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Abstract

Let H1, H2, . . . ,Hk+1 be a sequence of k + 1 finite, undirected, simple graphs. The (mul-

ticolored) Ramsey number r(H1, H2, . . . ,Hk+1) is the minimum integer r such that in every

edge-coloring of the complete graph on r vertices by k + 1 colors, there is a monochromatic

copy of Hi in color i for some 1 ≤ i ≤ k + 1. We describe a general technique that supplies

tight lower bounds for several numbers r(H1, H2, . . . ,Hk+1) when k ≥ 2, and the last graph

Hk+1 is the complete graph Km on m vertices. This technique enables us to determine the

asymptotic behaviour of these numbers, up to a polylogarithmic factor, in various cases. In

particular we show that r(K3,K3,Km) = Θ(m3poly logm), thus solving (in a strong form) a

conjecture of Erdős and Sós raised in 1979. Another special case of our result implies that

r(C4, C4,Km) = Θ(m2poly logm) and that r(C4, C4, C4,Km) = Θ(m2/ log2m). The proofs

combine combinatorial and probabilistic arguments with spectral techniques and certain esti-

mates of character sums.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise specified. Let

H1, H2, . . . ,Hk+1 be a sequence of k+1 graphs. The multicolored Ramsey number r(H1, H2, . . . ,Hk+1)

is the minimum integer r such that in every edge-coloring of the complete graph on r vertices by

k + 1 colors, there is a monochromatic copy of Hi in color i for some 1 ≤ i ≤ k + 1.

The determination or estimation of these numbers is usually a very difficult problem. When

all graphs Hi are complete graphs with more than two vertices, the only values that are known

precisely are those of r(K3,Km) for m ≤ 9, r(K4,K4), r(K4,K5) and r(K3,K3,K3). Even the

determination of the asymptotic behaviour of Ramsey numbers up to a constant factor is a hard

problem, and despite a lot of efforts by various researchers (see, e.g., [16], [10] and their references),

there are only a few infinite families of graphs for which this behaviour is known. A particularly
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interesting example is the result of Kim [17] together with that of Ajtai, Komlós and Szemerédi [2]

that show that r(K3,Km) = Θ(m2/ logm).

The situation is even worse for multicolored Ramsey numbers, that is, for the case of at least

3 colors. Even the asymptotic behaviour of r(K3,K3,Km) has been very poorly understood, and

Erdős and Sós raised the following conjecture in [15] (see also [23], [10], p. 23).

Conjecture 1.1 (Erdős and Sós, [15])

lim
m7→∞

r(K3,K3,Km)

r(K3,Km)
=∞.

Here we describe a general technique that supplies tight lower bounds for several numbers

r(H1, H2, . . . ,Hk+1) when k ≥ 2, and the last graph Hk+1 is the complete graph Km on m vertices.

In particular we show that r(K3,K3,Km) = Θ(m3poly logm), thus solving, in a strong form,

the above mentioned conjecture. The technique can be used to deal with more than 3 colors

as well. For two graphs H,K and for an integer k, let rk(H;K) denote the Ramsey number

r(H1, H2, . . . ,Hk,K), where Hi = H for all i ≤ k. Our method shows that for every fixed integer

k ≥ 1,

rk(K3;Km) = Θ(mk+1poly logm). (1)

The method is particularly effective for determining the asymptotic behaviour of the numbers

rk(H;Km), when H is bipartite and k ≥ 2 (and even more effectively, when k ≥ 3.) Surprisingly,

we can often get tight estimates for these numbers even in cases where the asymptotic behaviour

of r1(H;Km) = r(H,Km) is far from being understood.

In particular, it is not known if r(C4,Km) = O(m2−ε) for some absolute constant ε > 0, and

Erdős conjectured in [12], (see also [10]. p. 19), that this is the case. Using our technique here we

show that r(C4, C4,Km) = Θ(m2poly logm) and that for every fixed k ≥ 3

rk(C4;Km) = Θ(m2/ log2m), (2)

thus determining these numbers up to a constant factor for every fixed number of colors exceeding

3.

More generally, we get similar estimates for other complete bipartite graphs H. We show that

for every fixed t and for every fixed s ≥ (t − 1)! + 1, r(Kt,s,Kt,s,Km) = Θ(mtpoly logm), and for

every k ≥ 2,

rk(Kt,s;Km) = Θ(mt/ logtm). (3)

Similar tight results are obtained when H is a cycle of length 6 or 10. The proofs combine com-

binatorial and probabilistic arguments with spectral techniques and certain estimates of character

sums.

