
Testing Satisfiability

Noga Alon ∗ Asaf Shapira †

Abstract

Let Φ be a set of general boolean functions on n
variables, such that each function depends on exactly
k variables, and each variable can take a value from
[1, d]. We say that Φ is ε-far from satisfiable, if one
must remove at least εnk functions in order to make
the set of remaining functions satisfiable. Our main
result is that if Φ is ε-far from satisfiable, then most
of the induced sets of functions, on sets of variables
of size c(k, d)/ε2, are not satisfiable, where c(k, d)
depends only on k and d. Using the above claim, we
obtain similar results for k-SAT and k-NAEQ-SAT.

Assume we relax the decision problem of whether
an instance of one of the above mentioned problems is
satisfiable or not, to the problem of deciding whether
an instance is satisfiable or ε-far from satisfiable.
While the above decision problems are NP-hard, our
result implies that we can solve their relaxed versions,
that is, distinguishing between satisfiable and ε-far
from satisfiable instances, in randomized constant
time.

From the above result we obtain as a special case,
previous results of Alon and Krivelevich [3] and of
Czumaj and Sohler [8], concerning testing of graphs
and hypergraphs colorability. We also discuss the
problem of testing whether a graph G can be d-
colored, such that it does not contain any copy of a
colored graph from a fixed, given set of colored graphs.

1 Introduction.

A set of boolean functions on n variables is satisfiable,
if there is an assignment to the n variables, that
simultaneously satisfies all the functions in the set.

∗Schools of Mathematics and Computer Science, Raymond

and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Uni-
versity, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research
supported in part by a USA-Israeli BSF grant, by the Israel

Science Foundation and by the Hermann Minkowski Minerva
Center for Geometry at Tel Aviv University.
†School of Computer Science, Raymond and Beverly Sackler

Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.

Email: asafico@math.tau.ac.il.

For fixed integers k and d, and a small ε > 0,
let Φ = (V, F) be a set of boolean functions on n
variables, where V is the set of variables, and F is
the set of functions, and where each function depends
on exactly k variables, and each variable can take a
value from [1, d]. Suppose that at least εnk functions
should be deleted to make Φ satisfiable. Clearly Φ
contains many non-satisfiable subformulas, some of
which may be quite small in order. A natural question
is: how many small unsatisfiable subformulas are there
in Φ ? In what follows we call such boolean functions
f : dk → {0, 1}, (k,d)-functions, and a set Φ of such
functions, a (k,d)-Function-SAT instance.

In order to address the above question quantita-
tively, let us introduce a suitable notation. First, we
call an instance of (k,d)-Function-SAT, Φ, on n vari-
ables ε-far from satisfiable, if after deleting any subset
of less than εnk functions from Φ, the remaining set of
functions is still not satisfiable. Of course, it follows
that Φ itself is not satisfiable. Further, given a subset
of variables R ⊆ V we denote by Φ[R] = (R,F|R) the
set of functions that have all their variables in R. Let
SATk,d(n, ε) denote the minimal value, such that for
every instance of (k,d)-Function-SAT on n variables
Φ, that is ε-far from satisfiable, if we pick a random
subset of variables R, of size SATk,d(n, ε), then Φ[R]
is not satisfiable with probability at least 3/4.

We can define a similar measure for the problem
of d-coloring a k-uniform hypergraph. Given a hyper-
graph H = (V,E) and a subset of vertices R ⊆ V we
denote by H[R] = (R,E|R), the hypergraph that has
R as its set of vertices, and all the edges in E that
have all their vertices in R, as its set of edges. A k-
uniform hypergraph H is ε-far from d-colorable, if af-
ter removing any subset of edges of size less than εnk,
H is still not d-colorable. Now, Let COLk,d(n, ε) de-
note the minimal value, such that for every k-uniform
hypergraph on n vertices H, that is ε-far from d-
colorable, if we pick a random subset of vertices R of
size COLk,d(n, ε), then H[R] is not d-colorable with
probability at least 3/4. We can further define the cor-
responding functions for the problems k-CNF, and k-

NAEQ-CNF, as CNFk(n, ε) and NAEQ-CNFk(n, ε),
respectively. Note that in these functions, the vari-
ables can take boolean values, thus d is fixed to be
2. The precise (obvious) definitions of these problems
appear in the appendix.

Therefore, SATk,d(n, ε) means that if Φ is a set
of (k,d)-functions, that is ε-far from satisfiable, then
most of the induced sets of functions, on subsets
of variables of size SATk,d(n, ε), are not satisfiable.
Intuitively, it means that inside Φ there are many
proofs of size SATk,d(n, ε) showing that Φ is not
satisfiable, where a proof is in the form of a subset
F ′ ⊂ F of functions, that can not all be satisfied
simultaneously. The analog intuition holds for the
function COLk,d(n, ε).

The somewhat artificially looking definition of
SATk,d(n, ε) has a very natural algorithmic back-
ground in terms of property testing. Suppose our aim
is to design an algorithm, which for a given (large
enough) integer n and a (small enough) parameter
ε > 0, distinguishes with high probability between
an input (k,d)-Function-SAT instance on n vertices,
which is satisfiable, and one which is ε-far from sat-
isfiable. The algorithm can query whether a specific
function on k variables is in the instance. We call
the problem of distinguishing between these two cases,
testing satisfiability, and an algorithm for this prob-
lem is an ε-tester. In general, it is NP-complete to
check satisfiability. However, given the assumption
that the input is either satisfiable or ε-far from being
such, one may hope to devise very efficient randomized
algorithms, that distinguish between these two possi-
bilities. We refer the reader to [11] for a discussion on
general property testing, and in particular, on graph
property testing, and to the comprehensive survey of
Ron [15] on the field of property testing.

