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Abstract. An instance of the asymmetric matrix partition problem consists of a
matrix A ∈ Rn×m

+ and a probability distribution p over its columns. The goal is
to find a partition scheme that maximizes the resulting partition value. A partition
scheme S = {S1, . . . ,Sn} consists of a partition Si of [m] for each row i of the
matrix. The partition Si can be interpreted as a smoothing operator on row i,
which replaces the value of each entry in that row with the expected value in the
partition subset that contains it. Given a scheme S that induces a smoothed matrix
A′, the partition value is the expected maximum column entry of A′.
We establish that this problem is already APX-hard for the seemingly simple
setting in which A is binary and p is uniform. We then demonstrate that a con-
stant factor approximation can be achieved in most cases of interest. Later on,
we discuss the symmetric version of the problem, in which one must employ an
identical partition for all rows, and prove that it is essentially trivial. Our matrix
partition problem draws its interest from several applications like broad matching
in sponsored search advertising and information revelation in market settings. We
conclude by discussing the latter application in depth.

1 Introduction

An instance of the asymmetric matrix partition problem consists of a matrixA ∈ Rn×m
+

of non-negative values and a probability distribution p over its columns, namely, p ∈
[0, 1]m such that

∑m
j=1 pj = 1. The objective is to find a partition scheme S that max-

imizes the resulting partition value vS . A partition scheme S = {S1, . . . ,Sn} consists
of a partition Si of [m] = {1, . . . ,m} for each row i of the matrix, namely, Si is a col-
lection of pairwise disjoint subsets Si1, . . . , Siki ⊆ [m] such that Si1∪̇ · · · ∪̇Siki = [m].
Note that the partitions within a scheme may be different, and hence, it is referred to
as an asymmetric scheme. The partition Si can be interpreted as a smoothing operator
on row i, which replaces the value of each entry in that row with the expected value in
the partition subset that contains it. Formally, the smoothed value for each j ∈ Sik is
A′ij =

∑
`∈Sik

p`Ai`/
∑

`∈Sik
p`. Given a partition scheme S that induces a smoothed

matrix A′, the resulting partition value is the expected maximum column entry, that is,
vS =

∑
j∈[m] pj ·maxi∈[n]A

′
ij . The contribution of a column j to the partition value

is pj ·maxi∈[n]A
′
ij , and similarly, argmaxi∈[n]A

′
ij is referred to as the entry of column

j that contributes to the partition value.



For the purpose of illustrating the above setting, let us focus on the simple scenario
in which the input instance consists of an n × n matrix such that all the entries in the
first column have a value of 1 and all remaining entries have a value of 0. Furthermore,
the probability distribution over the columns of this matrix is uniform. One partition
scheme that naturally comes to mind is the identity scheme, which results in a smoothed
matrix that is identical to the original matrix. This identity scheme sets all the partitions
to consist of singletons, namely, each Si = {{1}, . . . , {n}}. One can easily validate
that the resulting partition value in this case is 1/n. Another extreme partition scheme
is the one in which all partitions consist of one subset, that is, each Si = {[n]}. This
scheme gives rise to a smoothed matrix in which all the entries of each row have the
same value. In our case, all the entries of the resulting matrix are 1/n, and accordingly,
it is easy to validate that the partition value is again 1/n. Finally, one can demonstrate
that there is a partition scheme that exhibits a significant improvement over the above-
mentioned schemes. This scheme consists of the partitions Si = {{1, i}, [n] \ {1, i}},
namely, it joins together the 1-value of each row i 6= 1 with the 0-value of column i in
that row, resulting in a smoothed value of 1/2 for both entries. One can verify that the
resulting partition value in this case is roughly 1/2. The above scenario is presented in
the figure below.
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Fig. 1. Given the input matrix on the left with a uniform distribution over its columns, one can
utilize the partition scheme illustrated on the middle, and obtain the smoothed matrix on the right.
Note that the boxes in each row of the middle matrix represent entries that are joined together in
the same subset; the remaining entries of each row are clustered together in a different subset.

Application I: personalized broad matching in sponsored search advertising. The
asymmetric matrix partition problem draws its interest from several applications. One
such application relates to sponsored search advertising, namely, advertising on a web
search result page, where the ads are driven by the originating query. In the basic model,
there are advertisers, each of which has keywords relevant to her ad. Each advertiser also
associates some valuation with each of her keywords, indicating the gain she derives
when a user clicks on her ad. This valuation underlies a bid that the advertiser reports
to the search engine, expressing the maximum amount that she is willing to pay for
a click. When a user queries the search engine for some keyword, the engine runs an
auction among all the advertisers interested in that keyword. The advertiser that wins
this auction is allocated the ad slot, and she is required to pay some amount if the user
clicks on her ad. This amount is determined by her bid and the payment rule of the
engine.

