
Improved parallel approximation of a class of integer

programming problems∗

Noga Alon† Aravind Srinivasan‡

Abstract. We present a method to derandomize RNC algorithms, converting them to NC algorithms.

Using it, we show how to approximate a class of NP -hard integer programming problems in NC, to

within factors better than the current-best NC algorithms (of Berger & Rompel and Motwani, Naor &

Naor); in some cases, the approximation factors are as good as the best-known sequential algorithms, due

to Raghavan. This class includes problems such as global wire-routing in VLSI gate arrays and a gener-

alization of telephone network planning in SONET rings. Also for a subfamily of the “packing” integer

programs, we provide the first NC approximation algorithms; this includes problems such as maximum

matchings in hypergraphs, and generalizations. The key to the utility of our method is that it involves

sums of superpolynomially many terms, which can however be computed in NC; this superpolynomiality

is the bottleneck for some earlier approaches, due to Berger & Rompel and Motwani, Naor & Naor.

Keywords. De-randomization, integer programming, parallel algorithms, approximation algo-

rithms, rounding theorems, randomized rounding, linear programming, linear relaxation, com-

binatorial optimization.

∗A preliminary version of this work appeared in the Proc. International Colloquium on Automata, Languages

and Programming, 1996, pages 562–573.
†School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University,

Tel Aviv 69978, Israel. Part of this work was done while visiting the Institute for Advanced study, School of

Mathematics, Princeton, NJ 08540, USA, supported in part by the Sloan Foundation, grant No. 93-6-6 and by

the Fund for Basic Research administered by the Israel Academy of Sciences. E-mail: noga@math.tau.ac.il.
‡Dept. of Information Systems & Computer Science, National University of Singapore, Singapore 119260,

Republic of Singapore. Work done in parts at DIMACS (supported in part by NSF-STC91-19999 and by support

from the N.J. Commission on Science and Technology), at the Institute for Advanced Study, Princeton (supported

in part by grant 93-6-6 of the Alfred P. Sloan Foundation), and at the National University of Singapore. E-mail:

aravind@iscs.nus.sg.

1

1 Introduction

Derandomization is the development of general tools to derive efficient deterministic algorithms

from their randomized counterparts. We present here a method to derandomize a class of ran-

domized parallel algorithms. This tool is then used to derive good NC approximation algorithms

for a class of integer programming problems, matching the approximation factors of the best-

known RNC algorithms (and, in some cases, the best-known sequential algorithms also) and

improving on the guarantees provided by known NC algorithms.

Research in derandomization is motivated by at least three reasons. First, though random-

ized algorithms perform well empirically, the fact that computers do not use “real” random

sources prevents randomized algorithms from having a sound footing; indeed, it has been shown

that if randomized algorithms such as randomized Quicksort are not implemented carefully when

used with some existing pseudorandom generators, their expected running times can be high

(Karloff & Raghavan [12]). In fact, there have been reports of Monte-Carlo simulations giving

quite different results under different random-number generators (Ferrenberg, Landau & Wong

[8]), and direct implementations of certain RNC algorithms for list ranking (Hsu [10]) and

graph connectivity (Hsu, Ramachandran & Dean [11]) taking longer time than expected due

to the pseudorandom nature of computer-generated “random” bits. Second, especially in criti-

cal applications, it is preferable to have absolute certainty if possible, rather than probabilistic

guarantees. Finally, such research makes progress toward settling the complexity-theoretic ques-

tion of how much computational power can be provided by randomness. In addition, the useful

mathematical tools arising from research in this area have also provided it further impetus.

In this paper, we present a simple tool to convert a class of RNC algorithms to NC algo-

rithms, building on some existing tools for derandomization (Alon & Naor [4], Schmidt, Siegel &

Srinivasan [22]). A key property of this tool is that while, as in Luby [14], Berger & Rompel [5]

and Motwani, Naor & Naor [16], it uses the method of conditional probabilities in parallel, its

structure enables it to handle a conditional estimator that is a sum of superpolynomially many

terms, which indeed is a bottleneck for the techniques of [5, 16]. The bottleneck arises from the

fact that the work of [14, 5, 16] essentially assigns one processor to each term of the conditional

estimator, thus giving them the power of handling estimators which have only polynomially

many terms. We expect our method to be useful in other contexts too.

The first application of our method is to approximate a class of integer programming (IP)

problems–minimax integer programs–by solving their linear programming (LP) relaxations (ap-

proximately in parallel, via Luby & Nisan [15]) and then employing randomized rounding as in

Raghavan & Thompson [21]; our task is to do the rounding in NC.

2

For any non-negative integer k, let [k] denote the set {1, 2, . . . , k}.

Definition 1 A minimax integer program (MIP) in our case has variables W and {xi,j : i ∈

[`], j ∈ [ni]}, for some integers {ni}. Let N =
∑
i∈[`] ni and let x denote the N -dimensional

vector of the variables xi,j (arranged in any fixed order). An MIP seeks to minimize W , subject

to:

(i) Equality constraints: ∀i ∈ [`]
∑
j∈[ni] xi,j = 1;

(ii) a system of linear inequalities Ax ≤ ~W , where A ∈ [0, 1]m×N and ~W is the m-dimensional

vector with the variable W in each component;

(iii) Integrality constraints: xi,j ∈ {0, 1} ∀i, j, and

(iv) W can be any non-negative real.

