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Abstract: Let G be an abelian group of bounded exponent and A ⊆ G. We show that if
the collection of translates of A has VC dimension at most d, then for every ε > 0 there is
a subgroup H of G of index at most ε−d−o(1) such that one can add or delete at most ε|G|
elements to/from A to make it a union of H-cosets.

We also establish a removal lemma with polynomial bounds, with applications to property
testing, for induced bipartite patterns in a finite abelian group with bounded exponent.
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1 Introduction

Szemerédi’s regularity lemma [31] gives a rough structural decomposition for all graphs and is one of
the most powerful tools in graph theory. A major drawback of the regularity lemma is that the number
of parts in the decomposition grows as an exponential tower of 2’s of height a power of 1/ε , where ε is
the regularity parameter [12]. A natural question that has been studied by many researchers is: in what
circumstances can one get a more effective bound? Namely, under what conditions does every graph in
a family F of graphs necessarily have a partition with much fewer parts, say polynomial in 1/ε? One
natural condition for a family F of graphs is that it is hereditary, that is, if G ∈ F then every induced
subgraph of G is also in F. For hereditary families, it turns out that the bound on the number of parts in a
regular partition is polynomial in 1/ε if the neighborhood set system of every graph in the family has
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bounded VC dimension, and otherwise the bound is tower-type. This gives a satisfactory answer to the
problem.

A set system S is a collection of subsets of some ground set Ω. Here we only consider finite Ω.
We say that U ⊆ Ω is shattered by S if for every U ′ ⊆U there is some T ∈ S with T ∩U = U ′. The
Vapnik–Chervonenkis dimension (or VC dimension) of S, denoted VC-dimS, is the size of the largest
shattered set.

Let G be a graph. The neighborhood N(v) of a vertex v ∈V (G) is the set of vertices adjacent to v.
The VC dimension of a graph G is defined to be VC-dim{N(v) : v ∈V}.

Given a bipartite graph F with vertex bipartition V (F) =U ∪V , we say that a map φ : V (F)→V (G)
bi-induces F if for every (u,v) ∈U×V , the pair uv is an edge of F if and only if φ(u)φ(v) is an edge of
G. Note that we have no requirements about edges in G between vertices in the image of U , and likewise
with V . We say that G contains a bi-induced copy of H if there exists a map φ as above that is injective
on each of U and V .1

It is known that the following are equivalent for a hereditary family F of graphs:

(1) The VC dimension of the graphs in F is uniformly bounded.

(2) There is a bipartite graph F such that none of the graphs in F has a bi-induced copy of F .

(3) The family F has a forbidden induced bipartite graph, a forbidden induced complement of a
bipartite graph, and a forbidden induced split graph.

(4) The number of graphs in F on n vertices is at most 2n2−ε

for some ε = ε(F)> 0. In contrast, every
other hereditary family of graphs contains at least 2n2/4 labeled graphs on n vertices.

(5) There is a constant k = k(F) such that every n-vertex graph in F has an equitable vertex partition
into at most ε−k parts such that all but at most an ε-fraction of the pairs of parts have edge density
at most ε or at least 1− ε . In contrast, every other hereditary family of graphs has a graph that
requires a tower in a power of 1/ε parts in any ε-regular equitable vertex partition.

The above characterizations give an interesting dichotomy between hereditary families of graphs of
bounded VC dimension versus those of unbounded VC dimension. It shows that families of graphs with
bounded VC dimension have smaller growth and are more structured. The equivalence of (1) and (4)
was given by Alon, Balogh, Bollobás, and Morris [1]. Alon, Fischer, and Newman [3] proved a bipartite
version of the regularity lemma for graphs of bounded VC dimension, and the version for all graphs is
due to Lovász and Szegedy [19]. The proof was simplified with improved bounds by Fox, Pach, and Suk
[11]. Further results related to the above equivalences for tournaments can be found in [10].

A half-graph is a bipartite graph on 2k vertices {u1, . . . ,uk}∪{v1, . . . ,vk} such that ui is adjacent to v j

if and only if i≤ j. Malliaris and Shelah [20] proved if a graph has no bi-induced copy of the half-graph
on 2k vertices, then one can partition the vertex set into ε−Ok(1) many parts such that every pair of parts

1Having a bi-induced copy of F is weaker than having an induced copy of F , where in the latter we also require that there
are no edges in G between vertices in the image of U , and likewise with V . Also, an alternative notion of bi-induced copy of H
assumes that φ is injective. The discussed results hold for this alternative notion as well.
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is ε-regular (there are no irregular pairs). Bi-inducing a half-graph is related to a notion of stability in
model theory, and for this reason Malliaris and Shelah called their result a “stable regularity lemma”.