Advertisers can realistically only identify a small set of keywords due to the ef-
fort involved, and therefore, search engines recently introduced broad matching. This



feature enables an advertiser to automatically target a broader range of queries that
the search engine deems relevant to match her ad, and not only the keywords speci-
fied by her. Such relevant queries can be modifications of the specified keywords (like
synonyms, singular and plural forms, misspellings, reordering, etc.), or can even be a
completely different set of keywords, which are conceptually related to the specified
keywords. This feature clearly has potential to help advertisers reach wider audience,
while spending less time on building their keyword lists. On the other hand, a search
engine can utilize the flexibility in expanding the set of keywords specified by an adver-
tiser to optimize its revenue. Understanding the power of flexibility in broad matching
seems an interesting research goal.

We consider a stylized non-strategic version of broad matching. In the underlying
setting, there is a single ad slot, and a set of advertisers, each of which interested in one
keyword from a set of possible keywords {k1, . . . , km}, where keyword kj is queried
by users with probability pj . The search engine keeps a relevance distance measure be-
tween keywords, α(i, j), that has the following semantics: if an advertiser has valuation
v for her specified keyword ki, then her valuation for each keyword kj is v ·α(i, j). The
goal is to develop a personalized broad matching scheme that maximizes the expected
revenue of the search engine. Specifically, we are interested in a scheme that assigns
each advertiser a partition of keywords to disjoint subsets, such that all keywords in
each subset are automatically bid with the expected valuation in that subset whenever a
user queries a keyword from that subset. We assume that the search engine knows the
valuation that each advertiser has for her specified keyword, i.e., a non-strategic set-
ting in which there is no need to incentivize the advertisers, and a winning advertiser
pays her expected valuation. Consequently, given a query, the search engine selects the
advertiser that has the highest bid. One can validate that our asymmetric matrix par-
tition problem captures the problem of designing a personalized broad matching that
maximizes the expected revenue.

Application II: signaling in take-it-or-leave-it sales. Another application of the asym-
metric matrix partition problem relates to a question of information revelation in market
settings. In many sale scenarios, a seller has much more accurate information about an
item for sale than the buyers. As an example, consider a used-car dealer or an Internet
liquidation site, both of which receive or purchase items for sale. The seller in these
scenarios may have quite adequate information about the particular item for sale (e.g.,
by checking it in detail), while the potential buyers may only have probabilistic in-
formation about the item, relying, for example, on some publicly-available statistical
information. It seems of the essence to study how a seller can utilize her informational
superiority to optimize her revenue.

The above-mentioned scenario can be modeled by considering a take-it-or-leave-
it sale of a probabilistic item among multiple buyers. More precisely, a single item is
chosen randomly from a set of m possible items according to some known probability
distribution p, and the seller approaches a buyer with a monetary offer of delivering the
item for a specified payment. There are n buyers, each of which has her own valuation
for every item in the set. While the buyers only know the probability distribution over
the items, the seller knows the actual realization of the probabilistic item. In an attempt
to increase her revenue, the seller may partially reveal some information about the item



to the buyers. The question that concerns us is how much information should the seller
reveal to every buyer in order to maximize her expected revenue.

The information revelation is materialized by means of a buyer-specific signaling
scheme. For each buyer, the seller partitions the set of items into pairwise disjoint sub-
sets, and reports this partition to the buyer. After the signaling scheme has been de-
clared, an item j is randomly chosen by nature, and the seller reveals to each buyer i,
the subset that contains j according to i’s partition. Upon being signaled, a buyer can
update her belief regarding the probability distribution p conditioned on the choice of
some item in her signaled subset. A key assumption in our model is that the buyers are
unaware of the environment, namely, each buyer knows her own valuation and parti-
tion, but is unaware of the existence of the other buyers and their associated valuations
and partitions. Hence, the conditional probability of every item j that is contained in
a signaled subset is the ratio between pj and the overall probability of items in that
subset, and 0 in case j is not in the signaled subset. It is clear that the maximal take-
it-or-leave-it offer that a buyer will accept is her expected valuation for the item under
the new probability distribution induced by the received signal. Consequently, upon the
realization of an item, the seller will choose to make such offer to a buyer that has the
highest expected valuation. One can validate that our asymmetric matrix partition prob-
lem captures the task of designing a buyer-specific signaling scheme that maximizes
the expected revenue.