Returning to the definition of the function
SATk,d(n, ε), we can propose the following very sim-
ple algorithm for testing satisfiability. Given an in-
put formula Φ = (V, F), choose uniformly at random
SATk,d(n, ε) variables of Φ and denote the chosen set
by R. Now, check whether the induced subformula
Φ[R] is satisfiable. If the induced set is satisfiable,
output ”Φ is satisfiable”, otherwise output ”Φ is not
satisfiable”. To argue that the above algorithm pro-
vides a correct answer with probability at least 3/4,
note that if Φ is satisfiable, then every subformula of
it is satisfiable as well. Thus, in this case we always
output a correct answer. On the other hand, if Φ is
ε-far from satisfiable, it follows from the definition of

SATk,d(n, ε) that a sample of size SATk,d(n, ε) induces
a non-satisfiable set of functions with probability at
least 3/4. Therefore, in this case we output a correct
answer with probability at least 3/4. As is common
in randomized algorithms, by repeating the algorithm
an appropriate constant number of times, the constant
3/4 can be replaced by any desired constant α < 1.

As we show in this paper, the function
SATk,d(n, ε) can be bounded from above by a func-
tion of k, d and ε. Thus, for example, for the problem
of k-CNF with fixed k, which is a special case of (k,2)-
Function-SAT, we get that in order to distinguish be-
tween a satisfiable instance of k-CNF, and one that
is ε-far from satisfiable, all we need to do is sample a
subset of variables of size O(1/ε2), and check if the in-
duced k-CNF instance on this set is satisfiable. There-
fore, for a fixed ε we have a constant time one-sided er-
ror randomized algorithm for distinguishing between
satisfiable and ε-far from satisfiable instances. Note
that this implies that for dense instances of k-CNF,
i.e. instances that contain Ω(nk) functions, we have
a constant time algorithm that distinguishes between
satisfiable instances, and those in which at most an
1− ε fraction of the instance’s functions can be satis-
fied. The same algorithmic aspect also holds for the
rest of the testing problems we discuss in the paper.

Having in mind the above discussion, sometimes
later in the paper we will refer to the problem of
bounding the function SATk,d(n, ε) as the testing
(k,d)-Function-SAT problem.

The problem of estimating SATk,d(n, ε) will be
treated in this paper as an asymptotic one. This means
that whenever needed, we will assume the number of
variables n to be large enough, and the parameter ε
to be small enough. It is important to observe that
we are interested here only in formulas with Ω(nk)
functions. Indeed, if Φ is a set of functions on n
variables, that is ε-far from satisfiable, it contains at
least εnk functions. It is also important to note that
one can not hope to design a randomized polynomial
algorithm, that distinguishes between instances that
are satisfiable, and those in which an ε fraction of the
functions of the instance (and not an ε fraction of all
the functions) should be deleted in order to make them
satisfiable, as this problem is known to be NP-hard
already in the case of 3-CNF for any ε < 1/8, see
H̊astad [12].

1.1 Context and previous results. The Satisfia-
bility problem is clearly one of the most studied prob-

lems in theoretical computer science, and the related
research is too rich to survey in this introduction. In
the early 70’s, Cook [7] was the first to show that
the 3-CNF problem, which is a special case of the
general satisfiability problem, is NP-Complete. It is
also known that the problem of 3-NAEQ-CNF, is NP-
Complete, see [10]. The problem of how well can one
approximate the fraction of functions that can be si-
multaneously satisfied, has been an open problem for
many years. H̊astad [12] showed that for the case of
3-CNF, it is NP-hard to approximate the fraction of
clauses that can be satisfied, to within 7/8+ε, for any
ε > 0. Zwick and Karloff [13] gave a 7/8 approxima-
tion algorithm for the 3-CNF problem, showing that
the constant 7/8 is tight in the case of 3-CNF.

To the best of our knowledge the problem of test-
ing satisfiability with one sided error has never been
addressed in the past. The previous results relevant
to testing satisfiability, are a two-sided error property-
tester given by Andersson and Engebretsen [5] that
uses a random set of variables of size Õ(1/ε5) (in
the full version of the paper we discuss the funda-
mental difference between testing with one-sided and
two-sided error), and a one-sided (implicit) property
tester by Frieze and Kannan [9] which deals only with
the case of d = 2 and uses a random set of variables
of size exponential in 1/ε. Recent work in progress
on the Max-Cut problem by de-la Vega, Kannan and
Karpinsky suggests that it might be possible to de-
sign a one-sided error property tester that will also
estimate how far from satisfiable a given instance is,
by an appropriate combination of the techniques in
this new paper and in [9]. While this approach might
give an alternative proof to some of our results here,
it will certainly not be as efficient if one is only inter-
ested in deciding whether an instance is satisfiable or
ε-far from satisfiable.