The above discussion summarizes some relevant results for graphs. We now turn our attention to
subsets of groups and their associated Cayley graphs. Let G be a finite abelian group, written additively.
Let A⊆G. Consider the Cayley sum graph formed by taking the elements of G as vertices, where x,y ∈G
are adjacent if x+ y ∈ A (we may end up with some loops; alternatively, we can consider a bipartite
version of this construction). The VC dimension of the graph corresponds to the VC dimension of the
collection of translates of A, which we simply call the VC dimension of A, defined as

VC-dimA := VC-dim{A+ x : x ∈ G}.

For a bipartite graph F with vertex bipartition U ∪V , we say that a map φ : V (F)→ G bi-induces F
in A if, for every (u,v) ∈U×V , uv is an edge of F if and only if φ(u)+φ(v) ∈ A. We say that A has a
bi-induced copy of F if there exists a map φ as above that is injective on each of U and V .

Observe that A has a bi-induced copy of F if its VC dimension is large enough. To see this, first note
that if no pair of vertices in U have identical neighborhoods in V , and A has VC dimension at least |V |,
then A has a bi-induced copy of F . Indeed, we can construct φ by mapping V to a subset of G shattered
by translates of A (such a choice exists since VC-dimA≥ |V |). Since φ(V ) is shattered, for every u ∈U ,
there is some yu ∈ G such that (A− y)∩φ(V ) = φ(N(u)). Let φ send u to this yu, for each u ∈U . We
obtain a map φ : V (F)→ G that bi-induces F , though this map may not be injective on U (it is always
injective on V ) if some pairs of vertices of U have identical neighborhoods, but this can be easily fixed2.

Green [13] proved an arithmetic analogue of Szemerédi’s regularity lemma for abelian groups. The
statement is much simpler in the case of abelian groups of bounded exponents, which is the main focus
of our paper (some remarks regarding general groups are given in the final section). For an abelian
group G and a subset A ⊆ G, a coset H + x of a subgroup H is called ε-regular if all the nontrivial
Fourier coefficients of A∩ (H + x), when interpreted as a subset of H + x, are at most ε . For each ε > 0
and positive integer r, Green’s arithmetic regularity lemma states that there is K = K(r,ε) such that the
following holds. If G has exponent at most r and A⊆ G, then there is a subgroup H ⊆ G of index at most
K such that all but an ε-fraction of the cosets of H are ε-regular.

Recently, an arithmetic analog of the Malliaris–Shelah stable regularity lemma was proved by Terry
and Wolf [30] for G = Fn

p with p fixed. It was shown that if A⊆G has no bi-induced copy of a half-graph

on 2k vertices, then there is a subgroup H of G of index at most eε
−Ok,p(1) such that for every x ∈ G, one

has either |A∩ (H + x)| ≤ ε |H| or |A∩ (H + x)| ≥ (1− ε) |H|. Here the subscripts on the Ok,p(1) mean
that the constant is allowed to depend on k and p. The result was subsequently extended to general groups
by Conant, Pillay, and Terry [6], who showed that for every finite group G, if A⊆ G has no bi-induced
copy of the half-graph on 2k vertices, then there is a normal subgroup H of G of index Ok,ε(1) such
that there is some union S of H-cosets such that |A∆S| ≤ ε |H|, where A∆B = (A\B)∪ (B\A) denotes
the symmetric difference. However, the general group version of the theorem [6] gives no quantitative
bounds on the index of H due to the model theoretic tools involved in its proof.

2Consider the bipartite graph F+ obtained from F by adding dlog2 |U |e new vertices to the vertex set V , and add edges
from the new vertices to U so that no two vertices in U have identical neighborhoods in F+. By earlier arguments, if
VC-dimA≥ |V |+ dlog2 |V |e, then A necessarily contains an bi-induced copy of F+, and hence a bi-induced copy of F .
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We saw earlier that forbidding a fixed bi-induced bipartite graph implies bounded VC dimension. Our
first main result generalizes a variant of Terry and Wolf’s result to sets of bounded VC dimension, and
gives bounds of polynomial order in 1/ε . Its proof can be found in Section 2.

Theorem 1.1 (Regularity lemma). Fix positive integers r and d. If G is a finite abelian group with
exponent at most r, and A⊆ G has VC dimension at most d, then for every ε > 0 there is a subgroup H
of G of index at most ε−d−o(1) such that |A∆S| ≤ ε |G| for some S⊆ G which is a union of cosets of H.

Here o(1) is some quantity that goes to zero as ε → 0, at a rate possibly depending on r and d.

We also prove a removal lemma for bi-induced copies of a fixed bipartite graph. Let us first recall the
classical graph removal lemma. We say that an n-vertex graph is ε-far from some property if one needs
to add or delete more than εn2 edges to satisfy the property. The triangle removal lemma3 says that if
an n-vertex graph is ε-far from triangle-free, then its triangle density is at least δ (ε)> 0. The original
graph regularity proof [23] of the triangle removal lemma shows that we may take 1/δ (ε) to be a tower
of 2’s of height ε−O(1), which was improved to height O(log(1/ε)) in [9]. It is known that there exists a
constant c > 0 such that the bound in the triangle removal lemma cannot be improved to δ = ε−c log(1/ε)

(see [8] for a survey on graph removal lemmas). There is also a removal lemma for induced subgraphs
[2], initially proved using a so-called strong regularity lemma, though better bounds were later obtained
in [7].