To see what problems MIPs model, note, from constraints (i) and (iii) of MIPs, that for all

i, any feasible solution will make the set {xi,j : j ∈ [ni]} have precisely one 1, with all other

elements being 0; MIPs thus model many “choice” scenarios. Consider, e.g., global routing in

VLSI gate arrays [21]; this can be generalized as follows (Chapter 3 of Raghavan [19]). We

are given an undirected graph G with m edges, a set of pairs of vertices {(si, ti) : 1 ≤ i ≤ `},

and ∀i ∈ [`], a set Pi of paths in G, each connecting si to ti. The objective is to connect each

si with ti using exactly one path from Pi, so that the maximum number of paths which use

any edge in G, is minimized. An MIP formulation is obvious, with xi,j being the indicator

variable for picking the jth path in Pi. Similarly, the vector-selection problem of [21], and many

discrepancy-type problems, are all modeled by MIPs; many MIP instances, e.g., global routing,

are NP-hard. This has led to the study of efficient approximation algorithms for MIPs. A useful

approach in this regard has been to start with the linear programming (LP) relaxation of a given

MIP, which lets xi,j ∈ [0, 1] for each i, j, as opposed to the stringent xi,j ∈ {0, 1}. Thus, such

an LP relaxation is a linear program and hence is solvable in polynomial time.

When the optimum C∗ of the LP relaxation of a given MIP is at most O(logm), we present

an NC approximation algorithm for the MIP which has a better approximation guarantee than

does previous work [5, 16], and matches that of the known sequential method (Raghavan [20]),

to within a (1 + o(1)) factor. Concretely, we derive NC algorithms that deliver integral feasible

solutions with objective function value

O(
logm

max{1, log((logm)/C∗)}
),

for families of MIP instances where C∗ is O(logm). However, a better existential result–that

the integrality gap of the LP relaxation of sparse MIPs is better than that proven by [20]–is

known (Srinivasan [24]); the results of [20] are the current-best constructive approximations. If

C∗ = O(logm), we always improve on the approximation factor of [5, 16] by at least a logεm

3

factor for some fixed ε > 0. This improvement increases with decreasing C∗; e.g., if C∗ = O(1),

the improvement is Θ(logεm log logm).

As another instance of MIPs, consider a generalization of the problem of telephone network

planning in bidirectional SONET rings: the “ring loading problem” (Schrijver, Seymour &

Winkler [23]). Given a ring and a traffic demand between every pair of vertices, all traffic

between them must be routed one way or the other around the ring. For a given set of traffic

demands, the problem is to route the traffic so that the maximum traffic on any link is minimized;

the generalization to arbitrary networks involves, for every pair of vertices, an allowed set of

paths of which exactly one must be chosen. In this case, simple scaling shows that our method

delivers better approximation factors than does [5, 16], if the optimum objective function value

is within an O(logm) factor of the maximum traffic demand between any pair of vertices (m is

the number of edges in the network).

Our method also applies to the class of packing integer programs (PIPs), which model many

problems in combinatorial optimization; most of these again are NP -hard. A PIP seeks to

maximize cT ·x subject to Ax ≤ b, where A ∈ [0, 1]m×n, b is an m-vector and c is an n-vector such

that the entries of b and c are non-negative, with the integrality constraint xj ∈ {0, 1, . . . , dj}

for every entry xj of x; some of the djs could also be infinite. Here in fact for a subclass (wherein

which each bi is at most O(log(m+n))), we derive the first NC approximation algorithms with

any “reasonable” performance guarantee; our guarantees again match those of the best-known

RNC algorithms (these RNC algorithms are directly got by combining [15] and [21]). However,

in terms of sequential algorithms, better approximation guarantees are known now (Srinivasan

[25, 24]).

We now describe our approximation results for packing; our method works best when each

bi is at most O(log(m + n)). Analogously to MIPs, the LP relaxation of a PIP lets each

xj be a real lying in [0, dj]. Suppose C∗ is the optimal objective function value of the LP

relaxation of a given PIP; note that C∗ is at least as big as the optimal value of the PIP. For

PIPs, the work of [21, 20] presents sequential algorithms that deliver integral solutions of value

Ω(C∗/m1/B) and Ω(C∗/m1/(B+1)) respectively, if A ∈ [0, 1]m×n and A ∈ {0, 1}m×n. If each bi

is at most O(log(m + n)), we present an NC algorithm that matches this bound. This is the

first NC approximation algorithm with any reasonable performance guarantee when the bis are

all O(log(m + n)) (the algorithms of [5, 16] will not necessarily satisfy the constraints, even if

bi = O(log(m+ n)) for a few values of i). On the other hand, the results of [5, 16] are generally

better when all the bis grow faster than log(m+ n).

An important class of PIPs is matching problems on hypergraphs. Recall that a hypergraph

H = (V,E) is a collection of subsets E (hyperedges) of a finite set V (vertices). A matching

4

in H is a collection of hyperedges from E such that no vertex occurs in more than one edge;

a basic and well-known NP -hard problem is to find a matching of maximum cardinality in the

given hypergraph. A generalization of this notion is that of k-matchings, for integral k ≥ 1 (see

Lovász [13]): here, we allow each vertex to be present in at most k edges in the subcollection. It

is easily seen that the k-matching problem can be written as a packing integer program with the

right-hand-side constants bi all equaling k and thus our method applies if k = O(log(m + n)).