The more relevant results to our investiga-
tion here, are those of testing graph and k-
uniform hypergraph d-colorability with one-sided er-
ror, that is, estimating the functions COL2,d(n, ε) and
COLk,d(n, ε). It turned out quite early, that the func-
tion COL2,d(n, ε) can be bounded from above by a
function of ε and d only. This has been proven (implic-
itly) by Bollobás, Erdős, Simonovits and Szemerédi [6]
for the case d = 2 and by Rödl and Duke [14] for every
d ≥ 3, see also [2]. All these papers rely on the Reg-
ularity Lemma of Szemerédi [16], and as is the case
with most applications of the Regularity Lemma, the
resulting bounds are extremely fast growing functions

of 1/ε (towers of height polynomial in 1/ε).
Motivated by testing d-colorability, Goldreich,

Goldwasser and Ron [11] came up with a completely
different approach for bounding COL2,d(n, ε). Us-
ing direct combinatorial arguments (and thus avoid-
ing the Regularity Lemma), they were able to
prove that COL2,2(n, ε) = O(log(1/ε)/ε2) (note that
COL2,2 corresponds to testing bipartiteness of ordi-
nary graphs), and that for every fixed d ≥ 3 one has
COL2,d(n, ε) = O(d2 log d/ε3), a tremendous progress
compared to the bounds of [6] and [14]. Improving
on these results, Alon and Krivelevich [3] proved that
COL2,d(n, ε) = O(d log d/ε2) and that COL2,2(n, ε) =
O(log4(1/ε) log log(1/ε)/ε). Independent of the work
of [3], Czumaj and Sohler [8] gave a more general re-
sult showing that COLk,d(n, ε) = O(k2d2 log d/ε2).

1.2 The Main results. Consider the following
generalization of k-CNF, which we denote by (k,d)-
CNF. We are given a set of functions on n variables,
where each variable vi is restricted to take a value
from [1, d]. Each function is of the form (v1 6=
c1 ∨ . . . ∨ vk 6= ck), and 1 ≤ ci ≤ d. We may
write the clauses of a (k,d)-CNF instance, for short,
as (v1,c1 ∨ . . . ∨ vk,ck). Note that k-CNF is just
(k,2)-CNF, where each variable can take a value from
{1, 2}. Further notice that just as one can describe any
boolean function whose variables take boolean values
f : {0, 1}k → {0, 1}, as a set of k-CNF clauses, one can
also describe any boolean function, whose variables
take non-boolean values g : [d]k → {0, 1}, as a set of
(k,d)-CNF clauses. The formal (simple) argument for
this intuitive fact will be described in section 3.

Denote by f(k, d, ε) the number of variables that
suffice to test (k,d)-CNF. This is the analog of
SATk,d(n, ε) for instances of (k,d)-CNF. We drop the
parameter n, because as we will prove later, this func-
tion is independent of n. Our first result in the course
of the paper is the following theorem

Theorem 1.1.

For every fixed k and d, and sufficiently small ε > 0,

f(k, d, ε) ≤ (100dk−1 log d)/ε2.

Using this theorem we will get the following
corollaries, which form the main part of this paper.

Corollary 1.1.

For every fixed k and d, every sufficiently small ε > 0,
and every sufficiently large n

SATk,d(n, ε) ≤ f(k, d, ε/2d
k

) ≤ (100dk−122dk log d)/ε2.

Corollary 1.2.

For every fixed k, every sufficiently small ε > 0, and
every sufficiently large n

CNFk(n, ε) ≤ f(k, 2, ε) ≤ (100 · 2k−1)/ε2.

Corollary 1.3.

For every fixed k, every sufficiently small ε > 0, and
every sufficiently large n

NAEQ-CNFk(n, ε) ≤ f(k, 2, ε) ≤ (100 · 2k−1)/ε2.

We also get the following version of the main
result of Czumaj and Sohler [8]:

Corollary 1.4.

For every fixed k and d, every sufficiently small ε > 0,
and every sufficiently large n

COLk,d(n, ε) ≤ f(k, d, ε) ≤ (100dk−1 log d)/ε2.

In section 3, we explain how to slightly improve
the dependence on k and d in this last result of [8].

Some of the proof techniques we employ in this
paper are motivated by the d-colorability testing al-
gorithm in Alon and Krivelevich [3], and by the d-
colorability of k-uniform hypergraphs testing algo-
rithm in Czumaj and Sohler [8], but the analysis here
requires several additional arguments.

The rest of the paper is organized as follows: In
section 2 we show how to test instances of (k,d)-
CNF. In sections 3, we show how to derive the above
corollaries, by reducing the problems to testing (k,d)-
CNF satisfiability. In section 4 we give concluding
remarks and discuss some open problems.

During the course of the proof we make no serious
attempts to optimize the constants involved. Also, we
omit routinely floor and ceiling signs to simplify the
presentation. While proving upper bounds for all the
functions, we sometimes generate a random subset R
of size s as a union of random subsets whose sizes sum
to s.

2 Testing (k,d)-CNF.

Let Φ = Φ(V,C) be an instance of (k,d)-CNF, where
V and C are respectively the sets of variables and
clauses in Φ (we call the functions of a (k,d)-CNF in-
stance clauses, because of their resemblance to clauses
in k-CNF). Given a subset of variables V0 ⊆ V , Let
Φ[V0] denote the induced formula on V0. (Notice that
V0 is a set of variables, not literals). In this section we

present the proof of Theorem 1.1, namely that test-
ing (k,d)-CNF can be done by inspecting the induced
subformula on a random subset of variables, of size at
most (100dk−1 log d)/ε2.

It will be convenient to generate a random subset
of variables R ⊂ V of size |R| = s = (100dk−1 log d)/ε2

in s rounds, each time choosing uniformly at random
a single variable vj ∈ V . This in principle may result
in choosing one variable several times and thus getting
a set of cardinality less than s. We remind the reader
that each clause is of the form (v1,c1 ∨ . . . ∨ vk,ck)
where the literal vi,ci is short for vi 6= ci, and that
an assignment φ satisfies a clause (v1,c1 ∨ . . . ∨ vk,ck),
if for some i, φ(vi) 6= ci, otherwise the clause is false.
Further, remember that each variable vi can take a
value from [d].