Our notation is rather standard. As usual, for two functions f(n) and g(n) we write that

f(n) = O(g(n)) if there exists a positive constant c so that f(n) ≤ cg(n) for all sufficiently large

n, and write that f(n) = Ω(g(n)) if g(n) = O(f(n)). We write f(n) = Θ(g(n)) if f(n) = O(g(n))

and g(n) = O(f(n)). We write f(n) = Õ(g(n)) if there is an absolute constant c such that
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f(n) ≤ g(n)(log n)c for all sufficiently large n. Similarly, f(n) = Ω̃(g(n)) if there is a constant b

such that f(n) ≥ g(n)(log n)b for all sufficiently large n. Therefore, f(n) = Ω̃(g(n)) if and only if

g(n) = Õ(f(n)). Finally, f(n) = Θ̃(g(n)) if f(n) = Õ(g(n)) and f(n) = Ω̃(g(n)), that is, f and g

are equal up to polylogarithmic factors.

Throughout the paper we assume, whenever this is needed, that n is sufficiently large. We

make no attempt to optimize the various absolute constants in our estimates. To simplify the

presentation, we omit all floor and ceiling signs whenever these are not crucial. All logarithms are

in the natural base e.

The rest of the paper is organized as follows. In Section 2 we bound the maximum possible

number of independent sets of a given size in regular graphs with small nontrivial eigenvalues.

In Section 3 we describe our basic technique for obtaining lower bounds for multicolored Ramsey

numbers; the bounds are obtained by considering random shifts of appropriate pseudo random

graphs, or of blow-ups of such graphs. We proceed with the proofs of the specific results mentioned

above. The proof of (1) is described in subsection 3.1, and that of (2) in subsection 3.2. In

subsection 3.3 we present the proof of (3), and in subsection 3.4 we consider additional even cycles.

The final section, Section 4, contains some concluding remarks.

2 The number of independent sets in graphs with small nontrivial

eigenvalues

An (n, d, λ)−graph is a d-regular graph G = (V,E) on n vertices, such that the absolute value of

every eigenvalue of the adjacency matrix of G, besides the largest one, is at most λ. It is well

known that if λ is much smaller than d, then any (n, d, λ)-graph has some strong pseudo-random

properties; see, e.g., [7], Chapter 9.2. Here we prove a new property of such graphs: they do not

contain many large independent sets.

We will be interested in graphs on n vertices in which d behaves like nα for some fixed α between

0 and 1. Some of our graphs will have loops (at most one loop per vertex), with a loop contributing

1 to the degree of the corresponding vertex. We call a set of vertices independent if it contains no

edges besides, possibly, loops (that is, if the corresponding set in the simple graph obtained from

our graph by omitting all loops is independent.)

It is easy to see that the number of independent sets of size, say, m = n
2(d+1) , in any d-regular

graph on n vertices, (without any assumption on its eigenvalues) is at least

n(n− d− 1)(n− 2d− 2) . . . (n− (m− 1)(d+ 1))

m!
> (

n

2m
)m = (d+ 1)m.

Somewhat surprisingly, if the graph is an (n, d, λ)-graph and we consider slightly larger inde-

pendent sets, for example sets of size m = n log2 n
d , then their number cannot exceed

(
λ

log2−o(1) n
)m.

This is proved in the following theorem.
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Theorem 2.1 Let G = (V,E) be an (n, d, λ)-graph. Then for any m ≥ 2n logn
d , the number of

independent sets of size m in G is at most

[
emd2

4λn log n
]
2n logn

d [
e2λn

md
]m. (4)

In particular, for any ε > 0 and any n > n0(ε), if m = n
d log2 n, then the number of independent

sets of size m is at most

(
λ

(log n)2−ε
)m. (5)

To prove the theorem, we need the following simple lemma. Some versions of this lemma appear

in various places, see, e.g., [7], Chapter 9.

Lemma 2.2 Let G = (V,E) be an (n, d, λ)-graph, and let B ⊂ V be a subset of bn vertices of G.

Define

C = {u ∈ V : |N(u) ∩B| ≤ db

2
},

where here and in what follows N(u) denotes the set of all neighbors of u (including u itself, if there

is a loop at u). Then

|B||C| < 4λ2

d2
n2.