Our contribution. We begin by studying the asymmetric matrix partition problem
when the input matrix is binary, namely, A ∈ {0, 1}n×m. We prove that this seem-
ingly simple setting is already APX-hard when the probability distribution p is uni-
form. Specifically, we show a gap-preserving reduction that proves that the problem is
NP-hard to approximate to within a factor of 1.0001. We also establish that the binary
setting admits a constant factor approximation; thus, settling the complexity of this
setting to within constant factors. In particular, we demonstrate that there is a 1.775-
approximation algorithm when p is uniform, and there is a 13-approximation algorithm
when p is arbitrary. We further study several interesting special scenarios. For exam-
ple, we prove that when the number of rows n is fixed then the uniform distribution
case can be solved to optimality in polynomial-time, whereas the general distribution
case remains NP-hard even when n = 4. This result separates the uniform distribu-
tion setting from the general distribution setting. The specifics of these results are pre-
sented in Section 2. We then consider the problem in its utmost generality, that is, when
the input matrix A ∈ Rn×m

+ consists of arbitrary non-negative values. We present a
2-approximation algorithm for the case that p is uniform, and a logarithmic approxi-
mation when p is arbitrary under some practical assumptions. These results appear in
Section 3. Later on, in Section 4, we discuss the symmetric version of our problem in
which one must employ an identical partition for all rows. We demonstrate that this
problem is essentially trivial, and establish a tight bound on the advantage that asym-
metric schemes have over symmetric ones. Finally, we formally model the application
of signaling in take-it-or-leave-it sales with its connection to our problem, and discuss
some of our modeling decisions. These application details are provided in Section 5.
Due to space constraints, most proofs are omitted from this extended abstract and may
be found in the full version of the paper.



2 The Binary Matrix Case

In this section, we study the problem when the input matrix is binary, namely, A ∈
{0, 1}n×m. We prove that this setting is APX-hard even when the probability distribu-
tion p is uniform. We also establish that this setting admits a constant factor approxima-
tion; thus, settling the complexity of this setting to within constant factors. We further
study several interesting special scenarios.

We begin by introducing a notation and terminology that will be used in the re-
mainder of this section. Let C+ = {j ∈ [m] : ∃i such that Aij = 1} be the set of
columns that consist of at least one 1-value entry, and C0 = [m] \ C+ be the set of
remaining all-zero columns. Moreover, let r =

∑
j∈C+ pj be the total probability of

the columns in C+. Similarly, we denote the set of columns that have a 1-value entry
in row i by C+

i = {j ∈ [m] : Aij = 1}, and use ri =
∑

j∈C+
i
pj to denote their total

probability. We say that a partition scheme S coversC+ if it covers each of the columns
in C+. A column j ∈ C+ is said to be covered by S if there is some row i such that
Aij = 1 and the partition scheme consists of a singleton subset of column j in row i,
namely, {j} ∈ Si. Note that a partition scheme that covers C+ can be easily computed
in polynomial-time. Finally, we say that a subset is mixed if it consists of both 1-value
and 0-value entries.

We now turn to identify several interesting structural properties of partition schemes
for the binary case. These properties will be utilized later when establishing our primary
technical results.

Lemma 1. Let S, T be two disjoint subsets of columns, and let S+ (resp., T+) and S0

(resp., T 0) be the respective 1-value entries and 0-value entries of S (resp., T ) in some
row i. Suppose that all the entries of S0 and T 0 contribute to the partition value when
the partition of row i consists of S and T . Then, the overall contribution of those entries
when the partition consists of a unified subset S ∪ T is at least as large.

Note that a useful corollary of the above lemma is that given some fixed covering
of C+, the optimal way to complete the partition scheme is to join together all the
remaining 1-value entries of each row in a single subset with some additional 0-value
entries. We can also utilize the above lemma and prove the following.

Lemma 2. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, there is an optimal solution that covers C+.

2.1 A uniform distribution

We study the binary matrix setting when the distribution over the columns is uni-
form, namely, each pj = 1/m. We establish that this seemingly simple setting is al-
ready APX-hard, that is, it is NP-hard to approximate to within some constant. On
the algorithmic side, we identify a simple algorithmic procedure that guarantees 2-
approximation, and then develop an algorithm that achieves a better approximation ra-
tio. We also prove that the case that the number of rows n is constant can be solved
to optimality in polynomial-time. We emphasize that for simplicity of presentation, we
neglect the uniform probability term 1/m from the partition value contribution terms in
the rest of this subsection.