First we need to introduce some notation. We may
write vi ∈ R for some variable vi, as well as vi,ci ∈ R
for some literal vi,ci , where the first notation is clear,
and the second means that vi,ci is a literal created
from some variable vi ∈ R.

Suppose Φ = (V,C) is a formula on n variables.
Given a pair (S, φ), of a subset S ⊆ V and an
assignment φ : S → [d] which satisfies Φ[S], for every
vi ∈ V \ S let L(vi) = L(S,φ)(vi) denote the possible
assignments to vi that will not create a false clause
with k − 1 literals from S, that were not satisfied by
φ (a literal vi,ci is satisfied if and only if φ(vi) 6= ci).
Define, in a similar manner, for every 2 ≤ j ≤ k − 1,
and every set of j variables {v1, . . . , vj} ⊆ V \ S,
the set L(v1, . . . , vj) = L(S,φ)(v1, . . . , vj) to be the
set of assignmets that can be assigned to v1, . . . , vj
that will not create a false clause with k − j literals
from S, that were not satisfied by φ. An important
observation is that {c1, . . . , cj} /∈ L(v1, . . . , vj), if and
only if for some clause (v1,c1 ∨ . . . ∨ vj,cj ∨ u1,t1 ∨
. . . ∨ uk−j,tk−j) we have {u1, . . . , uk−j} ⊆ S, and also
φ(u1) = t1, . . . , φ(uk−j) = tk−j . For 1 ≤ j ≤ k− 1, let
Lj denote the collection of all sets L(v1, . . . , vj), for
every {v1, . . . , vj} ⊆ V . We call a clause containing
k− j literals from S, that were not satisfied by φ, and
a set of j literals {v1,c1 , . . . , vj,cj} ⊆ V \ S a witness
to the fact that {c1, . . . , cj} /∈ L(v1, . . . , vj).

If S = ∅, we set L(v1, . . . , vj) = [d]j for every
{v1, . . . , vj} ⊆ V . If a satisfying assignment c :
V → [d] of Φ, coincides with φ on S, then for every
{v1, . . . , vj} ⊆ V \ S the assignment of {v1, . . . , vj}
in c belongs to L(v1, . . . , vj). For this reason, the set
L(v1, . . . , vj) is called the set of feasible assignments
for {v1, . . . , vj}. Further, denote by Conflict the set of

variables, v, for which L(v) = ∅.
Given a variable v, denote by δ(v, t, j), the number

of feasible assignments that are deleted from Lj , if
we add v to S and assign it the value t. We also
define, δ(v) = mint∈L(v)

∑k−1
j=1 δ(v, t, j)n

k−j−1. We
call a variable heavy if δ(v) > εnk−1/5, and denote
by Heavy the set of heavy variables.

Claim 2.1. If Φ is ε-far from satisfiable, then for any
(S, φ), we have |Conflict ∪Heavy| ≥ εn/5.

Proof. Assuming the contrary, we give an algorithm
that deletes less than εnk clauses from Φ, and gets a
satisfiable subfurmula of Φ, contradicting the fact that
Φ is ε-far from satisfiable. The algorithm consists of
two phases. In phase one the algorithm goes sequen-
tially over all variables in V \(Conflict∪Heavy), and
for each variable v, assigns v the assignment t from
L(v), that minimizes the sum

∑k−1
j=1 δ(v, t, j)n

k−j−1.
The algorithm also removes all the clauses that are
witnesses to the fact that some assignments should be
deleted from L1, . . . , Lk−1. After we assign a value
to some variable we update all the sets L(v1, . . . , vj),
if needed. If for some variable v ∈ V \ (Conflict ∪
Heavy), we have L(v) = ∅, the algorithm halts. In
phase two we assign all the variables in Conflict ∪
Heavy the value 1, and remove any false clause that
was created.

Notice that by definition of the algorithm, as it
never creates a false clause, if it terminates, it gets
a satisfiable subformula of Φ, Φ′, and an assignment
that satisfies Φ′. The only step in which the algorithm
can halt, is if in phase one we had for some variable v,
L(v) = ∅. We argue that this is impossible. Indeed,
for every variable v, in V \ (Conflict ∪ Heavy), we
initially had L(v) 6= ∅. As the algorithm deletes
any clause that is a witness to the fact that we
should delete some feasible assignment from some set
L(v1, . . . , vj), and in particular from L(v), we conclude
that this event can not occur.

We claim that for every v, t and j, the value
of δ(v, t, j) never increases. Indeed, assume some
δ(v, t, j) increases, thus assigning v the value t deletes
from Lj an assignment from some L(v1, . . . , vj), which
it did not delete before. This can only happen if v and
v1, . . . , vj , co-occur in some clause c, with a literal
u 6= p, and u was assigned the value p. But in this
case c is a witness to the fact that we must delete
one assignment from L(v, v1, . . . , vj), thus it should
have been removed when u was assigned a value. Note
that as the values of δ(v, t, j) never increase, so do the

values of δ(v).
Let us estimate the number of clauses that were

removed. Note that for every j, t and v 6∈ S, there are
at most

(
n

k−j−1

)
clauses containing v, that are wit-

nesses to the fact that some assignment {c1, . . . , cj}
should be removed from L(v1, . . . , vj), when we as-
sign v the value t, and add it to S. (This is be-
cause any assignment creates at most n false literals).
Thus, for every variable v, assigning it the value t,
results in deleting at most

∑k−1
j=1 δ(v, t, j)

(
n

k−j−1

)
≤∑k−1

j=1 δ(v, t, j)n
k−j−1 clauses. In phase one we deal

with variables that do not belong to Heavy, thus from
the definition of the function δ(v), and from the fact
that it does not increase while the algorithm proceeds,
we conclude that we can assign each variable in its
turn a value, for which we will delete at most εnk−1/5
clauses. As there are at most n variables, in phase one
we do not remove more than εnk/5 clauses. In phase
two as we assume that |Conflict ∪ Heavy| ≤ εn/5,
we remove in this phase at most εn/5 ·

(
n
k−1

)
≤ εnk/5

clauses. All together we remove less than εnk clauses,
as claimed.

