This completes the construction of the desired
cycle. The case where f belongs to the “monochromatic edges” is treated exactly the same after
swapping v0 with v2. Therefore the number of half-monochromatic cycles of length 2k that contain
edge e is at most 2dk−1. 2
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It follows from lemma 7 that each event EX where X contains x edges is adjacent (in the
dependency graph H) to at most 2xd events of type I, at most xd events of type II and at most
2xdk−1 events ED of type III, where D is of length 2k, for all k ≥ 2.

The last ingredient required for applying the Lovász local lemma are the real constants xi. Let
1/(512d2), 1/(128d2) and 1/(2d)k be the constants associated with events of type I, events of type
II and events ED of type III, where D is of length 2k, respectively. We conclude that with positive
probability no event of type I, II or III occurs, provided that:

1
1024d2

≤ 1
512d2

(
1− 1

512d2

)4d (
1− 1

128d2

)2d∏
k

(
1− 1

(2d)k

)4dk−1

, (2)

e−
x

32d ≤ 1
128d2

(
1− 1

512d2

)2xd (
1− 1

128d2

)xd∏
k

(
1− 1

(2d)k

)2xdk−1

for all x ≥ 4, (3)

2
(32d)x

≤
(

1
(2d)x

)(
1− 1

512d2

)4xd (
1− 1

128d2

)2xd∏
k

(
1− 1

(2d)k

)4xdk−1

for all x ≥ 2. (4)

Now since (1− 1
z )z ≥ 1

4 for all real z ≥ 2, the following holds for all x, d ≥ 2:

∏
k

(
1− 1

(2d)k

)2xdk−1

≥
∏
k

(
1
4

) x

d2k−1

=
(

1
4

)x
d

∑
k

1

2k−1

≥
(

1
4

) x
256d

(5)

where the last inequality uses the fact that 2k ≥ g(G) ≥ 2000d log d ≥ 20, and similarly(
1− 1

512d2

)2xd

≥
(

1
4

) x
256d

, (6)(
1− 1

128d2

)xd
≥

(
1
4

) x
128d

. (7)

Combining (5), (6) and (7) we conclude that(
1− 1

512d2

)2xd (
1− 1

128d2

)xd∏
k

(
1− 1

(2d)k

)2xdk−1

≥
(

1
2

) x
32d

.

Thus inequality (2) holds since 2(1−1/16d) ≥ 1, and inequality (4) holds since 2(1−5x+x+x/(16d)) ≤ 1
for all x ≥ 1. To prove inequality (3) it suffices to show that

e−
x

32d ≤ 1
128d2

(
1
2

) x
32d

which holds for all x ≥ 2000d log d ≥ 32d log(128d2)
log(e/2) and d > 2, thereby completing the proof. 2

3 Random Regular Graphs

In this section we prove theorem 5 which shows that conjecture 1 is true for almost all d-regular
graphs. We use Gn,d to denote the probability space of all d regular simple graphs on n labelled
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vertices (dn is even), where each such graph is picked uniformly at random. We consider d fixed and
n → ∞ and say that some event in this space occurs almost surely (a.s.) if the probability of this
event tends to one when n tends to infinity.

Random d-regular graphs can be generated using the following model given in [5, pp. 48-52]. Let
W = ∪nj=1Wj be a fixed set of 2m = dn labeled vertices, where |Wj | = d for each j. A configuration
F is a partition of W into m pairs of vertices, called edges of F (i.e. a perfect matching). Let Fn,d be
a probability space where all configurations are equiprobable. For F ∈ Fn,d, let φ(F ) be the graph
on vertex set {1, 2, . . . , n} in which ij is an edge iff F has an edge joining Wi to Wj . Clearly φ(F ) is
a graph with maximum degree at most d. More importantly, the probability that φ(F ) is a d-regular
simple graph is bounded away from 0 as n→∞, and all such d-regular graphs are obtained in this
model with the same probability. Thus in order to study properties of random d-regular graphs that
hold almost surely we can consider the space of configurations.

By estimating the expected number of subgraphs of a given type in Fn,d it can be easily proved
(as shown implicitly in [5]) that for every fixed c random d-regular graphs a.s. contain no subgraph
on c vertices with more edges than vertices. This implies the following lemma.

Lemma 8 Let d, s and t be fixed positive integers. Then almost surely a random d-regular graph
has no two cycles of length at most s connected by a path of length at most t. 2

We shall also need the following result about the edge chromatic number of random d-regular graphs,
obtained by Robinson and Wormald [11].

Lemma 9 For d ≥ 3 and even n the edge chromatic number of G ∈ Gn,d is almost surely equal to
d. 2

Using the above two lemmas and ideas from the proof of theorem 4 we can deduce theorem 5,
which states that a′(G) ≤ d + 1 almost surely for G ∈ Gn,d where n is even, and a′(G) ≤ d + 2 a.s.
for G ∈ Gn,d where n is odd.

Proof of Theorem 5. Let G be random d-regular graph. We consider the case when n is even, the
case of odd n can be treated similarly using Vizing’s theorem [12] instead of lemma 9. The proof is
probabilistic and consists of two steps. First, the edges of G are properly colored using d colors. By
lemma 9 this is almost surely possible. Let c : E 7→ {1, . . . , d} denote the coloring. Next, an edge
is selected from each bichromatic cycle and colored with a new color d+ 1. It remains to show that
with positive probability the coloring remains proper and becomes acyclic. This is proved using the
symmetric form of the Lovász local lemma, which is stated below (cf., e.g. [3]).