Theorem 1. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, it is NP-hard to attain an approximation ratio better than
1.0001.

Approximation algorithms We begin by presenting a simple 2-approximation algo-
rithm for the problem under consideration. Later on, we develop a different algorithm
that attains an improved approximation ratio. Our 2-approximation algorithm begins by
covering C+. This ensures that the contribution of the columns of C+ to the resulting
partition value is exactly r. Subsequently, the algorithm goes over the rows, one after
the other, and for each row that has ` remaining 1-value entries (after the covering), it
creates a subset in that row that consists of these entries and ` entries of distinct all-zero
columns. In case there are no more all-zero columns left to match to some row then this
step ends. Finally, all remaining entries of each row are clustered together.

For the purpose of analyzing this algorithm, notice that a straight-forward upper
bound on the partition value of the optimal scheme is OPT ≤ min{1,

∑n
i=1 ri}. Now,

consider the following two complementary cases: (case 1) if we matched every all-zero
column to some row, then the contribution of each column j is 1 if j ∈ C+, or at least
1/2 if j ∈ C0. Hence, the partition value is at least r + (1 − r)/2 ≥ 1/2 ≥ OPT/2;
(case 2) if we did not match all all-zero columns, then the partition value is at least
r + (

∑n
i=1 ri − r)/2 ≥

∑n
i=1 ri/2 ≥ OPT/2. This implies that the partition scheme

achieves 2-approximation.
A greedy completion procedure. Before we turn to improve the above algorithm, we
study the following greedy procedure that given a fixed covering of C+ completes the
partition scheme by matching all-zero columns to partition subsets. The greedy proce-
dure begins by associating a subset Si to each row i. This subset is initialized with all
the columns corresponding to 1-value entries in row i that were not used in the covering
of C+. Then, it proceeds by going over the all-zero columns, one after the other, and
adding a column to the subset Si that maximizes the marginal contribution from the
all-zero columns. Specifically, the marginal contribution of some all-zero column that
is added to a subset that already consists of x and y columns corresponding to 0-value
entries and 1-value entries, respectively, is

∆(x, y) = (x+ 1)
y

x+ y + 1
− x y

x+ y
= y2

(
1

x+ y
− 1

x+ y + 1

)
.

Note that ∆(x, y) ≥ 0 for any non-negative x, y, and that ∆ is monotonically non-
increasing in x for any fixed y, that is, ∆(x, y) ≥ ∆(x + 1, y). The following lemma
establishes that once C+ is covered in some way, the greedy procedure yields the opti-
mal contribution from the all-zero columns. Notice that this result implies, in conjunc-
tion with Lemma 2, that the computational hardness of the underlying setting of the
problem resides in finding the right way to cover C+.

Lemma 3. Given some fixed covering of C+, the greedy procedure yields the optimal
contribution from the all-zero columns.

The greedy procedure can be leveraged to construct a 1.775-approximation algo-
rithm for our problem. We emphasize that our main effort is to improve upon the previ-
ous 2-approximation algorithm, and we have not tried to optimize the constants in our



analysis. Let r∗ = 0.127 and σ∗ = 2(1 − r∗)/3 = 0.582. The algorithm computes a
partition scheme according to the following cases, which depend on the values of r and∑n

i=1 ri in a given instance:

Case I: when r ≥ r∗. The algorithm first covers C+ in some arbitrary way. Then,
the algorithm goes over the rows, one after the other, and for each row that has ` re-
maining 1-value entries after the covering, it creates a subset in that row that consists
of these entries and ` entries of distinct all-zero columns. Note that in case there are
no more all-zero columns left to match to some row then this step ends. Finally, all the
remaining entries of each row are clustered together.

Case II: when r < r∗ and
∑n

i=1 ri ≤ σ∗. The algorithm forms a subset on top
of every 1-value entry. Specifically, given a 1-value entry (i, j), the algorithm forms a
subset in row i that consists of column j and some additional distinct all-zero columns.
Half of the 1-value entries are clustered together with two distinct two all-zero columns,
and the other half of the 1-value entries are clustered together with a single all-zero
column. Then, all the remaining entries of each row are clustered together.

Case III: when r < r∗ and
∑n

i=1 ri > σ∗. The algorithm executes the previously-
mentioned greedy procedure over the given instance (without covering C+ first). After
this procedure ends, all the remaining entries of each row are clustered together.