Let now Φ be a formula on n variables, which is ε-
far from satisfiable. While exposing random variables
r1, . . . , rs of R we construct an auxiliary tree T . Each
vertex t of T is labeled by a quadruple (S, φ, x, σ),
where S is a subset of V , φ is an assignment that
satisfies Φ[S], x is a variable in V \ S, and σ ∈
{“open”, “closed”} is the state of the vertex. We
refer to the labels of t as S(t), φ(t), x(t) and σ(t),
respectively. The value of x(t) may be not set yet, in
which case we say that x(t) is void. Initially T has
only the root t0 with S(t0) = ∅, φ(t0) = ∅, x(t0) being
void, and σ(t0) = “open”.

Suppose now that j − 1 variables of R have
already been exposed, and let T be the current
tree. Let t be an open leaf of T , labeled by
(S, φ, ’void’, “open”). The pair (S, φ) defines the sets
Conflict = Conflict(t) and Heavy = Heavy(t),
and the lists of feasible assignments L1, . . . , Lk−1 as
described above. We say that round j is success-
ful for t if rj ∈ Conflict(t) ∪ Heavy(t). If rj ∈
Conflict(t), we set x(t) = rj and σ(t) = “closed”.
If rj ∈ Heavy(t), we set x(t) = rj and for each as-
signment a ∈ L(rj) create in T a son of t, labeled by
(S ∪ {rj}, φ′, ’void’, “open”), where φ′ is obtained by
extending φ : S → [d] by φ′(rj) = a. If rj misses the
set Conflict(t) ∪Heavy(t), we do nothing related to
t. If t is a closed leaf, then round j is successful for t

for any choice of rj . It is important to note that for a
fixed leaf t of T , round j is successful with probability
at least ε/5, given any history, by claim 2.1.

Claim 2.2. The depth of T is at most 5dk−1/ε.

Proof. First notice that the initial size of each Lj , is
at most

∑
{v1,...,vj}⊆V d

j =
(
n
j

)
dj ≤ dj

j! n
j . Therefore,

the initial value of W =
∑k−1
j=1 |Lj | ·nk−j−1 is at most∑k−1

j=1
dj

j! n
j · nk−j−1 ≤ dk−1nk−1. If we create a new

son for some t ∈ T at step `, then the random variable
r` belongs to Heavy(t). This means by the definition
of the set Heavy(t) that for any assignment p in L(r`),
we have

∑k−1
j=1 δ(r`, p, j)n

k−j−1 > εnk−1/5, and hence,
the value of W decreases by at least εnk−1/5. Thus
we can not make more than 5dk−1/ε steps down from
the root of T .

Claim 2.3. If after round j all leaves of the tree
T are labeled ”closed”, then the induced formula
Φ[{r1, . . . , rj}] is not satisfiable.

Proof. Note first that by the construction of T at any
round j for any vertex t ∈ T with a label (S, φ, x, σ)
one has S(t) ⊆ {r1 . . . , rj}, x(t) ∈ {r1, . . . , rj}.

Let now c : V → [d] be an assignment to V . In
order to show that c creates some false clause in the
induced formula Φ[{r1, r2, . . . , rj}], we start with the
root t0 of T and traverse T guided by c.

Suppose we are at a vertex t of T , labelled by
(S, φ, x, σ). Based on the pair (S(t), φ(t)) define the
lists of feasible assignments L(x) as described above.
Now, if c(x(t)) ∈ L(x(t)), we choose the son of t
in which x(t) is assigned c(x(t)) and move to it.
Suppose now that at a vertex t we have for the first
time c(x(t)) 6∈ L(x(t)). This means that some set
of variables {u1, . . . , uk−1} ⊆ S(t) co-occurs with
x(t) in Φ and creates a false clause (`1 ∨ . . . ∨ `k),
where `i are literals created from u1, . . . , uk−1, x(t)
respectively. But it is easy to see that φ(t) and c
coincide on S(t). Therefore, under c all k literals of
the clause (`1 ∨ . . . ∨ `k) ∈ C(Φ) are evaluated false,
thus creating a false clause. As S(t) ⊆ {r1, . . . , rj}
and x(t) ∈ {r1, . . . , rj} we get that c is not a proper
assignment of the induced formula Φ[{r1, . . . , rj}].

Recall that by the construction of T we have
L(x(t)) = ∅ for every closed leaf t ∈ T . As we assume
that after round j all leaves of T are closed, the above
described traversal procedure eventually ends up in
a vertex t with c(x(t)) 6∈ L(x(t)). Hence, c is not a
satisfying assignment for Φ[{r1, . . . , rj}].

Claim 2.4. After (100dk−1 log d)/ε2 rounds, all
leaves of T are closed with probability at least 3/4.

Proof. As every vertex of T has at most d sons and
by Claim 2.2 T has depth at most 5dk−1/ε, it can
be embedded naturally in the d-ary tree Td,5dk−1/ε

of depth 5dk−1/ε. Moreover, this embedding can be
prefixed even before exposing R and T . Note that the
number of leaves of Td,5dk−1/ε is at most d5dk−1/ε.