Thus even for the special (and basic) case of k = 1 where we look for a maximum matching,

our method yields the first NC approximation algorithms with any reasonable performance

guarantee; we present integral feasible solutions of value Ω(C∗/
√
m), where m is the number of

vertices in the hypergraph. This matches the sequential bound of [20, 1]. Similar results hold

for k-matching, when k = O(log(m+ n)).

Returning to the general packing formulation, our method works even if all the bis are not

O(log(m+ n)), via straightforward scaling–dividing constraint i by bi/(c log(m+ n)) so that bi

now equals c log(m+ n), for some desired constant c. Thus if some of the bis are O(log(m+ n))

and some are ω(log(m + n)) (growing strictly faster than log(m + n)), we still get the first

reasonable NC approximation algorithms. However, for such general packing integer programs,

we get approximation ratios which are within any desired constant c > 1 of the sequential

guarantees of [20]; we do not see how to improve this to (1 + o(1)).

Thus, the contributions of this work are to present a parallel derandomization technique and

to apply it to derive improved NC approximation algorithms for a class of IP problems; some

of these are the first NC approximation algorithms for a class of problems. One such important

problem is the NP -hard problem of finding maximum matchings in hypergraphs, for which our

performance guarantee matches that of the current-best RNC algorithms; we get the first NC

algorithms with any reasonable performance guarantee for this and related problems. We also

expect that the derandomization tool will be used and extended in the future in other domains.

2 Preliminaries

Notation. We denote “random variable” by “r.v.”. For real x and any positive integer r, we

define, as usual,
(x
r

) .= x(x−1)···(x−r+1)
r! ;

(x
0

) .= 1.

We start with a recent tool [22]–a new look at the Chernoff-Hoeffding (CH) bounds for tail

probabilities [7, 9]. We define, for z = (z1, z2, . . . , zn) ∈ <n, a family of symmetric polynomials

Sj(z), j = 0, 1, . . . , n, where S0(z) ≡ 1, and for 1 ≤ j ≤ n, Sj(z)
.=
∑

1≤i1<i2···<ij≤n zi1zi2 · · · zij .

Then, a small extension of a basic theorem of [22] that we will need is

5

Theorem 1 ([22]) Given random variables X1, . . . , Xn ∈ [0, 1], let X =
∑n
i=1Xi and µ =

E[X]. (a) For any δ > 0, any nonempty event Z and any k ≤ µ(1 + δ), Pr(X ≥ µ(1 + δ)|Z) ≤

E[Yk|Z], where Yk = Sk(X1, . . . , Xn)/
(µ(1+δ)

k

)
. (b) If the Xis are independent and k = dµδe,

then Pr(X ≥ µ(1 + δ)) < E[Yk] ≤ G(µ, δ), where

G(µ, δ) =

(
eδ

(1 + δ)1+δ

)µ
.

Proof. Suppose r1, r2, . . . rn ∈ [0, 1] satisfy
∑n
i=1 ri ≥ a. Then, a simple algebraic proof is

given in [22], for the fact that for any non-negative integer k ≤ a, Sk(r1, r2, . . . , rn) ≥
(a
k

)
. (This

is immediate if each ri is either 0 or 1, and takes a little more work if ri ∈ [0, 1].) This, then,

clearly holds even given the occurrence of any (positive probability) event Z. Hence,

Pr(X ≥ µ(1 + δ)|Z) ≤ Pr(Yk ≥ 1|Z) ≤ E[Yk|Z],

where the second inequality follows from Markov’s inequality. A proof of (b) is given in [22].

2

A simple but crucial property of the functions Sk is as follows. Suppose random variables

X1, X2, . . . , Xn take on only non-negative values. Then for any integer k ≥ 1, if we expand

E[Sk(X1, . . . , Xn)] as a sum of
(n
k

)
terms by applying linearity of expectation, each term in the

sum is non-negative. More precisely, focus on a generic term E[Xi1Xi2 · · ·Xik] in the expansion

of E[Sk(X1, . . . , Xn)]. Suppose that for some parameter ε > 0, we are able to show that this

generic term is within a relative error of ±ε from the value of such a term, had the Xi been

independent (with the same marginals–individual distributions–as the variables Xi on hand).

Then, it is easy to see that E[Sk(X1, . . . , Xn)] is at most (1 + ε) times what it would be in the

“independent” case; this follows easily from the fact that the coefficient of E[Xi1Xi2 · · ·Xik] in

E[Sk(X1, . . . , Xn)] is non-negative (one). Such a property is not enjoyed by other tools such as

the k-th moment inequality, that are used in derandomization approaches. This is one of the

main reasons for the functions Sk helping us, as will be borne out by the analyses of Sections 4

and 5.

Definition 2 For x ∈ (0, 1), define D(µ, x) such that G(µ,D(µ, x)) = x (D is well-defined).

The following fact is easily checked; we will primarily be interested in its first case in this paper.

Fact 1 There is a constant c > 0 such that D(µ, x) = Θ(log(x−1)/µ
log(log(x−1)/µ)

) if µ ≤ c ln(x−1), and

Θ(
√

log(x−1)
µ) otherwise.

A simple but very useful fact we will need is that though Sk(r1, . . . , rn) has superpolynomially

many (in n) terms if k = k(n)→∞, it is efficiently computable:

6

Lemma 1 For any ~r = (r1, . . . , rn) and 1 ≤ k ≤ n, Sk(r1, . . . , rn) is computable in NC.