An arithmetic analog of the graph removal lemma was first proved by Green [13] for “complexity 1”
patterns such as x+ y+ z = 0 using his arithmetic regularity lemma. Král’, Serra, and Vena [17] later
showed that Green’s arithmetic removal lemma can be deduced as a consequence of the graph removal
lemma. More general arithmetic removal lemmas for linear systems were later proved as a consequence
of the hypergraph removal lemma [18, 27]. We refer to the references for precise statements. Note that
the reduction from the arithmetic removal lemma to the (hyper)graph removal lemma fails for induced
patterns. It remains open to find a general induced arithmetic removal lemmas [27, Conjecture 5.3].

Our second main result gives an arithmetic analog of the removal lemma, with polynomial bounds, for
bi-induced patterns. We say that A⊂ G is ε-far from bi-induced-F-free if A′ ⊂ G contains a bi-induced
copy of F whenever |A∆A′| ≤ ε |G|. Here is our second main result, whose proof can be found in
Section 4.

Theorem 1.2 (Removal lemma). Fix a positive integer r and a bipartite graph F. Let G be a finite
abelian group with exponent at most r. For every 0 < ε < 1/2, if A⊆ G is ε-far from bi-induced-F-free,
then the probability that a uniform random map φ : V (F)→ G bi-induces F is at least εO(|V (F)|3).

We mention an application to property testing. The removal lemma gives a polynomial-time ran-
domized sampling algorithm for distinguishing sets A ⊆ G that are bi-induced-F-free from those that
are ε-far from bi-induced-F-free. Indeed, sample a random map φ : V (F)→ G, and output YES if φ

bi-induces F and is injective on each vertex part of F , and otherwise output NO. If A is bi-induced-F-free,
then the algorithm always outputs NO. On the other hand, if F is ε-far from bi-induced-F-free, then by
the theorem above, the algorithm outputs YES with probability at least εOF (1), provided that G is large
enough, so that φ is injective with high probability. We can then repeat the experiment ε−OF (1) times to
obtain a randomized algorithm that succeeds with high probability.

3The removal lemma is often stated in the contrapositive, which better explains the name “removal lemma”: if triangle
density of a graph is at most δ (ε)> 0, then the graph can be made triangle-free by deleting εn2 edges
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2 Regularity lemma

In this section, we prove Theorem 1.1.
We say that a set system S on a finite ground set Ω is δ -separated if |S∆T | ≥ δ |Ω| for all distinct

S,T ∈ S. We quote a bound on the size of a δ -separated system.

Lemma 2.1 (Haussler’s packing lemma [15]). Let d,δ > 0. If S is a δ -separated set system of VC
dimension at most d, then |S| ≤ (30/δ )d .

By taking a maximal δ -separated collection of translates of A⊆ G, we deduce, below, that A must be
δ -close to many of its own translates.

Lemma 2.2. Let G be a finite abelian group, and A ⊆ G a subset with VC dimension at most d, and
δ > 0. Then

|{x : |A∆(A+ x)| ≤ δ |G|}| ≥ (δ/30)d |G| .

Proof. Let W be a maximal subset of G such that |(A+w)∆(A+w′)|> δ |G| for all distinct w,w′ ∈W .
We have |W | ≤ (30/δ )d by Lemma 2.1. Let

B = {x ∈ G : |A∆(A+ x)| ≤ δ |G|}.

Since W is maximal, for every x ∈ G, there is some w ∈W such that |(A+ x)∆(A+w)| ≤ δ |G|, which
implies x−w ∈ B. Hence G =

⋃
w∈W (B+w). Therefore |B| ≥ |G|/ |W | ≥ (δ/30)d |G|.

We quote a result from additive combinatorics. We use the following standard notation: A+A =
{a+b : a,b ∈ A}, A−A = {a−b : a,b ∈ A}, and kA = A+ · · ·+A (k times).

Theorem 2.3 (Bogolyubov–Ruzsa lemma for groups with bounded exponent). Let G be an abelian group
of exponent at most r, and A⊆ G a finite subset with |A+A| ≤ K |A|. Then 2A−2A contains a subgroup
of G of size at least cr(K) |A| for some constant cr(K)> 0.

The name “Bogolyubov–Ruzsa lemma” was given by Sanders [24], who proved the theorem with the
current best bound cr(K)= e−Or(log4 2K) (see [24, Theorem 11.1]). We refer the readers to the introductions
of [24, 25] for the history of this result. A version of the theorem for G = Z was initially proved by
Ruzsa [21] as a key step towards his proof of Freiman’s theorem. The assertion of the polynomial
Freiman–Ruzsa conjecture, a central open problem in additive combinatorics, would follow from an
improvement of the bound to cr(K) = K−Or(1).