Fix a leaf t of Td,5dk−1/ε. The probability that t is
an open leaf of T after (100dk−1 log d)/ε2 rounds is at
most the probability that the total number of success-
ful rounds on the path from the root of T to t is less
than 5dk−1/ε. For the path from the root to t, each
round has probability of success at least ε/5, given any
history, by claim 2.1. Therefore, the probability that
t is an open leaf after (100dk−1 log d)/ε2 steps can be
bounded from above by the probability that the Bino-
mial random variable B(100dk−1 log d/ε2, ε/5) is less
than 5dk−1/ε. Using the Chernoff bound (see e.g. [4]),
the latter probability is at most

exp

−
(

20dk−1 log d
ε − 5dk−1

ε

)2

40dk−1 log d
ε

 ≤

exp

−
(

15dk−1 log d
ε

)2

40dk−1 log d
ε

 <

e−
5.5dk−1 log d

ε <

d−
5.5dk−1

ε .

Thus, by the union bound we conclude
that the probability that some leaf of T is
open after (100dk−1 log d)/ε2 steps, is at most
d5dk−1/εd−5.5dk−1/ε < 1/4.

Theorem 1.1 now follows from claims 2.3 and 2.4.

3 Applications.

In this section we show how to obtain the corollaries
mentioned in the introduction, by reducing these
problems to testing (k,d)-CNF. We remind the reader
that we denote by f(k, d, ε) the number of variables
that suffice for testing (k,d)-CNF, as described in
section 2.

Proof. (of Corollary 1.1) We divide the proof into
two parts. First we show how to reduce general
functions into an equivalent set of (k,d)-CNF clauses,
and then show how to use the (k,d)-CNF tester. Let
f : dk → {0, 1} be a general boolean function on k
variables, where each variable can take a value from
[d]. Clearly we may represent f as an instance of (k,d)-
CNF, where we have a clause (v1 6= a1∨ . . .∨vk 6= ak),
for each assignment (a1, . . . , ak) that does not satisfy
f . Now, given an instance, Φ, of (k,d)-Function-
SAT, we can implicitly create an instance, Φ′, of
(k,d)-CNF by representing each function as a set of
(k,d)-CNF as described above. We also remove any
duplication from Φ′. Now we turn to show how to use
the (k,d)-CNF tester, in order to test (k,d)-Function-
SAT. We claim that choosing f(k, d, ε/2d

k

) variables
suffices. Clearly if Φ is satisfiable so is Φ′, as well
as any induced subformula of Φ′. So assume Φ is
ε-far from satisfiable, we show that Φ′ is ε/2d

k

-far
from satisfiable. Assume there is some assignment
that does not satisfy less than ε/2d

k

nk clauses in Φ′,
and notice that as there are no more than 2d

k

boolean
functions on k variables taking values from [d], we
conclude that the same assignment does not satisfy
less than εnk functions in Φ, which is a contradiction,
as we assumed that Φ is ε-far from satisfiable. Now,
choosing f(k, d, ε/2d

k

) variables and taking all the
functions that include them, is equivalent to picking
f(k, d, ε/2d

k

) random variables from Φ′ and looking
at the induced formula on Φ′, and thus ensures, by
Theorem 1.1, that the induced formula on Φ is not
satisfiable with probability at least 3

4 , as needed.

Proof. (of Corollary 1.2) Follows from Theorem 1.1
with d = 2.

Proof. (of Corollary 1.3) Given an instance Φ of k-
NAEQ-SAT, implicitly create an instance of k-CNF,
Φ′, where for each clause, c, in Φ, put c in Φ′, plus
another clause that has the same set of variables as c,
but all the signs of the literals are flipped (that is for,
e.g., the clause c = (v1 ∨ v2 ∨ v3) we put c and the
clause (v1 ∨ v2 ∨ v3)). The proof of correctness follows
trivially from Theorem 1.1.

Proof. (of Corollary 1.4) Given a k-uniform hyper-
graph, H, we implicitly create a (k,d)-CNF instance,
Φ, such that Φ contains a variable for each vertex in
H. For each edge (v1, . . . , vk) we put d clauses in Φ,
(v1 6= 1 ∨ . . . ∨ vk 6= 1), . . . , (v1 6= d ∨ . . . ∨ vk 6= d).
Clearly if H is d-colorable, Φ is satisfiable. Assume

there is some assignment that does not satisfy less
than εnk clauses. For each variable v that was as-
signed the value i, we color the vertex v with the
color i. Clearly under this coloring no more than εnk

edges are not properly colored. We conclude that if
H is ε-far from d-colorable, then φ is ε-far from sat-
isfiable. Now in order to test if H is d-colorable, we
pick f(k, d, ε) vertices, and for every induced edge, we
create the d corresponding clauses. This is equal to
picking f(k, d, ε) variables from Φ, thus from Theorem
1.1, with probability at least 3

4 , the resulting formula
is not satisfiable.

Note that for the case of testing graph d-
colorability, that is the case of k = 2, our estimation of
COL2,d(n, ε) matches the result of Alon and Krivele-
vich [3]. For general k we get the same result as that of
Czumaj and Sohler [8], but with a larger dependence
on k and d. In fact, if one changes the definition of a
heavy vertex in the proof of [8], to the way we define
a heavy variable, one can slightly improve the result
of [8], and show that COLk,d(n, ε) = O(kd log d/ε2).
We omit the details.