Proof. The coefficient of zn−k in the polynomial f~r(z)
.=
∏n
i=1(z− ri) is (−1)kSk(r1, . . . , rn).

Evaluating f at (n + 1) distinct points and solving a system of linear equations gives us

Sk(r1, . . . , rn). 2

We also recall a key property of small-bias probability spaces (Naor & Naor [17]; see also

Alon, Goldreich, H̊astad & Peralta [3], Alon, Bruck, Naor, Naor & Roth [2], and Chari, Rohatgi

& Srinivasan [6]): a “d-wise ρ-biased” sample space S for n-bit vectors has the property that if
~X = (X1, . . . , Xn) is sampled uniformly at random from S, then

∀I ⊆ [n], |I| ≤ d, ∀b1, b2, . . . b|I| ∈ {0, 1} |Pr ~X∈S [∧i∈IXi = bi]− 2−|I|| ≤ ρ. (1)

Such spaces of cardinality O((d log n/ρ)2), for instance, are constructed explicitly in [3]; these

simplify the constructions of [17].

3 LP relaxations and randomized rounding

We quickly recapitulate the idea of randomized rounding now [21]; consider, e.g., the problem

of global routing in VLSI, defined in the introduction. Letting rij be the jth path in Pi and xij

be the indicator variable for path rij being chosen to join si and ti, we get the minimax integer

program

(IP1) Minimize C, such that

xij ∈ {0, 1}, ∀i, 1 ≤ i ≤ `,
∑
j

xij = 1 (selecting exactly one path), and (2)

∀e ∈ E,
∑
e∈rij

xij ≤ C. (3)

The LP relaxation (LP1) of (IP1), relaxes each xij to lie in [0, 1]. Solve (LP1), let {x∗ij} be

the values of the variables in the optimal solution, and let C∗ be the optimal objective function

value. The key randomized rounding idea of [21] is, for each i independently of the others,

to choose the path rij with probability x∗ij . (The extension of this idea to general MIPs is

obvious: independently for each i, randomly round exactly one xi,j to 1, guided by the “prob-

abilities” {x∗i,j}.) Now for any edge e ∈ E, Pr(More than C∗(1 + D(C∗, 1/m)) paths use e) <

1/m from the definition of D and thus,

Pr(∃e ∈ E : More than C∗(1 +D(C∗, 1/m)) paths use e) < m/m = 1; (4)

hence, there exists a rounding method with objective function value at most C∗(1+D(C∗, 1/m)).

This is derandomized sequentially in [20] via the method of conditional probabilities.

7

What about the parallel setting? Suppose we are given any positive linear program (PLP)

of input size N–an LP problem where the coefficient matrix, the r.h.s. vector, and the objective

function coefficients are all non-negative, with the variables also constrained to lie in nonnega-

tive ranges. Given any ε > 0 with ε = log−O(1)N , Luby & Nisan [15] show how to find in NC,

a feasible solution to (PLP) (if one exists), at which the objective function value is within a

relative error of ±ε from optimal. Thus for the global routing problem, for instance, by trying

out all values 1, 2, . . . , ` (and a finer range, if C∗ is very small: note that C∗ ≥ maxi∈[`]1/|Pi|) for

C in parallel, a fractional solution which is at most (1 + log−Θ(1)(m+n)) the optimal fractional

solution, can be found in NC. We need a little work here, to first transform (LP1) to a packing

formulation, to apply the algorithm of [15]. Given a candidate value a ≤ ` for C, consider the

linear program

(LP1’) Maximize
∑
i,j xi,j subject to:

(i) 0 ≤ xi,j ≤ 1 for each i, j;

(ii) ∀i,
∑
j xi,j ≤ 1, and

(iii)
∑
e∈ri,j xi,j ≤ a for each e ∈ E.

It is easily checked that this is a formulation equivalent to (LP1), if we wish to try out the

case C = a. In all our IP applications, finding such an approximately good fractional solution

is handled similarly.

But the rounding in parallel is trickier, and that is where we apply our method. To our

knowledge, the best current method is the parallel lattice approximation algorithm of [16]. Given

a matrix A ∈ [0, 1]m×n and a vector p ∈ [0, 1]n, the lattice approximation problem is to find a

lattice point q ∈ {0, 1}n such that ||A · (p− q) ||∞ is “small” [20]. Letting ci = (Ap)i, [16] shows

how to find q ∈ {0, 1}n in NC such that for each i, |A·(p−q)| = O(c1/2+ε
i

√
logm+log1/(1−2ε)m),

for any fixed ε > 0. This is not as good as in the sequential domain. In particular for our problem,

we can see that randomized rounding and its sequential derandomization [20] guarantees a

solution with value C1 = C∗(1 + D(C∗, 1/m)). Note from Definition 2 and Fact 1 that if

C∗ = o(logm), then C1 = C∗ +O(logm
log(logm/C∗)); if C∗ = a logm, then C1 ≤ C∗(1 + g(a)), where

g is a positive decreasing function which goes to 0 as a→∞.