Therefore |B ∩ C| < 2λ
d n.

Proof . Let A denote the adjacency matrix of G, and define a vector x = (xv : v ∈ V ) by xv = −b
if v 6∈ B and xv = 1− b if v ∈ B. Then xtx = (n− |B|)b2 + |B|(1− b)2 = b(1− b)n. As the sum of

coordinates of x is zero, it is orthogonal to the all 1 vector which is the eigenvector of the largest

eigenvalue of A, and hence

||Ax||22 = xtAtAx ≤ λ2xtx.

We also have

||Ax||22 =
∑
v∈V

(|N(v) ∩B|(1− b)− (d− |(N(v) ∩B|)b)2 =
∑
v∈V

(|N(v) ∩B| − db)2.

Therefore ∑
v∈V

(|N(v) ∩B| − db)2 ≤ λ2xtx.

Since each v ∈ C contributes to the left hand side more than d2b2/4, and xtx = b(1− b)n

|C|d2b2/4 < λ2b(1− b)n < λ2bn,

implying that d2|B||C|
4 < λ2n2, as claimed. In particular, if |B| ≥ 2λ

d n then |C| < 2λ
d n, and

consequently in any case |B ∩ C| < 2λ
d n. 2
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Proof of Theorem 2.1. Consider the number of ways to choose an ordered set v1, v2, . . . , vm of m

vertices of G which form an independent set. Starting with B0 = V , let Bi denote the set of all

vertices that are not adjacent to any vertex among the first i chosen vertices v1, . . . , vi. Obviously,

all the vertices vj for j > i have to lie in Bi. Define, also,

Ci = {u ∈ V : |N(u) ∩Bi| ≤
d|Bi|
2n
}.

Note that if the next chosen vertex, vi+1, is not a member of Ci, then |Bi+1| < (1 − d
2n)|Bi|, and

hence throughout the process there cannot be more than 2n
d log n choices like that, since otherwise

the corresponding set of non-neighbors will be empty before the process terminates, not allowing

us to choose the next vertex.

It follows that with at most s = 2n
d log n possible exceptions, each vertex vi+1 has to lie in

Bi ∩ Ci. However, by Lemma 2.2, this intersection is always of size at most 2λn/d. Therefore, the

total number of choices for the ordered set v1, v2, . . . , vm is at most(
m

s

)
ns(

2λ

d
n)m−s.

Indeed, there are
(m
s

)
possibilities to choose a set of s indices covering all indices i in which the

vertex vi has not been chosen in Ci∩Bi. Then, there are at most n ways to choose each such vertex

vi, and at most 2λ
d n ways to choose each vertex vj for each other index j.

Dividing by m! in order to get an upper bound for the number of unordered independent sets

of size m, and plugging in the value of s = 2n
d log n, we conclude that this number is at most

1

m!
(
em

s
)sns(

2λ

d
n)m−s ≤ [

emn

s2λn/d
]s [

e2λn

md
]m

= [
emd2

4λn log n
]
2n logn

d [
e2λn

md
]m,

as claimed.

In particular, if m = n
d log2 n then the last quantity is equal to

[
ed log n

4λ
]
2n logn

d [
e2λ

log2 n
]
n log2 n

d ≤ (
λ

(log n)2−ε
)
n log2 n

d ,

provided n > n0(ε). 2

3 Tight bounds for Ramsey numbers

Recall that for a positive integer k and for two graphs H and K, rk(H;K) denotes the Ramsey

number r(H1, . . . ,Hk,K), where Hi = H for all 1 ≤ i ≤ k.

We need the following simple lemma.
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Lemma 3.1 Let G be a graph on n vertices, and let M denote the number of independent sets of

size m in G. If, for a positive integer k ≥ 2, Mk < (
(n
m

)
)k−1, then there is a collection G1, G2 . . . , Gk

of k graphs on the same set V of n vertices, where each Gi is isomorphic to G, and where the graph

whose edges are all pairs of vertices of V that do not lie in any Gi contains no clique of size m.

Therefore, if G contains no copy of H for some fixed graph H, then the Ramsey number

rk(H;Km) satisfies rk(H;Km) > n.