Theorem 2. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, our algorithm computes a partition scheme whose resulting
partition value is a 1.775-approximation for the optimal one.

An optimal solution for a fixed number of rows We prove that an optimal partition
scheme can be computed in polynomial-time when the number of rows n is fixed. We
emphasize that this result separates the uniform distribution setting from the general
distribution setting since we establish that the latter setting is NP-hard in Theorem 4.

Theorem 3. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is uniform, an optimal partition scheme can be constructed in polynomial-
time when n is fixed.

2.2 A general distribution

We next study the binary matrix setting when the distribution over the columns is arbi-
trary. We first demonstrate that this setting is NP-hard even when the number of rows
is fixed. This result separates this setting from the uniform distribution setting, which
admits a polynomial-time optimal solution when the number of rows is fixed. Later on,
we present a constant factor approximation algorithm for this setting.

Theorem 4. Given an instance of the asymmetric matrix partition problem in which A
is binary and p is general, and a positive number α, it is NP-hard to determine if there
is a partition scheme whose resulting partition value is at least α, even when n = 4.



An approximation algorithm We develop a polynomial-time constant approximation
algorithm for the problem under consideration. Specifically, we present three algorithms
whose performance depends on different parameters of the input instance and the opti-
mal solution. We then demonstrate that given any input instance, one of these algorithms
is guaranteed to compute a 13-approximation partition scheme. Hence, by executing all
three algorithms and selecting the scheme that attains the maximal resulting partition
value, we achieve a 13-approximation solution.

Recall that C+ denotes the set of columns that consist of at least one 1-value entry,
C0 is the set of remaining all-zero columns, and C+

i marks the set of columns having
1 in row i. Furthermore, recall that r is the total probability of columns in C+, and ri
is the total probability of columns in C+

i . Note that the optimal partition value can be
trivially bounded by OPT ≤ r+OPT0, where OPT0 is the overall contribution of the
all-zero columns of C0 to the optimal partition value.
Algorithm 1. The first algorithm attains to the case in which the input instance has a
relatively large r, namely, r ≥ OPT0/12. In this case, a constant approximation can
be obtained by simply covering C+. That is, for every column j ∈ C+, the algorithm
arbitrarily selects some row i such that Aij = 1 and forms a singleton subset of entry j
in row i. Then, all the remaining entries of each row are clustered together. One can eas-
ily validate that the resulting scheme has a partition value which is a 13-approximation
to the optimal one. This follows since the resulting partition value is at least r, while
OPT ≤ r +OPT0 ≤ 13r.

In the remainder of the subsection, we focus on the case that r is relatively small,
namely, r < OPT0/12. Since r is small, we concentrate on designing partition schemes
that yield high contribution from the all-zero columns. We say that an all-zero column
j is large for a row i in case pj ≥ ri; otherwise, j is said to be small for i. We consider
two complementary cases and develop constant factor approximation algorithms for
both. The first case is when a large fraction of the contribution of all-zero columns to
the optimal partition value comes from such columns that are large for the rows that
realize their contribution.
Algorithm 2. The algorithm begins by constructing an undirected bipartite graph G =
(VR, VL, E) with a weight function w : E → R+ on its edges. Specifically, VR is a set
of n vertices that correspond to the rows, VL is a set of |C0| vertices that correspond
to the all-zero columns, and E = {(i, j) ∈ VR × VL : ri ≤ pj} is the edge set.
Moreover, the weight function sets w(i, j) = ri, for every (i, j) ∈ E. With these
definitions in mind, the algorithm finds a maximal weighted matching M with respect
to the constructed bipartite graph. Then, for each edge (i, j) ∈M , the algorithm forms
the subset C+

i ∪ {j} in row i. Subsequently, all the remaining entries of each row are
clustered together.

Lemma 4. Algorithm 2 computes a partition scheme that yields at least 1/2 of the
optimal contribution of all-zero columns that are large for the rows that realize their
contribution.

Lemma 4 implies that in case that at least 1/6 of the optimal contribution of all-zero
columns comes from such columns that are large for the rows that realize their contri-
bution then we obtain a 13-approximation solution. Formally, one can utilize Lemma 4



to claim that the partition value of the computed scheme is at least OPT0/12. On the
other hand, OPT ≤ r + OPT0 ≤ 13/12 · OPT0, where the last inequality follows
from the assumption that r < OPT0/12. We now turn to consider the remaining case
in which at least 5/6 of the optimal contribution of all-zero columns comes from such
columns that are small for the rows that realize their contribution.
Algorithm 3. Similarly to the previous algorithm, this algorithm forms two subsets for
each row; one mixed subset and an additional subset that consists of the remaining row
entries. The mixed subset of row i consists of the columns in C+

i and some additional
all-zeros columns. To decide which all-zeros columns are added to each mixed subset,
the algorithm goes over the all-zero columns in an arbitrary order, and adds the column
j to the mixed subset of row i if (1) j is small for i and (2) the total probability of the
all-zero columns already added to this subset is no more than ri. We emphasize that
each column is added to at most one mixed subset, and a column is neglected only if
the algorithm cannot add it to any of the mixed subsets.