Let S be a fixed set of (not necessarily distinct)
graphs on k vertices, where each graph is also associ-
ated with some forbidden coloring of its vertices. Con-
sider the problem of testing whether there is a d col-
oring of G, φ, such that for any copy C, of any graph
from S, φ does not color C in the forbidden coloring.
Suppose we want to distinguish between graphs that
can be so colored, and those from which at least εn2

edges should be removed in order to be so colored.
Alon [1] has recently shown, that in general there

is no one-sided error testing algorithm for this prob-
lem, that uses a random set of vertices of size polyno-
mial in 1/ε. In fact, even for the very special case of
the problem (with |S| = 1, d = 1 and k = 3) of testing
if a graph is triangle free, one needs to pick a random
set of vertices of size (1/ε)Ω(log(1/ε)).

Assume we relax this problem to that of deciding
whether G can be properly colored in the above sense,
or for any d coloring of G, there are at least εnk copies
of graphs from S that are improperly colored. We call
this problem the extended d-coloring problem (with
respect to S.)

Note that for d = 1 the problem is trivial, as we
only want to distinguish between graphs that contain
no copy of graphs from S, and those that contain at
least εnk copies, thus choosing Θ(1/ε) vertices suffices.
The problem is harder for d > 1. We get the following
claim,

Claim 3.1. Extended d-colorability can be tested us-
ing a randomly chosen subset of f(k, d, ε/|S|) vertices.

Proof. Given a graph, G, we implicitly create a (k,d)-
CNF instance, Φ, such that Φ contains a variable for
each vertex in G. For each set of vertices {v1, . . . , vk},
that include a copy of a graph from S, and for every
assignment v1 = c1, . . . , vk = ck, that creates an
improperly colored copy of some graph from S, we
put the clause (v1 6= c1 ∨ . . . ∨ vk 6= ck) in Φ. We
then remove any duplications from Φ. Clearly if G is
extended d-colorable, Φ is satisfiable. Assume there is
some assignment that does not satisfy less than ε

|S|n
k

clauses. For each variable v that was assigned the
value i, we color the vertex v with the color i. Clearly
under this coloring no more than εnk copies of graphs
from S are improperly colored. We conclude that if
G is ε-far from being extended d-colorable, then φ is
ε/|S|-far from satisfiable.

It follows that for every fixed S and d, the ex-
tended d-coloring problem with respect to S, can
be tested by inspecting an induced subgraph on
O((1/ε)2) randomly chosen vertices.

4 Concluding remarks and open problems.

We have shown how to obtain one-sided error
property-testers for a number of satisfiability prob-
lems. As a byproduct, we have obtained as a con-
sequence, previously known results about testing col-
orability of graphs and k-uniform hypergraphs. We
have also discussed the problem of testing extended
d-colorability. All the results use a random set of vari-
ables/vertices of size O(1/ε2). There is still a gap be-
tween the trivial lower bound of Ω(1/ε) and our upper
bounds.

A natural question that can be asked, is whether
one can devise a more efficient test, if the functions are
restricted to be of a specific type. Two natural types
of functions are linear equations and multivariate
polynomials over GF (d) (for a prime power d). As the
following claims show, designing much better tests for
these special cases would not be easy.

Claim 4.1. Testing graph 2-colorability is not harder
than testing linear equations on two variables over
GF (2).

Proof. Given a graph G = (V,E), where |V | = n,
consider the set of equations, Φ, on the variables
x1, . . . , xn, over GF (2), where for every edge (vi, vj) ∈

E, Φ contains the equation xi+xj = 1. Clearly if G is
2-colorable, Φ is satisfiable, and also if G is ε-far from
satisfiable, so is Φ.

Alon and Krivelevich [3] found a complicated
proof for the existence of a test for graph 2-colorability,
which chooses a random subset of vertices of size
Θ̃(1/ε). Thus getting a test for general linear equa-
tions, that uses a set of variables of size O(1/ε), would
improve the result of [3] by a poly-logarithmic factor,
and does not seem to be easy.

Claim 4.2. For any prime power p, testing (k,p)-
CNF is not harder than testing k-variate polynomials
over GF (p).

Proof. Given an instance of (k,p)-CNF, Φ = (V,C),
with |V | = n, consider the following set of k-
variate polynomials over GF (p), on a set of variables
x1, . . . , xn, which we denote by Φ′. For every clause
(v1 6= c1∨ . . .∨vk 6= ck) in Φ, Φ′ contains the k-variate
polynomial Πk

i=1Πt∈{1,...,p}\ci(xi − t) = 0. Clearly if
Φ is satisfiable so is Φ′, and also if Φ is ε-far from
satisfiable, so is Φ′.

By Corollary 1.1, testing general boolean func-
tions (which we call (k,d)-Function-SAT), is as easy
as testing (k,d)-CNF, thus getting a test for k-variate
polynomials over GF (d), which would use o(1/ε2)
variables, would imply an equivalent result for testing
(k,d)-Function-SAT (at least for a prime power d). As
even for the very special case of testing 3-colorability
of graphs, we do not know how to get a test which
uses o(1/ε2) vertices, this also seems a hard task.

Another open problem that should be addressed
is a slight variation of the problem we have addressed
in this paper. Notice that for the case of k-hypergraph
d-colorability we show that if an instance H is ε-far
from being d-colorable, then almost all the induced
k-hypergraphs on sets of size roughly 1/ε2 are not d-
colorable. The other question that can be asked is
what is the size of the smallest induced k-hypergraph
that is not d-colorable, that must be included in any
H, that is ε-far from d-colorable. See [3] and [6]
for a discussion on these questions and some results
for the case of graphs. The analogous questions for
satisfiability and its variants are also interesting.