Proof For each i, 1 ≤ i ≤ k, let Gi be a random copy of G on V , that is, a graph obtained from G

by mapping its vertices to those of V according to a random one to one mapping. The probability

that a fixed set of m vertices of V will be an independent set in each Gi is precisely

(
M(n
m

))k,

implying, by our assumption that Mk < (
(n
m

)
)k−1, that with positive probability there is no such

independent set. This gives the existence of the graphs Gi as required.

By coloring each edge of the complete graph on V by the minimum i such that it belongs to

Gi, if there is such an i, and by k+ 1 otherwise, we conclude that if G contains no copy of H then

rk(H;Km) > n. 2

3.1 Triangles

The r-blow-up G′ of a graph G is the graph obtained by replacing each vertex v of G by an

independent set Sv of size r, and each edge uv of G by the set of all edges xy with x ∈ Su, y ∈ Sv.
It is easy to see that the adjacency matrix of G′ is the tensor product of the adjacency matrix of

G with an all-one r by r matrix, and hence all the nonzero eigenvalues of G′ are simply those of G

multiplied by r. It follows that if G is an (n, d, λ)-graph, then G′ is an (nr, dr, λr)-graph.

The following theorem determines the asymptotic behaviour of rk(K3;Km) for every fixed k,

up to poly-logarithmic factors.

Theorem 3.2 For every fixed k ≥ 1, the Ramsey number rk(K3;Km) satisfies rk(K3;Km) =

Θ̃(mk+1).

Proof For k = 1, rk(K3;Km) = r(K3,Km) = Θ(m2/ logm) as proved by Ajtai, Komlós and

Szemerédi [2] and by Kim [17]. We next prove, by induction on k, that for every fixed k ≥ 1,

rk(K3;Km) ≤ ck
mk+1(log logm)k−1

(logm)k
.

This holds for k = 1, by the above mentioned result. Assuming the result holds for k − 1, we

prove it for k. Given an edge-coloring of KN by k + 1 colors with no monochromatic triangle

in any of the first k colors, and no monochromatic Km in the last color, consider the graph T

consisting of all edges of the first k colors. We claim that the maximum degree of T is at most

D = k(rk−1(K3;Km) − 1) < krk−1(K3;Km). Indeed, otherwise there is a vertex v incident with
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at least rk−1(K3;Km) edges of color i for some i ≤ k. The induced subgraph of T on the set

of all vertices connected to v by edges of color i cannot contain edges of color i, and thus must

contain either a monochromatic triangle of color j for some j ≤ k, j 6= i, or an independent set

of size m, leading, in each of these cases, to a contradiction. Therefore, the maximum degree of

T is at most D. Let s be the Ramsey number r(H1, H2, . . . ,Hk), with Hi = K3 for all i. It is

known that s ≤ O(k!) but here we only need the fact that it is a finite function of k. Obviously T

contains no copy of Ks. By a result of Shearer [22] this implies that T contains an independent set

of size at least Ω( N logD
D log logD ). As this set must be of size smaller than m we conclude that for some

c = c(k) > 0,

c
N log [krk−1(K3;Km)]

krk−1(K3;Km) log log[krk−1(K3;Km)]
< m,

which, together with the induction hypothesis, implies the desired upper bound.

To get the lower bound, we apply Theorem 2.1 and Lemma 3.1 to appropriate blow-ups of an

explicit family of graphs constructed in [3]. In that paper it is shown that for every n = 23f , with f

not divisible by 3, there is a triangle-free (n, d, λ)-graph with d = 2f−1(2f−1 − 1) = (14 + o(1))n2/3

and λ = 9 · 2f + 3 · 2f/2 + 1/4 = (9 + o(1))n1/3. Let G be an r blow-up of such a graph, where r =

nk/3−2/3(log n)2−δ for some δ > 0. Then G is triangle-free, and is an (N,D,Λ)- graph with N = nr,

D = dr, Λ = (9 + o(1))n1/3r. By Theorem 2.1 it follows that for m = N log2N
D = c(k)n1/3(log n)2,

the number M of independent sets of size m in G satisfies

M ≤ [
n1/3r

log2−ε(nr)
]m,

provided n is sufficiently large as a function of ε. If ε is sufficiently small as a function of δ, then it

is not difficult to check that

Mk < [

(
N

m

)
]k−1,

implying, by Lemma 3.1, that

rk(K3;Km) > N.

Since m = c(k)n1/3(log n)2 and N = nr = n(k+1)/3(log n)2−δ we conclude that for all δ > 0 and all

sufficiently large m,

rk(K3;Km) ≥ Ω(
mk+1

(logm)2k+δ
).