Thus, C1 is better than the value C∗ + O((C∗)1/2+ε
√

logm + log1/(1−2ε)m) guaranteed by

[16]; similar remarks hold for all MIPs. We demonstrate our method by showing how to match

the sequential approximation guarantee of [20] (to within a (1 + o(1)) factor) in parallel, if

C∗ = O(logm). However, lattice approximation also has an advantage over our approach as it

8

bounds the deviation of (Aq)i from (Ap)i both from above and from below.

4 Approximating minimax integer programs

We now illustrate our method by showing how to achieve an objective function value of C3 =

C2(1+o(1)) in parallel for global routing, if C∗ = O(logm) (C2
.= C∗(1+D(C∗, 1/(2m))) here).

Note that C3 = C1(1 + o(1)). We discuss global routing just for concreteness–our results hold

for all MIPs.

For the randomized rounding, we may assume that each x∗ij is a rational of the form a/2b,

where b = O(log(m + n)); as in [16], it is easily seen that such a perturbation affects C∗ little.

Thus, for each i, we may partition R
.= {0, 1, . . . , 2b − 1} into subsets Sij , with |Sij | = 2bx∗ij ;

we imagine picking a uniformly random b-bit number yi independently for each pair (si, ti), and

choose path rij for (si, ti) iff yi ∈ Sij . For each edge e ∈ E, note that inequality (4) refers to a

sum of independent random bits, one for each (si, ti) path possibly using e; each such random

bit Zi (corresponding to the (si, ti) path using e) will be one iff yi lies in some fixed subset of

R. Looking at our problem slightly more generally as follows, sheds more light on our other

applications as well.

The O(log n)th moment estimator problem. We are given n independent r.v.s y1, . . . , yn,

each of which takes values uniformly in R = {0, 1, . . . , 2b− 1} where b = O(log(m+n)). We are

also given, for each j ∈ [n], a finite set of binary r.v.s {zjt : t = 1, 2, . . .} where zjt is 1 iff yj lies

in some fixed subset Rjt of R. Also given are m random variables

Ci =
n∑
j=1

aijzj,f(i,j), i ∈ [m], (5)

where aij ∈ [0, 1] and f is some arbitrary function. Now given that E[Ci] = ci = O(log(m+ n))

for each i, the problem is to find a setting for the yi’s in NC, such that

Ci ≤ di
.= ci(1 +D(ci, 1/(2m)))(1 + o(1)) for each i.

Letting yj = yj,b−1yj,b−2 · · · yj,0 for each j, we will show how to set, in stages s = 0, 1, . . . , b− 1,

the vector vs = (y1,s, y2,s, . . . , yn,s); since b = O(log(m + n)), the sequentiality in the stages is

fine.

For each i ∈ [m], let ki = dciD(ci, 1/(2m))e; note, crucially, that

ki = O(log(m+ n)), since ci = O(log(m+ n)). (6)

Let B denote the “bad” event (∃i ∈ [m] : Ci ≥ di). By Theorem 1(a),

Pr(B|Z) ≤ E[X|Z] for any nonempty event Z, (7)

9

where X is defined by the pessimistic estimator

X =
m∑
i=1

(
Ski(ai1z1,f(i,1), ai2z2,f(i,2), . . . , ainzn,f(i,n))/

(
di
ki

))
. (8)

Given any positive ε = (m + n)−O(1), we now show how to set the vectors v0 := w0, v1 :=

w1, . . . , vb−1 := wb−1 in that order, so that the desired inequalities hold, up to some function

of ε. Let k = maxi ki. Fix a k-wise ρ = (2−kε) biased sample space for n-bit vectors, S. Note

that |S| = poly(m,n), since 2k/ε is; this is crucially where the O(log(m + n)) bound on each

ci is needed (see (6)). For t = 0, 1, . . . , b − 1, let Vt
.= (vt, . . . , vb−1), Ut and US denote the

uniform distributions on {0, 1}n(b−t) and S respectively, and let BUt
.= US ×Ut+1. We will pick

w0, w1, . . . such that for t = −1, 0, . . . , b− 1,

E[X|v0 = w0, . . . , vt = wt, and Vt+1 picked according to Ut+1] ≤ (1/2)(1 + ε)t+1. (9)

From (7), we see that establishing this for t = b−1 will prove the algorithm if ε = o(1/ log(m+n)),

since (1/2)(1+ε)b < 1. Inequality (9) is established by induction on t, as in [4]; the basis t = −1

holds, since by definition of D and Theorem 1, E[X|V0 picked according to U0] ≤ 1/2. Assume

that (9) is true for t; we now show how to pick wt+1 ∈ S such that it holds for t + 1. Suppose

we pick Vt+1 according to BUt+1. Focus on some term

Ski(ai1z1,f(i,1), ai2z2,f(i,2), . . . , ainzn,f(i,n))

in X, which is the sum of
(n
ki

)
sub-terms. Then, from (1), we can see that the expectation of

each such sub-term is at most

(2−ki + ρ)/2−ki ≤ (1 + ε)

times what it would have been, had Vt+1 been picked according to Ut+1. Thus by the induction

hypothesis, E[X|v0 = w0, . . . , vt = wt, and Vt+1 picked according to BUt+1] ≤ (1/2)(1 + ε)t+1

and hence, ∃w ∈ S : E[X|v0 = w0, . . . , vt = wt, vt+1 = w, and Vt+2 picked according to Ut+2] ≤

(1/2)(1 + ε)t+1. Finding w reduces to computing

E[X|v0 = w0, . . . , vt = wt, vt+1 = w, and Vt+2 picked according to Ut+2] (10)

for each w ∈ S and picking the w with the smallest conditional expectation; we can search over

all w ∈ S in parallel since |S| = poly(m,n). All this is as in [4].