In our next lemma, we start from the conclusion of Lemma 2.2, which gives us a large set B such that
A≈ A+ x for all x ∈ B. Consider the sequence B,2B,4B,8B, . . . . Since B is large, the size of 2iB cannot
keep on growing, so we can find a set B′ = 2iB with small doubling |B′+B′| ≤ K |B′|, and i not too large.
Theorem 2.3 then implies that 2B′−2B′ contains a large subgroup, in which every element x satisfies
A≈ A+ x, which is close to what we need.

Lemma 2.4. Fix a positive integer r. Let G be a finite abelian group of exponent at most r. Let
0 < δ < 1/2, C > 0, and A ⊆ G. Let B = {x ∈ G : |A∆(A+ x)| ≤ δ |G|}. Suppose |B| ≥ δC |G|. Then
there exists a subgroup H of G with |H| ≥ δ o(1)|B| such that |A∆(A+ x)| ≤ δ 1−o(1) |G| for all x ∈ H, and
furthermore there exists a union S of H-cosets such that |A∆S| ≤ δ 1−o(1) |G|. Here o(1) is a quantity that
goes to zero as δ → 0, at a rate that may depend on r and C.
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Proof. Let K =K(δ )> 1 to be decided. We cannot have |2i+1B|>K|2iB| for every 0≤ i≤ logK(|G|/|B|)
since otherwise we would have |2iB|> |G| for some i, which is impossible as 2iB is a subset of G. Thus
|2i+1B| ≤ K|2iB| for some i≤ logK(|G|/|B|)≤C logK(1/δ ), and letting `= 2i, we have

|2`B| ≤ K|`B| with `≤ 2C log(1/δ )/ logK = δ
−O(1/ logK). (1)

Since |(A+ x)∆A| ≤ δ |G| for all x ∈ B, we have, by the triangle inequality,

|(A+ x+ y)∆A| ≤ |(A+ x+ y)∆(A+ y)|+ |(A+ y)∆A|= |(A+ x)∆A|+ |(A+ y)∆A| for all x,y ∈ G.

Thus
|A∆(A+ x)| ≤ 4`δ |G| for all x ∈ 2`B−2`B. (2)

By Theorem 2.3 and (1), 2`B− 2`B contains a subgroup H of G with |H| ≥ cr(K) |`B| ≥ cr(K) |B|.
This would complete the proof of the first claim in the lemma provided that K = K(δ )→ ∞ slowly
enough as δ → 0 so that cr(K) = δ o(1) (then `≤ δ−O(1/ logK) = δ−o(1)). Concretely, Theorem 2.3 with
Sander’s cr(K) = e−Or(log4 2K) allows us to take K(δ ) = exp((log1/δ )1/5), say, so that all the o(1)’s in
the exponents decay as (log(1/δ ))−1/5.

For the second claim, let S be the union of all H-cosets y+H with |A∩ (y+H)| ≥ |H|/2. Then

|A∆S|= ∑
y∈G/H

min{|A∩ (y+H)| , |H|− |A∩ (x+H)|}

≤ ∑
y∈G/H

2
|H|
|A∩ (y+H)|(|H|− |A∩ (y+H)|)

=
1
|H| ∑x∈H

|A∆(A+ x)| [counting pairs in A× (G\A) lying in the same H-coset]

≤ 4`δ |G|= δ
1−o(1) |G| . [by (2)]

The regularity lemma, Theorem 1.1, then follows immediately after combining Lemmas 2.2 and 2.4.

Instead of applying the Bogolyubov–Ruzsa lemma as we do above, it is also possible to prove
Lemma 2.4 using Freiman’s theorem for groups of bounded exponent:

Theorem 2.5 (Ruzsa [22]). If A is a finite subset of an abelian group of exponent at most r such that
|A+A| ≤ K |A|, then A is contained in a subgroup of size Or,K(1) |A|.

At the point in the proof of Lemma 2.4 where we apply Theorem 2.3, we can instead apply The-
orem 2.5 to contain `B inside a subgroup of size δ−o(1) |`B|. Now we apply a corollary of Kneser’s
theorem.

Theorem 2.6 (Kneser’s theorem [16]; see [29, Theorem 5.5]). Let G be an abelian group and A,B finite
non-empty subsets. If |A|+ |B| ≤ |G| then there is a finite subgroup H of G such that

|A+B| ≥ |A+H|+ |B+H|− |H| ≥ |A|+ |B|− |H| .

The subgroup H can be taken to be the stabilizer of A+B:

H = {g ∈ G : g+(A+B) = (A+B)}.
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Corollary 2.7. If G is an abelian group, t is a positive integer, and A⊂G has |A| ≥ |G|/t and A generates
G, then 2tA = G.