This completes the proof. 2

Remark: As observed by Benny Sudakov [25], the (log logm)k−1 term in the upper bound can be

eliminated. This is because in the graph T defined in the proof above, whose maximum degree is D,

the number of edges in each neighborhood of a vertex is at most, say, Dk2rk−2(K3;Km)/2. Indeed,

suppose this is not the case and v is a vertex of T whose neigborhood contains more edges, then

there is a vertex u in this neighborhood of degree bigger than k2rk−2(K3;Km) in the neighborhood.

Classifying the common neighbors of u and v according to the colors of the edges connecting them

to u and v we obtain a set U of at least rk−2(K3;Km) vertices, all connected to v by edges of
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one of the first k colors, and all connected to u by edges of another color. Therefore, there are no

edges of these two colors among the vertices of U , implying that the induced graph on it contains

either a monochromatic triangle in one of the first k colors, or an independent set of size m, which

is impossible. It follows that indeed each neighborhood of T is sparse, and hence, by the results

in [1] or in [5], it contains an independent set of size at least Ω(N logD/D), implying the slightly

improved upper bound for N .

3.2 Bipartite graphs and 4-cycles

Our technique is particularly effective for bounding rk(H;Km) when H is a bipartite graph. In this

case we can sometimes determine the asymptotic behaviour of rk(H;Km) up to a constant factor

for every fixed k > 2. In this subsection we illustrate this fact by considering the Ramsey numbers

rk(C4;Km). We start, however, with a simple upper bound for the numbers rk(H;Km) when H

is a fixed bipartite graph. Recall that the Turán number ex(n,H) of a graph H is the maximum

possible number of edges of a simple graph on n vertices which contains no copy of H. It is well

known that these numbers are sub-quadratic for every fixed bipartite H (see [20]).

Lemma 3.3 Let H be a fixed bipartite graph, and suppose that the Turán number of H satisfies

ex(n,H) ≤ O(n2−1/t), where t > 1 is a real. Then, for every fixed k there exists a constant

c = c(k,H) such that

rk(H;Km) ≤ c mt

(logm)t
.

Proof Put n = rk(H;Km)−1. Given an edge-coloring of Kn by k+1 colors with no monochromatic

copy of H in each of the first k colors, and no monochromatic Km in the last color, let T be the

graph whose edges are all edges of Kn colored by one of the first k colors. The total number of

edges of T is clearly at most k · ex(n,H) ≤ b(k,H)n2−1/t. Moreover, the neighborhood of any

vertex of degree d in T contains at most k · ex(d,H) ≤ b(k,H)d2−1/t edges of T . In [1] it is proved

that if a graph on n vertices with average degree at most D contains at most nD2−η triangles, then

it contains an independent set of size at least c(η)n logD/D. Therefore, if D is the average degree

of T then, as T contains an induced subgraph on n/2 vertices with maximum degree at most 2D

and hence at most O(D2−1/t) edges in any neighborhood of a vertex, it contains an independent

set of size at least Ω(n logD/D) ≥ Ω(n1/t log n). Since the independence number of T is smaller

than m it follows that Ω(n1/t log n) < m, implying the desired result. 2

The Erdős-Rényi graph G, constructed in [14], is the polarity graph of a finite projective plane

of order p. This graph is an (n, d, λ)-graph, where n = p2+p+1, d = p+1 and λ =
√
p, and it exists

for every prime power p. It has p+ 1 vertices incident with loops. By Theorem 2.1, the number of

independent sets of size m = n
d log2 n in this graph is at most ( λ

log2−ε n
)m, and this, together with

Lemma 3.1 and a simple computation implies that

r(C4, C4,Km) > n = Θ(m2/ log4m).
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Note that by Lemma 3.3 above this implies that r(C4, C4,Km) = Θ̃(m2).

For more colors our method suffices to determine the asymptotic behaviour of rk(C4;Km) up

to a constant factor. Indeed, for any fixed c > 6 and all sufficiently large n = p2 + p+ 1, a simple

computation, using Theorem 2.1 and Lemma 3.1, implies that

r3(C4;Kc
√
n logn) > n.

This, together with the fact that rk(C4;Km) ≥ r3(C4,Km) for all k ≥ 3, and together with Lemma

3.3 implies the second part of the following theorem, whose first part has been established in the

previous paragraph.