Lemma 5. Algorithm 3 computes a partition scheme that yields at least 1/10 of the
optimal contribution of all-zero columns that are small for the rows that realize their
contribution.

Lemma 5 implies that in case that at least 5/6 of the optimal contribution of all-
zero columns comes from such columns that are small for the rows that realize their
contribution then we also attain a 13-approximation solution. More precisely, one can
utilize Lemma 5 to claim that the partition value of the computed scheme is at least
OPT0/12, while OPT ≤ r +OPT0 ≤ 13/12 ·OPT0. Reviewing the algorithms and
the case analysis, we can conclude with the following theorem.

Theorem 5. Given an instance of the asymmetric matrix partition problem in which
A is binary and p is general, there is an algorithm that computes a partition scheme
whose resulting partition value is a 13-approximation for the optimal one.

3 The General Matrix Case

In this section, we study the problem in its utmost generality, i.e., when the input matrix
A ∈ Rn×m

+ consists of arbitrary non-negative values. We develop a constant factor
approximation algorithm for the case that the probability distribution p over the columns
is uniform, and a logarithmic approximation for the general case under some practical
assumptions.

3.1 A uniform distribution

We present an algorithm that computes a partition scheme whose resulting partition
value is a 2-approximation for the optimal one. Let M be the set of m largest entries
in the matrix A. Our algorithm first forms a singleton subset of every entry (i, j) ∈ M
that is maximal for the corresponding column. In case there are several maximal entries
for some column then one of them is selected arbitrarily. We say that column j was
covered if there was an entry (i, j) that was clustered as a singleton. Subsequently, for



every entry (i, j) ∈ M that was not clustered in the first step, the algorithm forms
a subset in row i consisting of column j and a distinct column that was not covered.
Then, all the remaining entries of each row are clustered together.

Theorem 6. Given an instance of the asymmetric matrix partition problem in which A
is general and p is uniform, our algorithm computes a partition scheme whose resulting
partition value is a 2-approximation for the optimal one.

3.2 A general distribution

We present an algorithm that achieves a logarithmic approximation under some prac-
tical assumptions. Specifically, the algorithm achieves O(logm)-approximation if the
column probabilities are at most polynomially small, namely, when each pj ≥ 1/mc

for some constant c.
LetAmax be the value of the largest entry of an input matrixA. Our algorithm begins

by manipulating the matrixA to construct the matrixB as follows: All the entries whose
value is smaller than Amax/m

c+2 are replaced by 0, and all the values of the remaining
entries are rounded down to the closest power of 2. For example, if 2−k ≤ Aij < 21−k

then Bij = 2−k. Notice that after this manipulation, the matrix B is populated with at
most K = O(logmc) = O(logm) types of positive values {v1, . . . , vK} in addition
to a 0-value. As a result, we can express the matrix B as a sum of K matrices where
the kth matrix consists of the values {0, vk}. That is, the kth matrix has a value of
vk in each entry that B has a value of vk, and 0 in all remaining entries. Each of the
K matrices, together with the probability distribution p, can be considered to be an
instance of our problem with a binary matrix and a general distribution. Hence, we can
apply the algorithm from Theorem 5 on each of these K instances to obtain K partition
schemes. Finally, the algorithm selects the partition scheme that obtains the maximal
partition value from the original instance.

Theorem 7. Given an instance of the asymmetric matrix partition problem in which A
and p are general such that each pj ≥ 1/mc for some constant c, our algorithm com-
putes a partition scheme whose resulting partition value is a O(logm)-approximation
for the optimal one.

4 Symmetric Partition Schemes

In this section, we discuss the symmetric version of our matrix partition problem, and
most notably, compare between the performance guarantees of symmetric and asym-
metric partition schemes. The symmetric matrix partition problem is identical to the
asymmetric matrix partition problem with the exception that the underlying partition
scheme must be symmetric. A symmetric partition scheme consists of a single partition
S of [m] that is used as the smoothing operator of all the rows. A variant of the symmet-
ric matrix partition problem has been studied in a series of works [7, 3, 4, 14]; A more
detailed discussion is given in Section 5.