The key point now is that each term

E[Ski(ai1z1,f(i,1), . . . , ainzn,f(i,n))|v0 = w0, . . . , vt = wt, vt+1 = w, Vt+2 picked according to Ut+2]

(11)

10

in (10) can be computed efficiently in NC as follows. For each zi,j , pij
.= Pr(zi,j = 1|v0 =

w0, . . . , vt = wt, vt+1 = w, and Vt+2 picked according to Ut+2) can be computed easily in NC.

Now, (11) equals

Ski(ai1p1,f(i,1), ai2p2,f(i,2), . . . , ainpn,f(i,n)),

since vt+2, . . . vb−1 are assumed to be picked independently. Thus, invoking Lemma 1, (11) and

hence (10), can be computed in NC. Therefore, we get

Theorem 2 The O(log n)th moment estimator problem is in NC.

It is not hard to see that for general MIPs, (5) has to be generalized slightly to

Ci =
n∑
j=1

qj∑
k=1

aijkzj,f(i,j,k), i ∈ [m],

where, once again, aijk ∈ [0, 1] and f is some arbitrary function. The above ideas for the

O(log n)th moment estimator problem easily extend to this generalization, and we get

Corollary 1 Given any MIP, let C∗ be its fractional optimum. If C∗ = O(logm), then a

feasible integral solution with objective function value at most C∗(1 +D(C∗, 1/(2m)))(1 + o(1)),

can be found in NC.

Another problem problem modeled by MIPs is a generalization of the problem of telephone

network planning in bidirectional SONET rings: the “ring loading problem” (Schrijver, Seymour

& Winkler [23]). Given a ring and a traffic demand between every pair of vertices, all traffic

between them must be routed one way or the other around the ring. For a given set of traffic

demands, the problem is to route the traffic so that the maximum traffic on any link is minimized;

the generalization to arbitrary networks involves, for every pair of vertices, an allowed set of

paths of which exactly one must be chosen. In this case, suppose f is the maximum traffic

demand between any pair of vertices, and m denotes the number of edges in the network. We

can formulate an IP for this problem as above, and scale down the inequality corresponding

to each edge by a factor of f , to ensure that the coefficient matrix has entries in [0, 1]. Thus,

our method delivers better approximation factors here than does [16], if the optimum objective

function value is within an O(logm) factor of f .

5 NC approximation of a class of packing integer programs

Applications similar to those of Section 4 hold for packing integer programs where in fact for a

subclass, we derive the first NC approximation algorithms with any “reasonable” performance

guarantee; our guarantees again match those of the sequential algorithms in [20, 18], to within

11

(1 + o(1)) factors. They also match the guarantee of the best-known RNC algorithm, which

follows directly by combining [15] and [21]; however as pointed out before, there are sequential

algorithms now with a better performance guarantee [25]. As in [20], we assume without loss

of generality that the entries of c are in [0, 1]. We also assume, for simplicity, that xi ∈ {0, 1}

for each i; our results also hold for the general case where xi ∈ {0, 1, . . . , di}, for some non-

negative integer di (which is possibly infinity). Our method applies when each bi is at most

O(log(m+n)), matching the sequential guarantee. (If, for instance, the entries of A and c are in

{0, 1} and if each entry of b is the same positive integer k, we get the simple k-matching problem

on hypergraphs [13], mentioned in the introduction. See Aharoni, Erdős and Linial [1] also.)

Given such an NC algorithm, why can’t we use it for arbitrary packing problems (with

no required bound on the bis), by simply scaling down constraint i by a suitable value if bi >

c log(m + n) for some desired constant c? The answer is that the tail bounds will not be good

enough if we scale down: note, from Fact 1, that D(µ1, x) > D(µ2, x) if µ1 < µ2. Thus, we

assume for now that bi = O(log(m+n)) for each i, and consider the general case in Theorem 4.

The idea of [21, 20] is to solve the LP relaxation of (PIP) as usual, then scale down each LP

optimal variable by a suitable positive value r so that after a randomized rounding is performed,

Pr(all constraints are satisified and the objective function does not decrease by “too much”) >

0. Let C∗ be the value of the LP optimum. If the CH bounds say that for a sum X of independent

r.v.s taking values in [0, 1] with E[X] = µ, Pr(X ≤ E[X](1− F (µ, x))) < x for 0 < x < 1, then

picking r ≥ 1 such that r ≥ maxi∈[m](1 +D(bi/r, ε/(m+ 1))) would ensure, for any ε > 0, that

Pr(all constraints satisfied and objective function value ≥ (C∗/r)(1 − F (C∗/r, ε/(m + 1)))) ≥

1 − ε; the reasoning is similar to that for global routing. (Such an r can easily be seen to

exist, since the function t 7→ D(bi/t, ε/(m+ 1)) decreases monotonically to zero, in the interval

t ∈ (1,∞).)

In the parallel setting, we can find a feasible solution {x∗i : i ∈ [n]} to within (1−log−O(1)(m+

n)) of C∗ via [15], as before. Now suppose bi = O(log(m + n)), for each i. Since the round-

ing produced by the approach of [16] can make the r.h.s. of the ith constraint as high as

log1+Ω(1)m (recall the discussion in Section 3), it will not necessarily satisfy the constraints,

even if bi = O(logm) for just one i. Let r be such that r ≥ maxi∈[m](1 + D(bi/r, 1/(m lnm))).