Theorem 3.4 The Ramsey numbers rk(C4;Km) satisfy the following:

(i) r2(C4;Km) = Θ̃(m2).

(ii) For every fixed k ≥ 3 there are two positive constants c1, c2 such that

c1
m2

log2m
≤ rk(C4;Km) ≤ c2

m2

log2m
.

2

The results above are surprising in view of the fact that the asymptotic behaviour of the

Ramsey number r1(C4;Km) = r(C4,Km) is much less understood. In [12] Erdős conjectured that

this number is at most O(n2−ε) for some fixed ε > 0, but the best known bounds are only (see [24],

[13] ):

Ω(
m3/2

log3/2m
) ≤ r(C4,Km) ≤ O(

m2

log2m
).

Theorem 3.4 shows that the situation becomes clearer as the number of colors increases. In the

next two subsections we show several additional examples exhibiting this phenomenon.

3.3 Complete bipartite graphs

The projective norm graphs G(p, t) have been constructed in [6], modifying an earlier construction

given in [19]. The construction is the following. Let t > 2 be an integer, let p be a prime, let GF (p)∗

denote the multiplicative group of the finite field with p elements, and let GF (pt−1) denote the field

with pt−1 elements. The set of vertices of the graph G = G(p, t) is the set V = GF (pt−1)×GF (p)∗.

Two distinct (X, a) and (Y, b) ∈ V are adjacent if and only if N(X + Y ) = ab, where the norm N

is understood over GF (p), that is, N(X) = X1+p+···+pt−2
. Note that |V | = pt − pt−1. If (X, a) and

(Y, b) are adjacent, then (X, a) and Y 6= −X determine b. Thus G is regular of degree pt−1 − 1.

These graphs can be defined in the same manner starting with a prime power q instead of the

prime p, but for our purpose here the prime case suffices. The main property of the graphs G(p, t),

proved in [6] by applying some tools from algebraic geometry developed in [19], is the following.

Lemma 3.5 ([6]) The graph G(p, t) contains no subgraph isomorphic to Kt,(t−1)!+1.

We need to bound the eigenvalues of G(p, t). It turns out that we can, in fact, compute these

eigenvalues precisely. These have been computed independently by T. Szabó [26].
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Lemma 3.6 Let G = G(p, t) be as above. Then every eigenvalue of G(p, t), besides the trivial one,

is either p(t−1)/2 or −p(t−1)/2 or 0 or 1 or −1. Therefore, G is an (n, d, λ)-graph with n = pt−pt−1,

d = pt−1 − 1 and λ = p(t−1)/2.

Proof Put q = pt−1 and let A be the adjacency matrix of G = G(p, t). The rows and columns of

this matrix are indexed by the ordered pairs of the set GF (q)×GF (p)∗. Let ψ be a character of the

additive group of GF (q), and let χ be a character of the multiplicative group of GF (p). Consider

the vector v : GF (q) × GF (p)∗ 7→ C defined by v(X, a) = ψ(X)χ(a). For each non-zero element

c ∈ GF (p)∗, define Sc = {Z ∈ GF (q) : N(Z) = c}. Since the norm of each nonzero member

of GF (q) lies in GF (p)∗, the sets Sc form a partition of all nonzero elements of GF (q). We now

compute the vector Av:

[Av](X, a) =
∑

b∈GF (p)∗

∑
Y :N(X+Y )=ab

ψ(Y )χ(b) =
∑

b∈GF (p)∗

χ(b)
∑

Y ∈Sab−X
ψ(Y )

=
∑

b∈GF (p)∗

χ(b)
∑
Z∈Sab

ψ(Z)ψ(X) =
∑

b∈GF (p)∗

∑
Z∈Sab

χ(ab)ψ(Z)ψ(X)χ(a)

=
∑

b∈GF (p)∗

∑
Z∈Sab

χ(N(Z))ψ(Z)ψ(X)χ(a) = [
∑

Z∈GF (q),Z 6=0

ψ(Z)χ(N(Z))]ψ(X)χ(a)

= [
∑

Z∈GF (q),Z 6=0

ψ(Z)χ(N(Z))]v(X, a).

Since v(X, a) is also a product of an additive character by a multiplicative one, another application

of A shows that

A2v = |
∑

Z∈GF (q),Z 6=0

ψ(Z)χ(N(Z))|2v.