An easy argument shows that the symmetric matrix partition problem is essentially
trivial as the partition scheme that consists only of singletons always achieves the opti-
mal partition value. To establish this argument, suppose by way of contradiction that the
partition scheme of singletons does not attain an optimal outcome. Consider the opti-
mal partition scheme S . This scheme must consist of a subset S ∈ S whose cardinality
is greater than 1. Notice that the contribution of all the columns in S to the resulting
partition value is realized in the same row i. The overall contribution of those columns
is exactly

∑
j∈S pjAij . Now, observe that if one replaces the instance of S in the opti-

mal partition scheme with the collection of singleton subsets of the columns in S, the
overall contribution of the columns in S may only improve to

∑
j∈S pj ·maxi∈[n]Aij ,

and the contribution of any other column in [m] \ S does not change. Applying this
argument repeatedly as long as S has subsets whose cardinality is greater than 1 results
in an optimal partition scheme that consists only of singletons; a contradiction.

In light of this state of affairs, we next focus on quantifying the advantage that
asymmetric partition schemes have over symmetric schemes. Given an instance of our
matrix partition problem, let OPTsym and OPTasym denote the optimal partition val-
ues that can be achieved by symmetric and asymmetric partition schemes, respectively.
Clearly, OPTasym/OPTsym ≥ 1. However, we are also interested to establish a tight
upper bound on this ratio.

Lemma 6. Given a matrix partition instance in which A and p are general, the ratio
OPTasym/OPTsym ≤ m. Furthermore, there are instances for which the ratio can be
arbitrarily close to m.

5 An Application: Signaling in Take-It-Or-Leave-It Sales

In this section, we formally model the application of signaling in take-it-or-leave-it
sales, and explain its connection to our asymmetric matrix partition problem. Later on,
we discuss the previous literature on signaling and some of our modeling decisions.

5.1 The model

A probabilistic single-item sale is formally depicted by a valuations matrixA ∈ Rn×m
+ ,

and a probability distribution p over its columns. More precisely, there are n agents and
m distinct indivisible items. Each entry Aij of the matrix captures the valuation of the
row-agent i for the column-item j. We assume that each agent knows her valuation
vector but is unaware of the rest of the valuation matrix. A single item j is chosen by
nature according to the distribution p and then offered for sale. This one-time sale is
conducted via a personalized take-it-or-leave-it rule: The seller gives a take-it-or-leave-
it offer to some agent i. If the selected agent is interested, the chosen item is sold to her
for the suggested price.

A signaling scheme. Although the agents know the distribution p, they do not know
its actual realization, which is only observed by the seller. In an attempt to increase her
expected revenue, the seller may partially reveal the realization to the agents. This is
performed via the following asymmetric signaling scheme: For every agent i, the seller



partitions the items into a collection of pairwise disjoint subsets Si1∪̇ · · · ∪̇Siki
= [m],

and reports this partition to agent i; we denote the partition of agent i by Si. Crucially,
the seller can use different partitions for different agents, i.e., a buyer-specific signaling
scheme. We emphasize that the seller decides on a signaling scheme prior to nature’s
random choice of an item. When item j is randomly chosen, every agent i is signaled
with the subset Sik that contains j. The agent can then update her belief to the proba-
bility distribution p conditioned on the choice of some item in Sik. In other words, each
agent i knows that none of the items in [m] \ Sik was chosen, and can calculate the
conditional probability P(j : Sik) = pj/P(Sik), for every j ∈ Sik.

The optimization problem. Consider some probabilistic single-item sale 〈A, p〉 and a
signaling scheme S = (S1, . . . ,Sn). Clearly, the maximal take-it-or-leave-it offer that
agent i will accept under the signal Sik is given by Ep[Aij : Sik]. Therefore, given an
asymmetric signaling scheme S, when item j is randomly chosen, the seller will choose
to make a take-it-or-leave-it offer to agent i that maximizes Ep[Aij : Sik], where Sik

is the subset that contains j for agent i. In what follows, we denote by Si(j) the subset
Sik of agent i that contains j. Hence, the expected revenue of the seller is given by

∑
j∈[m]

pj ·max
i∈[n]

{ ∑
`∈Si(j)

P(` : Si(j))·Ai`

}
=
∑
j∈[m]

pj ·max
i∈[n]

{∑
`∈Si(j) p`Ai`∑

`∈Si(j) p`

}
. (1)

This raises the following combinatorial optimization problem: given a probabilistic
single-item sale 〈A, p〉, construct the asymmetric signaling scheme S that maximizes
the expected revenue.