Proof. For any i such that (i+1)A 6=G, applying Kneser’s theorem to the sets iA and A gives us a subgroup
H so that |(i+1)A| ≥ |iA+H|+ |A+H|− |H| ≥ |iA|+ |A|/2 (since A generates G, A+H is a union of
at least two cosets of H, so |H| ≤ |A+H|/2 and |A+H| ≥ |A|). Iterating gives |2tA| ≥ t|A| ≥ |G|.

Let us continue with our discussion of the alternative approach to proving Lemma 2.4. Since `B
occupies a δ o(1)-fraction of some subgroup, by the above corollary, `′B is a subgroup (playing the role of
H in the first proof) for some `′ = δ−o(1)`. From this point we can proceed as the rest of the proof of
Lemma 2.4.

3 A strengthened regularity lemma

In the next section, we prove a removal lemma for bi-induced patterns. The regularity lemma we stated
in Theorem 1.1 seems not quite strong enough to establish the removal lemma. Below we prove a
strengthening, where the VC dimension hypothesis is weakened to a more robust one. Instead of requiring
that A has bounded VC dimension, we will ask that, with probability at least 0.9, say, the VC dimension
of the collection of translates of A is bounded if we restrict the ground set G to a random set. We state the
result below in the form of two alternatives: either A has high VC dimension when sampled, or it satisfies
a regularity lemma with polynomial bounds.

Proposition 3.1 (Regularity lemma with robust VC dimension hypothesis). Fix positive integers r and d.
Let G be a finite abelian group of exponent at most r. Let A⊆ G. One of the following must be true for
every small ε > 0:

(a) For some k = ε−d−o(1), if X and Y are random k-element subset of G, then we have VC-dim{(A+
x)∩Y : x ∈ X}> d with probability at least 0.9.

(b) There exists a subgroup H of G of index at most ε−d−o(1) such that |A∆S| ≤ ε |G| for some union S
of H-cosets.

Here o(1) refers to a quantity that goes to zero as ε → 0, at a rate that can depend on r and d.

Recall that Lemma 2.2 tells us that if VC-dimA≤ d, then B = {x : |A∆(A+ x)| ≤ δ |G|} has size at
least (δ/30)d |G|. We will derive a similar bound for B under the weaker hypothesis, namely the negation
of (a), from which we can deduce (b) using Lemma 2.4 as in the proof of the previous regularity lemma
Theorem 1.1.

Lemma 3.2. Let k ≤ n/2 be positive integers. In an n-vertex graph with maximum degree at most n/k, a
random k-element subset of the vertices contains an independent set of size at least k/4 with probability
at least 1− e−k/8.

Proof. Let v1, . . . ,vk be a sequence of k vertices chosen uniformly at random without replacement. Let I
be the independent set formed greedily by, starting with the empty set, putting each vi, sequentially as
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i = 1,2, . . . , into I if doing so keeps I an independent set. During the process, when at most k/4 elements
are added to I, the probability that a new vi is added to I is at least 1− (k/4)(n/k)

n−k ≥ 1
2 , since among the

remaining n− k vertices, at most (k/4)(n/k) of them are adjacent to vertices already added to I at this
point. It follows that |I| stochastically dominates min{X ,k/4}, where X is distributed as Binomial(k,1/2).
Thus P(|I| < k/4) ≤ P(X < k/4) ≤ e−k/8 by the Chernoff bound. Therefore, {v1, . . . ,vk} contains an
independent set I of size at least k/4 with probability at least 1− e−k/8.

We recall a basic result on VC dimension.

Theorem 3.3 (Sauer–Perles–Shelah theorem [26, 28, 32]). If S is a set system on a ground set of n
elements with VC dimension at most d, then |S| ≤ ∑

d
i=0
(n

i

)
≤ 2nd .

Lemma 3.4. Let 0 < δ < 1, and let m and d be positive integers. Let S be a δ -separated set system.
Suppose that for a uniformly random m-element subset M, the restricted set system S|M := {T ∩M : T ∈ S}
has VC dimension at most d with probability at least 3m2d(1−δ )m. Then |S| ≤ 2md .

Proof. Assume for contradiction that there exists such a set system with |S| = 2md + 1. Let n be the
size of the ground set. We have |S∆T | ≥ δn for all distinct S,T ∈ S. Then, for each pair of distinct
S,T ∈ S, with probability at least 1− (1−δ )m, M intersects S∆T , so that S and T remain distinct when
restricted to M. Taking a union bound over all pairs of sets in S, we see that with probability at least
1−
(|S|

2

)
(1−δ )m ≥ 1−3m2d(1−δ )m, all sets in S remain distinct when restricted to M, in which case

VC-dim(S|M)> d by Theorem 3.3 as |S|> 2md , a contradiction to the hypothesis.