Since the vectors ψ(X)χ(a), as ψ ranges over all additive characters of the large field, and χ ranges

over all multiplicative characters of the small field, are pairwise orthogonal, we conclude that all

the eigenvalues of the matrix A2 are given by the expressions

|
∑

Z∈GF (q),Z 6=0

ψ(Z)χ(N(Z))|2.

Set χ′(Z) = χ(N(Z)) for all nonzero Z in GF (q). Note that as the norm is multiplicative, χ′

is a multiplicative character of the large field, and hence all the last expressions are squares of

absolute values of Gauss sums. It is well known (c.f., e.g., [11], page 66), that the value of each

such square, besides the trivial ones (that is, when either ψ or χ′ are principal), is q. For the sake

of completeness, we include a short proof of this fact. Put

S = |
∑

Z∈GF (q),Z 6=0

ψ(Z)χ′(Z)|2,

where ψ is a non-principal additive character and χ′ is a non-principal multiplicative character.

Then

S = q − 1 +
∑
Z1 6=0

∑
Z2 6=0,Z1

ψ(Z1)ψ(Z2)χ
′(Z1)χ′(Z2)
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= q − 1 +
∑
Z1 6=0

∑
Z2 6=0,Z1

ψ(Z1 − Z2)χ
′(Z1/Z2) = q − 1 +

∑
Y 6=0

ψ(Y )
∑

Z2 6=0,−Y
χ′(

Z2 + Y

Z2
)

= q − 1 +
∑
Y 6=0

ψ(Y )
∑

Z2 6=0,−Y
χ′(1 +

Y

Z2
).

When Z2 ranges over all field elements besides 0,−Y , the quantity 1 + Y
Z2

ranges over all nonzero

field elements besides 1, and as the sum of χ′(X) over all elements X of the multiplicative group

of the field is 0 and χ′(1) = 1 it follows that
∑
Z2 6=0,−Y χ

′(1 + Y
Z2

) = −1. Therefore, the above sum

is equal to

q − 1−
∑
Y 6=0

ψ(Y ) = q − 1− (−1) = q,

where here we used the fact that
∑
Y ψ(Y ) = 0 and that ψ(0) = 1.

This gives the values in the nontrivial cases. If χ′ is principal and ψ is not, then the sum∑
Z 6=0 ψ(Z) = −1 and hence its square is 1. If ψ is principal and χ′ is not, then

∑
Z 6=0 χ

′(Z) = 0.

This completes the proof. 2

Combining the last two lemmas with Theorem 2.1, Lemma 3.1 and Lemma 3.3 together with

the known fact proved in [20] that for every fixed s ≥ t ≥ 2, ex(n,Kt,s) = O(n2−1/t) , we get the

following theorem. We omit the detailed computation, which is analogous to that described in the

previous subsection.

Theorem 3.7 The Ramsey number rk(Kt,s;Km) satisfy the following:

(i) For every fixed t > 1 and every fixed s ≥ (t− 1)! + 1 , r2(Kt,s,Km) = Θ̃(mt).

(ii) For every fixed k ≥ 3, t > 1 and s ≥ (t−1)! + 1 there are two positive constants c1, c2 such that

c1
mt

logtm
≤ rk(Kt,s;Km) ≤ c2

mt

logtm
.

2

3.4 Additional even cycles

For every q which is an odd power of 2, the incidence graph of the generalized 4-gon has a polarity.

The corresponding polarity graph is a q + 1-regular graph with q3 + q2 + q + 1 vertices. See [9],

[21] for more details. This graph contains no cycle of length 6 and it is not difficult to compute

its eigenvalues (they can be derived, for example, from the the eigenvalues of the corresponding

incidence graph, given in [27]). Indeed, all the eigenvalues, besides the trivial one (which is q + 1)

are either 0 or
√

2q or −
√

2q. Combining this with the known fact that ex(n,C6) = O(n4/3) (c.f.,

e.g., [8]) we conclude from Theorem 2.1, Lemma 3.1 and Lemma 3.3 that the following theorem

holds. We omit the detailed computation.

Theorem 3.8 The Ramsey numbers rk(C6;Km) satisfy the following:

(i) r2(C6;Km) = Θ̃(m3/2).

11



(ii) For every fixed k ≥ 3 there are two positive constants c1, c2 such that

c1
m3/2

log3/2m
≤ rk(C6;Km) ≤ c2

m3/2

log3/2m
.