We also scale the values {x∗i } down by r and can assume, as before, that each x∗i /r is rational

with denominator 2b, where b = O(log(m+ n)). We show how to do the rounding in NC now,

by posing our problem as follows.

The O(log n)th moment estimator problem for packing. We are given n independent r.v.s

y1, . . . , yn, each of which takes values uniformly in R = {0, 1, . . . 2b−1} where b = O(log(m+n)).

12

We are also given, for each j ∈ [n], a binary r.v. zj , where zj is 1 iff yj lies in some fixed subset

Rj of R. Also given are (m+ 1) random variables

Gi =
n∑
j=1

aijzj , i ∈ [m], and H =
n∑
j=1

cjzj ,

where aij , cj ∈ [0, 1]. Now given that E[Gi] = gi = O(log(m+n)) for each i and that E[H] = h,

the problem is to find a setting for the yi’s in NC, such that

Gi ≤ hi
.= gi(1 +D(gi, 1/(m lnm)))(1 + o(1)) for each i, and H ≥ h−

√
h(1− 2/ lnm)−0.5.

We first show that such a setting exists. As before, let ki = dgiD(gi, 1/(m lnm))e (note, again,

that ki = O(log(m+n))), and k = maxi∈[m]ki. By Chebyshev’s inequality, Pr(H ≤ h−
√
h(1−

2/ lnm)−0.5) ≤ E[(H − h)2](1− 2/ lnm)/h. Let A and C denote

m∑
i=1

Ski(ai1z1, . . . ainzn)/

(
hi
ki

)
and (H − h)2(1− 2/ lnm)/h

respectively, and B denote the “bad event” (∃i : Gi ≥ hi, or H ≤ h −
√
h(1 − 2/ lnm)−0.5).

Then for any positive probability event Z,

Pr(B|Z) ≤ E[X|Z], where X .= A+ C;

X is our (pessimistic) conditional estimator now. From the definition of D, we see that E[A] ≤∑m
i=1(1/(m lnm)) = 1/ lnm; the fact E[(H − h)2] ≤ h implies that E[C] ≤ 1− 2/ lnm. Hence,

Pr(B) ≤ E[X] ≤ 1/ lnm+ 1− 2/ lnm < 1 and hence, a “good” setting for the yi’s exists.

How can we find such a good setting? Let yij , S, ρ, vt, Ut, US , and BUt be as for the O(log n)th

moment estimator problem. Then, as before, we can show, by induction on t, t = −1, 0, . . . , b−1,

how to pick v0 = w0, v1 = w1 . . ., such that

E[X|v0 = w0, . . . , vt = wt, and Vt+1 picked according to Ut+1] ≤ E[X] + a(t+ 1)2kρ, (12)

for some constant a > 0. We omit the details. Thus by picking ρ = (2ab2k lnm)−1, say, we can

ensure that E[X|v0 = w0, . . . , vb−1 = wb−1] < 1, implying a “good” setting for the yi’s.

Theorem 3 The O(log n)th moment estimator problem for packing is in NC. Thus, packing

integer programs with 0-1 variables and with the r.h.s. constants bounded by O(log(m+ n)) can

be approximated in NC to within a (1 + o(1)) factor of the sequential bounds of [20, 18].

Simple scaling allows us to handle general packing integer programs (without the constraints

on the r.h.s. constants) also. For any fixed c > 1 and given an arbitrary PIP, suppose we want

an NC approximation algorithm which produces a feasible solution that is at least 1/c times the

13

sequential guarantee. Fact 1 shows us a function h such that D((h(c) logm)/c, 1/(m lnm)) ≤

c − 1; thus if we have a sum X of independent r.v.s each taking values in [0, 1] such that

E[X] = (h(c) logm)/c, then Pr(X ≥ h(c) logm) ≤ 1/(m lnm). Thus if we scale down each

inequality with r.h.s. bi > h(c) logm by bi/(h(c) logm), then our above method will produce

a feasible solution in NC, which is at least 1/c times the sequential guarantee. Thus we can

handle general PIPs also, but only to within an arbitrarily small constant factor c > 1 of the

best-known sequential algorithms, as opposed to an (1 + o(1)) factor.

Theorem 4 For any constant c > 1, packing integer programs with 0-1 variables can be approx-

imated in NC to within an 1/c factor of the sequential guarantee of [20, 18].

6 Conclusions and Open Problems

We have presented a derandomization technique which provides good parallel approximation

algorithms for a family of positive linear programs; it would be interesting to find other such

applications. A basic way in which this technique is useful is that it is the first method which

allows superpolynomially many terms in the conditional estimator. However, a major limitation

of our technique is that it works best only when all terms in the conditional estimator are positive

(note that Sk involves a sum of positive terms, when its arguments are all positive). This is why

we cannot use other useful tools for upper bounding tail probabilities such as the k–th moment

inequality. In particular, our technique in its current form, cannot be used for approximating

covering integer programs, which seek to minimize cT · x subject to Ax ≥ b, where A ∈ <m×n+ ,

b ∈ <m+ , and c ∈ <n+, with the entries xi of x being constrained to be non-negative integers in

some range. It is an interesting open problem to come up with good techniques to approximate

covering integer programs well in parallel.