Lemma 3.5. Let m and d be positive integers and 0 < δ < 1. Let G be a finite abelian group of order
at least 24md . Let X be a random 12md-element subset of G, and Y a random m-element subset of
G. If VC-dim{(A+ x)∩Y : x ∈ X} ≤ d with probability at least e−md

+ 3m2d(1− δ )m, then B = {x :
|A∆(A+ x)| ≤ δ |G|} has at least |G|/(12md) elements.

Proof. Suppose, on the contrary, that |B|< |G|/(12md). Consider the Cayley graph on G generated by
B\{0}, i.e., there is edge between x,y ∈ G whenenver x− y ∈ B. Applying Lemma 3.2 with k = 12md to
this graph, we find that with probability at least 1− e−md

, a random 12md-element subset X ⊆ G contains
an independent set I ⊆ X with |I| ≥ 3md with respect to this graph, i.e., |(A+ x)∆(A+ y)| > δ |G| for
all distinct x,y ∈ I. It follows, by union bound and averaging, that we can fix such a set X so that
VC-dim{(A+ x)∩Y : x ∈ X} ≤ d with probability at least 3m2d(1−δ )m for the random m-element set
Y ⊆ G.

Note that {A+ x : x ∈ I} is a δ -separated set system with ground set G. Furthermore, VC-dim{(A+
x)∩Y : x ∈ I} ≤ VC-dim{(A + x)∩Y : x ∈ X} ≤ d with probability at least 3m2d(1− δ )m. So by
Lemma 3.4, we have |I| ≤ 2md , which contradicts the bound |I| ≥ 3md above.

Proof of Proposition 3.1. Let 0 < δ < 1/2. Consider B = {x : |A∆(A+ x)| ≤ δ |G|}. Choose m =

Cδ−1 log(1/δ ) where C is a sufficiently large constant. Then e−md
< 1/20 and 3m2d(1− δ )m <

2m2de−δm < 1/20.
If |B| < |G|/(12md), then by Lemma 3.5, if X and Y are random 2md-element subsets of G, then

VC-dim{(A+ x)∩Y : x ∈ X}> d with probability at least 0.9.
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On the other hand, if |B| ≥ |G|/(12md), then by Lemma 2.4 there exists a subgroup H of G with
|H| ≥ δ o(1)|B| ≥ δ d+o(1)|H| such that |A∆S| ≤ δ 1−o(1) |G| for some union S of H-cosets. By choosing
δ = ε1+o(1) so that |A∆S| ≤ ε |G|, we obtain the desired result.

4 Removal lemma

In this section, we prove the removal lemma, Theorem 1.2, for bi-induced patterns.
The result is analogous to the induced removal lemma [2] which can be proved using a strong version

of the graph regularity lemma. The usual way of proving the strong graph regularity lemma involves
iteratively applying the graph regularity lemma. For our arithmetic setting, as we are concerned with
bi-induced patterns, the situation is a bit easier: we simply apply the regularity lemma, Proposition 3.1,
twice, where the second time we choose a smaller error parameter compared to the first time. If option (a)
holds either time, then we can extract a bi-induced copy of F from each sample with high VC dimension.
Otherwise, (b) holds, and we can modify A by a small amount to A′, which must also have a bi-induced
copy of F (since A is ε-far from bi-induced-F-free). The set A′ is a union of H-cosets where H is a
subgroup of bounded index, and we will show that a single bi-induced copy of F in A′ leads to many
copies.

Proof of Theorem 1.2. Let V (F) = U ∪V be the vertex bipartition of F , where |U | ≥ |V |. Let d =
|U |+ dlog2 |U |e.

We may assume that |G| ≥ ε−Ω(|V (F)|2) or else the conclusion is automatic from just a single bi-induced
copy of F in A.

Suppose, for some k = ε−O(|V (F)|), with probability at least 0.9, random k-element subsets X ,Y ⊆ G
satisfy VC-dim{(A+ x)∩Y : x ∈ X} > d, in which case there exist injective maps U → X and V → Y
that bi-induce F in A by footnote 2. Then the probability that random injections U → G and V → G
bi-induce F is at least 0.9

( k
|U |
)−1( k

|V |
)−1 ≥ 0.9k−|U |−|V | ≥ εO(|V (F)|2), since we can choose the random

injection U→G by first choosing the random k-element subset X ⊂G and then taking a random injection
U → X , and similarly with V . With probability 1−OF(|G|−1) a random map V (F)→ G is injective on
U and V , so it bi-induces F with probability at least εO(|V (F)|2).

We apply Proposition 3.1 with two different parameters ε1 = ε/10 and some ε2 to be specified later.
If option (a) is true in either case, then the previous paragraph implies the conclusion of the Theorem.
Otherwise, we obtain subgroups H1 and H2 of G, such that for each i ∈ {1,2}, one has hi := |G|/ |Hi| ≤
ε
−d−o(1)
i and there exists some union Si of Hi-cosets satisfying |A∆Si| ≤ εi |G|. Furthermore, we choose

ε2 so that h1ε2 |U | |V |= 1/8. In particular, ε2 ≥ εd+o(1).
Let H = H1 ∩H2. So |G|/|H| ≤ h1h2 ≤ ε−d2−d−o(1). We say that a coset x+H of H is good if

|A∆(x+H)|/ |H| is within η := 1/(2|U ||V |) of 0 or 1, and bad otherwise. At most an ε2/η-fraction
of H-cosets are bad, since otherwise bad H-cosets would together contribute more than (ε2/η)η |G|
elements to A∆S2 as S2 is also a union of H-cosets, but this is impossible as |A∆S2| ≤ ε2 |G|.