2

For every q which is an odd power of 3, the incidence graph of the generalized 6-gon has a

polarity. The corresponding polarity graph is a q + 1-regular graph with q5 + q4 + · · · + q + 1

vertices. See [9], [21] for more details. This graph contains no cycle of length 10 and its eigenvalues

can be easily derived, for example, from the the eigenvalues of the corresponding incidence graph,

given in [27]. All the eigenvalues, besides the trivial one are either
√

3q or −
√

3q or
√
q or −√q.

Combining this with the known fact that ex(n,C10) = O(n6/5) (c.f., e.g., [8]) we conclude from

Theorem 2.1, Lemma 3.1 and Lemma 3.3 that the following theorem holds. Here, too, we omit the

detailed computation.

Theorem 3.9 The Ramsey numbers rk(C10;Km) satisfy the following:

(i) r2(C10;Km) = Θ̃(m5/4).

(ii) For every fixed k ≥ 3 there are two positive constants c1, c2 such that

c1
m5/4

log5/4m
≤ rk(C10;Km) ≤ c2

m5/4

log5/4m
.

2

4 Concluding remarks

• In [4] the authors describe, for every fixed t ≥ 2, infinite families of (n, d, λ)-graphs that

contain no copy of Kt+2, where d = (1 + o(1))n1−1/t and λ = (1 + o(1))d1/2. By taking the

r-blow ups of these graphs, with r = n(1−1/t)(k/2−1), we can follow the arguments described

in subsection 3.1 and conclude that for every fixed k ≥ 2 and for every fixed t ≥ 2

rk(Kt+2;Km) ≥ Ω̃(mk(t−1)/2+1). (6)

• Our lower bound for the Ramsey numbers rk(K3;Km) or rk(Kt+2;Km) are obtained by taking

random shifts of blow-ups of appropriate Ramsey type graphs with well behaved eigenvalues.

Kim and Mubayi [18] noticed that in these cases the proof can be simplified, and the spectral

approach is not needed. We can simply take random shifts of blow ups of Ramsey graphs.

Indeed, if we know that r(Kt+2,Kf ) ≥ n, then the r-blow up of the appropriate graph contains

at most (n
f

)
(fr)m

m!

independent sets of size m. This is because there are at most
(n
f

)
ways to choose a set of

f blown vertices containing our independent set, and then each vertex of the independent

set is one of the fr vertices in these blocks. As an example, consider Kim’s lower bound

12



r(K3,Kf ) ≥ Ω(f2/ log f). This bound enables us to prove, using our random shifts approach

and Lemma 3.1, that indeed rk(K3;Km) ≥ Ω̃(mk+1) for all k ≥ 1, as proved in Theorem 3.2.

In fact, the logarithmic factor here is somewhat better than what follows from the spectral

technique. Since it is known that r(Kt+2,Km) ≥ Ω̃(m(t+3)/2) we can take appropriate shifts

of blow-ups and conclude that

rk(Kt+2;Km) ≥ Ω̃(mk(t+1)/2+1)

improving the estimate in (6). Note that this argument does not work for bounding rk(H;Km)

for bipartite graphs H, and the spectral approach seems essential in these cases.

• Our technique can be used to provide lower bounds for additional multicolored Ramsey num-

bers. If Gi is a graph that contains no homomorphic image of Hi, then no blow-up of

Gi will contain Hi, and hence our techniques will enable us to obtain lower bounds for

r(H1, H2, . . . ,Hk,Km). By taking appropriate random graphs we can get this way lower

bounds for various Ramsey numbers. A specific example are the numbers rk(C2t+1;Km).

Here, using the method of [24] it is not difficult to show that there is a graph on n =

c(f/ log f)1+1/(2t−1) vertices with girth ≥ 2t + 2 and no independent set of size f . Using

the technique described above with k ≥ 2, r = c′(n/f)k−1 log f , and m = f log f yields

rk(C2t+1;Km) ≥ Ω(m1+k/(2t−1)/(logm)k+2k/(2t−1)).

• The method can obviously be used to provide bounds for multicolored Ramsey numbers

r(H1, H2, . . . Hk,Km), even when not all the graphs Hi are necessarily isomorphic. Thus, for

example, we can use the graphs constructed in subsection 3.1 and subsection 3.3 to conclude

that

r(K3,K3,3,Km) ≥ Ω̃(m3).
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