Another interesting direction is to come up with NC algorithms that match the improved

bounds for minimax, packing and covering integer programs due to [25, 24]. In fact, not even

RNC algorithms are known for these improved bounds; furthermore, the result of [24] on min-

imax integer programs is non-constructive, and does not imply even a sequential (randomized)

polynomial-time algorithm, as it stands. These suggest possible first steps to take before looking

for NC algorithms for these problems.

A question of broader interest is the utility of de-randomization techniques in practical set-

tings. As in this work, these techniques usually convert a fairly efficient randomized algorithm

(which, however, assumes a source of “perfect randomness”) into a less efficient deterministic

procedure. Thus in a given setting, the cost of this loss of efficiency has to be weighed against

the benefit of absolute certainty. The work of [8, 10, 11] mentioned in the introduction, suggests

14

that de-randomization techniques might prove their worth in critical applications.

Acknowledgements. We thank Jens Lagergren for his valuable suggestions. We thank Prab-

hakar Raghavan for clarifying an issue about randomized rounding, and David Zuckerman for

pointing out the work of [8]. We also thank the referee for his/her helpful comments.

References

[1] R. Aharoni, P. Erdős, and N. Linial. Optima of dual integer linear programs. Combinatorica,

8:13–20, 1988.

[2] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of asymptotically good,

low-rate error-correcting codes through pseudo-random graphs. IEEE Trans. Info. Theory,

38:509–516, 1992.

[3] N. Alon, O. Goldreich, J. H̊astad, and R. Peralta. Simple constructions of almost k–wise

independent random variables. Random Structures and Algorithms, 3(3):289–303, 1992.

[4] N. Alon and M. Naor. Derandomization, witnesses for Boolean matrix multiplication and

construction of perfect hash functions. Algorithmica, 16:434–449, 1996.

[5] B. Berger and J. Rompel. Simulating (logc n)-wise independence in NC. Journal of the

ACM, 38:1026–1046, 1991.

[6] S. Chari, P. Rohatgi, and A. Srinivasan. Improved algorithms via approximations of prob-

ability distributions. In Proc. ACM Symposium on Theory of Computing, pages 584–592,

1994.

[7] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum

of observations. Annals of Mathematical Statistics, 23:493–509, 1952.

[8] A. M. Ferrenberg, D. P. Landau, and Y. J. Wong. Monte Carlo simulations: Hidden errors

from ”good” random number generators. Physical Review Letters, 69(23):3382–3384, 1992.

[9] W. Hoeffding. Probability inequalities for sums of bounded random variables. American

Statistical Association Journal, 58:13–30, 1963.

[10] T.-s. Hsu. Graph augmentation and related problems: theory and practice. PhD thesis,

Department of Computer Sciences, University of Texas at Austin, October 1993.

15

[11] T.-s. Hsu, V. Ramachandran, and N. Dean. Parallel implementation of algorithms for find-

ing connected components. In DIMACS International Algorithm Implementation Challenge,

pages 1–14, 1994.

[12] H. J. Karloff and P. Raghavan. Randomized algorithms and pseudorandom numbers. Jour-

nal of the ACM, 40(3):454–476, 1993.

[13] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Mathematics,

13:383–390, 1975.

[14] M. Luby. Removing randomness in parallel computation without a processor penalty. Jour-

nal of Computer and System Sciences, 47(2):250–286, 1993.

[15] M. Luby and N. Nisan. A parallel approximation algorithm for positive linear programming.

In Proc. ACM Symposium on Theory of Computing, pages 448–457, 1993.

[16] R. Motwani, J. Naor, and M. Naor. The probabilistic method yields deterministic parallel

algorithms. J. Comput. Syst. Sci., 49:478–516, 1994.

[17] J. Naor and M. Naor. Small–bias probability spaces: efficient constructions and applica-

tions. SIAM J. Comput., 22(4):838–856, 1993.

[18] S. A. Plotkin, D. B. Shmoys, and É. Tardos. Fast approximation algorithms for fractional

packing and covering problems. Mathematics of Operations Research, 20:257–301, 1995.

[19] P. Raghavan. Randomized Rounding and Discrete Ham–Sandwich Theorems: Provably

Good Algorithms for Routing and Packing Problems. PhD thesis, University of California

at Berkeley, July 1986. Also available as Computer Science Department Report UCB/CSD

87/312.

[20] P. Raghavan. Probabilistic construction of deterministic algorithms: approximating packing

integer programs. Journal of Computer and System Sciences, 37:130–143, 1988.

[21] P. Raghavan and C. D. Thompson. Randomized rounding: a technique for provably good

algorithms and algorithmic proofs. Combinatorica, 7:365–374, 1987.

[22] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for applications

with limited independence. SIAM Journal on Discrete Mathematics, 8:223–250, 1995.

[23] A. Schrijver, P. Seymour, and P. Winkler. The ring loading problem. In preparation, 1994.

[24] A. Srinivasan. An extension of the Lovász Local Lemma, and its applications to integer

programming. In Proc. ACM/SIAM Symposium on Discrete Algorithms, pages 6–15, 1996.

16

[25] A. Srinivasan. Improved approximations of packing and covering problems. In Proc. ACM

Symposium on Theory of Computing, pages 268–276, 1995.

17