References

[1] N. Alon, Testing subgraphs in large graphs, Proc.
42nd IEEE FOCS, IEEE (2001), to appear.

[2] N. Alon, R. A. Duke, H. Lefmann, V. Rödl and R.
Yuster, The algorithmic aspects of the Regularity
Lemma, Proc. 33rd IEEE FOCS, Pittsburgh, IEEE
(1992), 473-481. Also: J. of Algorithms 16 (1994),
80-109.

[3] N. Alon and M. Krivelevich, Testing k-colorability,
SIAM J. Discrete Math., to appear.

[4] N. Alon and J. H. Spencer, The probabilistic
method, Second Edition, Wiley, New York, 2000.

[5] G. Andersson and L. Engebretsen, Property Testers
For Dense Non-Boolean Constraint Satisfaction Pro-
grams, in preparation.

[6] B. Bollobás, P. Erdös, M. Simonovits and E. Sze-
merédi, Extremal graphs without large forbidden
subgraphs, Annals of Discrete Mathematics 3 (1978),
29–41.

[7] S. Cook, The complexity of theorem-proving proce-
dures, In Conference Record of Third Annual ACM
Symposium on Theory of Computing, pages 151-158,
1971.

[8] A. Czumaj and C. Sohler, Testing Hypergraph Color-
ing, Proc. 28th ICALP, Lecture Notes in Computer
Science Vol. 2076 (F. Orejas et. al., eds.), Springer
Verlag (2001), 493-505.

[9] A. Frieze and R. Kannan, Quick approximation
to matrices and applications, Combinatorica, 19,
(1999), 175-220.

[10] M.R. Garey and D.S. Johnson, Computers and In-
tractability , Freeman and Company, San Francisco,
1979.

[11] O. Goldreich, S. Goldwasser and D. Ron, Prop-
erty testing and its connection to learning and ap-
proximation, Proceedings of the 37th Annual IEEE
FOCS (1996), 339–348. Also: Journal of the ACM,
45(1998), 653-750.

[12] J. H̊astad, Some optimal inapproximability results,
In Proc. 29th Ann. ACM Symp. on Theory of Comp.,
pages 1–10. ACM, 1997.

[13] Howard Karloff, Uri Zwick, A 7/8-approximation
algorithm for MAX 3SAT? In Proc. of 38th FOCS
(1997), 406–415.

[14] V. Rödl and R. Duke, On graphs with small sub-
graphs of large chromatic number, Graphs and Com-
binatorics 1 (1985), 91–96.

[15] D. Ron, Property Testing. To appear in P.M. Parda-
los, S. Rajasekaran, J. Reif, and J. D. P. Rolim, ed-
itors, Handbook of Randomized Algorithms. Kluwer
Academic Publishers, 2001.

[16] E. Szemerédi, Regular partitions of graphs, In:
Proc. Colloque Inter. CNRS (J. C. Bermond,
J. C. Fournier, M. Las Vergnas and D. Sotteau, eds.),
1978, 399–401.

5 Appendix.

This short section contains the precise definitions of
the problems considered in this paper.

Definition 5.1. k-CNF (or k-SAT)

INPUT: A set of boolean functions on n variables,
where each function is of the form (l1 ∨ . . . ∨ lk), and
each literal li is either vi, or vi, for some variable vi.

An instance, Φ, of k-CNF on a set V of n variables,
is said to be satisfiable, if there is a truth assignment,
φ : V → {0, 1}, to the n variables, that simultaneously
satisfies all the functions in Φ. An instance, Φ,
of k-CNF on n variables, is said to be ε-far from
satisfiable, if any assignment does not satisfy at least
εnk functions from Φ.

Definition 5.2. (k,d)-CNF

INPUT: A set of boolean functions on n variables,
where each function is of the form (v1,i1 ∨ . . . ∨ vk,ik),
where the literal vt,it is short for vt 6= it, for 1 ≤ it ≤ d.

An instance, Φ, of (k,d)-CNF on a set V of
n variables, is said to be satisfiable, if there is an
assignment, assigning to each variable vi a value
φ(vi) ∈ [1, d], that simultaneously satisfies all the
functions in Φ. An instance, Φ, of (k,d)-CNF on n
variables is said to be ε-far from satisfiable, if any
assignment does not satisfy at least εnk functions from
Φ.

Definition 5.3. (k,d)-Function-SAT.

INPUT: A set of general boolean functions on n
variables, where each function depends on exactly k
variables, and each variable can take a value from
[1, d].

An instance, Φ, of (k,d)-Function-SAT on a set V
of n variables, is said to be satisfiable, if there is an
assignment φ : V → [1, d], to the n variables, that
simultaneously satisfies all the functions in Φ. An
instance, Φ, of k-CNF on n variables, is said to be ε-
far from satisfiable, if any assignment does not satisfy
at least εnk functions from Φ.

Definition 5.4. k-NOT-ALL-EQUAL-CNF (k-
NAEQ-CNF)

Exactly like k-CNF, only now a satisfying assignment
is one in which for each clause, at least one literal
evaluates false, and at least one literal evaluates true.

Definition 5.5. k-Hypergraph d-Colorability

INPUT: A k-uniform Hypergraph (k-Hypergraph)
on n vertices.

A k-Hypergraph, H, is said to be d-colorable, if
one can color the vertices ofH using d colors, such that
no edge of H is monochromatic. A k-Hypergraph H
is ε-far from d-colorable, if any coloring of its vertices
results in at least εnk monochromatic edges.