Pick an arbitrary subgroup K of G containing exactly one element from each coset of H1 (so that
G = H1⊕K as a direct sum). Let z ∈ H1 be chosen uniformly at random. Then z+K +H is a union of
|K| = h1 many H-cosets. For each y ∈ K, the random H-coset z+ y+H is uniformly chosen from all
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H-cosets in y+H1. Applying the union bound, we see that the probability that z+K +H contains a bad
H-coset is at most h1ε2/η < 2h1ε2 |U | |V |< 1/2.

Let A′ ⊆ G be the union of H1-cosets y+H1, ranging over all y ∈ K with |A∩ (z+ y+H)| ≥ |H|/2.
Since A′ and S1 are both unions of H1-cosets, we can apply linearity of expectation over H1-cosets to
deduce that E[|A′∆S1|]≤ 2 |A∆S1| ≤ 2ε1 |G|, and hence E[|A′∆A|]≤ E[|A′∆S|]+ |A∆S| ≤ 3ε1 |G|. Thus,
with probability at least 1/2, one has |A′∆A|/ |G| ≤ 6ε1 < ε .

Therefore there is some instance such that |A′∆A|< ε |G|, and z+K +H is a union of good H-cosets.
Since A is ε-far from bi-induced-F-free, A′ contains a bi-induced-copy of F . So there exist x′u,y

′
v ∈ G

over u ∈U and v ∈V such that for all (u,v) ∈U×V , one has x′u+y′v ∈ A′ if and only if uv ∈ E(F). Since
A′ is a union of H1-cosets, and there is an element of K in every H1-coset, we may assume that x′u ∈ K for
each u ∈U and y′v ∈ z+K for each v ∈V .

Consider independent and uniform random elements xu ∈ x′u +H for each u ∈U , and yv ∈ y′v +H for
each v ∈V . For each (u,v) ∈U×V , the random element xu + yv is distributed uniformly in the H-coset
x′u+y′v+H, which is a good H-coset since x′u+y′v ∈ z+K as K is a subgroup. So with probability at least
1−η , one has xu+yv ∈ A if and only if x′u+y′v ∈ A′, which in turn occurs if and only if uv∈ E(F). Taking
a union bound over (u,v) ∈U×V , the following holds with probability at least 1−|U | |V |η = 1/2: for
every (u,v) ∈U×V , one has x′u + y′v ∈ A if and only if uv ∈ E(F). Since each xu and yv is restricted to
a single H-coset, it follows that a uniform random map φ : V (F)→ G bi-induces F with probability at
least 1

2(|H|/ |G|)
|V (F)| ≥ ε(d2+d+o(1))|V (F)|.

5 Concluding remarks

We conjecture that the result can be extended to general groups, not necessarily abelian.

Conjecture 5.1. Fix positive integers r and d. Let G be a group of exponent at most r, and A ⊆ G a
subset with VC dimension at most d. Then, for every ε > 0, there is a normal subgroup H of G of index
at most ε−Or,d(1) so that |A∆S| ≤ ε |G| for some union S of H-cosets.

A special case of the conjecture, though with a somewhat stronger but non-quantitative conclusion,
where one forbids a half-graph of fixed size (instead of assuming bounded VC dimension), was recently
established by Conant, Pillay, and Terry [6] using model theoretic tools.

Note that the bounded exponent hypothesis in the conjecture above cannot be dropped. Indeed, if
G = Z/pZ with p prime, and A = {1,2, . . . ,bpc/2c}, then VC-dimA ≤ 3, while G has no non-trivial
subgroups, so the conclusion of the conjecture is false. Nonetheless, there may be regularity lemmas
using other structures in addition to subgroups. An example of such a result is discussed later in this
section.

We also conjecture that the removal lemma should generalize to arbitrary groups as well, although it
seems to be open even for the general abelian groups.

Conjecture 5.2. Fix a bipartite graph F. Let G be a finite group. For every 0 < ε < 1/2, if A ⊆ G is
ε-far from bi-induced-F-free, then the probability that a uniform random map φ : V (F)→ G bi-induces
F is at least εOF (1).
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It seems likely that the theory developed by Breuillard, Green, and Tao [4, 5] on the structure of
approximate groups should be useful in the case of nonabelian groups. We hope to study these problems
in the future.