The Lovász local lemma (symmetric case). Let A1, . . . , An be events in a probability space Ω.
Suppose that each event Ai is mutually independent of a set of all the other events Aj but at most d,
and that Prob[Ai] ≤ p for all i. If ep(d+ 1) ≤ 1, then Prob[∧Ai] > 0.
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Call a cycle in G short if it has less than 800d3 edges, and long otherwise. This threshold is
required later in the proof. Let {C1, C2, . . . Ck} be the set of all short bichromatic cycles in G. From
each short cycle Cj pick an arbitrary edge ej and color it with a new color d + 1. By lemma 8 the
distances between these edges are a.s. at least, say, 2d2 + 2, since a.s. there are no two short cycles
connected by a path of length at most 2d2 + 2. Call an edge of G bad if it is within distance at most
one from some edge ej (1 ≤ j ≤ k), otherwise call it good. We claim that every long cycle X having
|X| edges contains at least |X|/2 good edges. To establish this claim observe that there are at most
2d2 bad edges within distance at most one from any particular edge ej . Therefore if X contains more
than |X|/2 bad edges then there is a pair of bad edges in X within distance at most 2d2 from each
other such that one is within distance at most one from ei and the other within distance at most one
from ej , where 1 ≤ i 6= j ≤ k. This implies the existence of a path of length at most 2d2 + 2 from ei

to ej , a.s. a contradiction according to lemma 8.
Let {D1, D2, . . . Dm} be the set of all long bichromatic cycles in G. From each long cycle Dj we

restrict our attention to a path pj of at most 800d3 edges which contains 400d3 good edges. Such a
path exists since at least half the edges of Dj are good, and the length of Dj is at least 800d3. Now
we randomly pick a good edge (fj) from each path pj and recolor it with color d + 1. Let Ei,j be
the “bad” event that edges fi, fj are at distance at most 1 from each other (1 ≤ i, j ≤ m). Notice
that if no event Ei,j happens then the distance between any pair of edges recolored with color d+ 1
is more than 1, and therefore the recoloring is proper and acyclic.

The probability of each event Ei,j can be bounded using the following observations. First notice
that any two cycles Di, Dj can intersect and share a vertex or an edge, but they cannot share a
path of length greater than one because they are both bichromatic. At any intersection of Di, Dj

(a common vertex or edge) or edge (u, v) connecting Di and Dj (where u ∈ Di and v ∈ Dj), there
are at most 16 pairs of edges one from Di and the other from Dj with distance at most 1 from each
other. If two paths pi, pj have more than two intersections or connecting edges, then there exists
a subgraph of G on at most 1600d3 + 2 vertices with more edges than vertices, which according to
lemma 8 almost surely does not happen. Therefore the probability of each event Ei,j is almost surely
at most 32

(400d3)2 = 32
160000d6 .

It is easy to see that there are less than 2d3 bichromatic (long) cycles at distance at most 1 from
any given edge. Since each event Ei,j is independent of all events Ep,q such that {i, j} ∩ {p, q} = ∅,
it follows that each event is indepentent of all events but at most 2 · 400d3(2d3− 1) < 1600d6 events.
Now the local lemma can be applied since 32e

160000d6 1600d6 ≤ 1, implying that with positive probability
a.s. no event Ei,j holds, thereby completing the proof. 2

4 Concluding Remarks

1. The following weaker version of theorem 4 can be proved in a similar but simpler way using
the symmetric Lovász local lemma;
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Proposition 10 There exists a constant c > 0 such that a(G) ≤ ∆(G) + 2 if g(G) > c∆(G)3.

This can be achieved by recoloring one edge from each bichromatic cycle using one additional
color, while avoiding recoloring any pair of edges which are incident or at distance 1 from each
other (similar to the proof of theorem 5).

2. By increasing the number of colors we are able to reduce the condition on the girth as follows.

Theorem 11 If g(G) ≥ (1 + o(1)) log ∆ then a′(G) ≤ 2∆ + 2.

This can be achieved by first coloring the edges properly using ∆ + 1 colors 1, . . . ,∆ + 1, and
then assigning a negative sign to the color of each edge with probability 1/2.

3. For graphs G of class 1 Vizing (that is: graphs whose edges can be properly colored using ∆(G)
colors), the bound for a(G) presented in theorem 4 can be slightly improved. Indeed the proof
of this theorem shows that for graphs G of class 1 there exist a constant c such

a′(G) ≤ ∆(G) + 1 if g(G) ≥ c∆ log ∆.

Note that this shows that a′(G) = ∆ + 1 for any ∆-regular graph G of class 1 whose girth is
sufficiently large as a function of ∆.

4. Molloy and Reed [10] presented, for every fixed ∆, a polynomial-time algorithm that produces
an acyclic coloring with 20∆ colors for any given input graph with maximum degree ∆. The
known results about the algorithmic version of the local lemma, initiated by Beck ([4], see also
[1],[10]), can be combined with our method here to design, for every fixed ∆, a polynomial
algorithm that produces an acyclic ∆ + 2 coloring for any given input graph with maximum
degree ∆ whose girth is sufficiently large as a function of ∆.
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