We believe that the mapping of the above problem to the asymmetric matrix par-
tition problem is straightforward. Yet, we wish to emphasize that the expression that
is maximized in Equation 1 is essentially the smoothed value A′ij , which was defined
when we formalized the problem.

5.2 Related work

The literature on signaling in economics is very broad. Our approach can be viewed as
related to the study of strategic information transmission, originated in the seminal work
of Crawford and Sobel [2]. More specifically, our approach deals with the idea that a
seller knows some information about the valuations of the buyers, via information about
the item, and may use strategic information transmission to exploit this knowledge [11].
As in that work, our model depart from the classic literature of Milgrom and Weber [12,
13], who showed the superiority of full revelation of information. Information revela-
tion in online markets has been recently studied also in [9], where it is shown that in an
environment with multiple publishers, a publisher may prefer not to share user infor-
mation with the advertiser, due to information leakage, where the advertiser may target
the same user through a cheaper publisher. Our approach has some of the flavor of the
work on the value of information in conflicts [10]. One special distinction of the current
work is its focus on algorithmic issues.

This work is also closely related to the study of revenue maximization via signaling
in second-price auctions [7, 3, 4, 14]. The are few fundamental differences between the



model considered by those papers and ours. First, rather than a take-it-or-leave-it sale,
the sale is conducted by means of a second-price auction; i.e., each agent places her bid
and the chosen item is sold to the bidder that placed the highest bid for the price of the
second highest bid. Second, rather than a buyer-specific asymmetric signaling scheme,
the signaling is performed via a symmetric partition, where the auctioneer partitions the
items into pairwise disjoint clusters and reports this partition to all the bidders.

A point of interest in our approach is the assumption of unawareness. Classical eco-
nomic and game-theoretic approaches assume that buyers are aware of other buyers and
the take-it-or-leave-it offers they may be given. As a result, the (deduced) probabilistic
information that each buyer holds about the item may be affected by her awareness to
the cases when she is given an offer versus the cases other buyers are given an offer.
While this approach is natural, we believe it is interesting to consider the complemen-
tary attitude of competition-unaware buyers, who disregard the existence of other buy-
ers. This approach clearly gives much power to the seller. Indeed, the fact that decision-
makers may be unaware of aspects of a strategic situation, and in particular, of actions
and even existence of other players is a puzzle game theorists were concerned with.
Most efforts so far have been concentrated on trying to find general models that incor-
porate such reasoning. For an example of the modeling challenges encountered when
considering unaware agents, one may consult the work of Halpren and Rego [8] on ex-
tensive games with possibly unaware players, or the work by Feinberg [5] on games
with unawareness. Our approach is complementary, as it emphasizes the combinatorial
and algorithmic issues that arise in such settings.

5.3 Awareness vs. unawareness

A natural question one may ask is what would be the ramifications when considering
a setting in which the agents are aware of one another, and more generally, when the
whole setting is common-knowledge. Interestingly, in what follows, we observe that
in the latter case, the seller maximizes her revenue by fully revealing all information,
essentially revealing the realization of the probabilistic item. This result is in the spirit
of the famous ’Linkage Principle’ of Milgrom and Weber [12, 13].

In a competition-aware model, each agent is aware of the valuations of other agents
and the signaling scheme that the seller runs. As a result, any agent can calculate, for
each item, which agent will be given the take-it-or-leave-it offer and in which price.
Suppose some agent i is signaled a subset S. How would she evaluate her expected
value? Clearly, agent i should compute the expectation only over the items j ∈ S such
that she would be given the take-it-or-leave-it offer. For that reason, when analyzing
an asymmetric partition scheme in the competition-aware model, it can be assumed
without loss of generality that if some subset is a winning subset for some item then it
is a winning subset for all its items. One can also verify that this implies that there is
only one winning subset for each agent. Using these observations, we next show that in
the competition-aware model, an optimal signaling scheme obtains the same expected
revenue as a signaling scheme that is symmetric and partitions the items into singleton
subsets. Conceptually, this implies that the best interest of the seller is to fully reveal
which item arrived when the buyers are competition-aware.



Lemma 7. In the competition-aware model, the optimal asymmetric signaling scheme
obtains the same expected revenue as a signaling scheme that is symmetric and parti-
tions the items into singleton subsets.
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