In classical results in additive combinatorics, such as Freiman’s theorem, when the ambient group
does not have many subgroups, generalized progressions and Bohr sets often play the role of subgroups
when the group does not have many subgroups. For example, in Green and Ruzsa’s [14] extension of
Freiman’s theorem to general abelian groups, the basic structural objects are coset progressions, which
are sets of the form P = Q+H, where H is a subgroup, and Q is some generalized arithmetic progression
{x0 + i1x1 + · · ·+ idxd : 0 ≤ i j < ` j for each j}, and the sum Q+H is a direct sum in the sense that
every element in Q+H can be written as q+h with q ∈ Q and h ∈ H in a unique way. We say that the
progression is proper if all the terms x0 + i1x1 + · · ·+ idxd in Q are distinct. We call d the dimension of
the progression.

The Bogolyubov–Ruzsa lemma, Theorem 2.3, holds for general abelian groups (see [14, Section 5];
also see [24]).

Theorem 5.3 (Bogolyubov–Ruzsa lemma for general abelian groups). Let G be an abelian group, and
A ⊆ G a finite set such that |A+A| ≤ K|A|. Then 2A− 2A contains a proper coset progression P of
dimension at most d(K) and size at least c(K)|A|, for some constants c(K),d(K)> 0.

By modifying the proof of Theorem 2.3 so that we apply Theorem 5.3 instead of 2.3, we obtain an
analog of the first claim in Theorem 2.3 for general finite abelian groups. We are not sure if some variant
of this result can be used to prove a removal lemma.

Proposition 5.4. For every ε > 0 and D = D(ε)→∞ as ε→ 0, if G is a finite abelian group, and A⊆G
has VC dimension at most d, then there exist some proper coset progression P of dimension at most D
and size |P| ≥ εd+o(1)|G|, such that |(A+ x)∆A| ≤ ε|G| for all x ∈ P. Here o(1) is some quantity that
goes to zero as ε → 0, at a rate depending on d and D.

We conclude with the following related question that we do not know how to answer (even for k = 2).
An affirmative answer would strengthen Szemerédi’s theorem.

Question 5.5. Let k be a positive integer and δ > 0. Let p be a sufficiently large prime, and A⊆ Z/pZ
with δ p≤ |A| ≤ (1−δ )p. Can we always find a 2k-term arithmetic progression in Z/pZ where the first
k terms lie in A and the last k terms lie outside of A?

If p had a small prime factor, then taking A to be a non-trivial subgroup of Z/pZ gives a counterex-
ample. To see the relevance to the rest of this paper, observe that such a 2k-term arithmetic progression
would bi-induce a half-graph on 2k vertices. For example, if x− (k− 1)d,x− (k− 2)d, . . . ,x ∈ A and
x+d, . . . ,x+ kd /∈ A, then xi = x− id and y j = jd have the property that, for 1≤ i, j ≤ d, xi + y j ∈ A if
and only if j ≤ i.

References

[1] N. Alon, J. Balogh, B. Bollobás, and R. Morris, The structure of almost all graphs in a hereditary
property, J. Combin. Theory Ser. B 101 (2011), 85–110. 2

DISCRETE ANALYSIS, 20XX:XX, 14pp. 11

http://dx.doi.org/10.19086/da


NOGA ALON, JACOB FOX, AND YUFEI ZHAO

[2] N. Alon, E. Fischer, M. Krivelevich and M. Szegedy, Efficient testing of large graphs, Combinatorica
20 (2000), 451-476. 4, 9

[3] N. Alon, E. Fischer, and I. Newman, Efficient testing of bipartite graphs for forbidden induced
subgraphs, SIAM J. Comput. 37 (2007), 959–976. 2

[4] E. Breuillard, B. Green, and T. Tao, Small doubling in groups. Erdős centennial, 129–151, Bolyai
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[11] J. Fox, J. Pach, and A. Suk, Erdős-Hajnal conjecture for graphs with bounded VC-dimension, to
appear in Discrete Comput. Geom., SoCG 2017 Special Issue. 2

[12] W. T. Gowers, Lower bounds of tower type for Szemerédi’s uniformity lemma, Geom. Funct. Anal.
2 1997, 322–337. 1

[13] B. Green, A Szemerédi-type regularity lemma in abelian groups, with applications, Geom. Funct.
Anal. 15 (2005), 340–376. 3, 4

[14] B. J. Green and I. Z. Ruzsa, Freiman’s theorem in an arbitrary abelian group, J. London Math. Soc.
(2) 75 (2007), 163–175. 11

[15] D. Haussler, Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-
Chervonenkis dimension, J. Combin. Theory Ser. A, 69 (1995), 217–232. 5

[16] M. Kneser, Abschätzungen der asymptotischen Dichte von Summenmengen, Math. Zeitschr. (in
German) 58 (1953), 459–484. 6

[17] D. Král’, O. Serra and L. Vena, A combinatorial proof of the removal lemma for groups, J. Combin.
Theory Ser. A 116 (2009), 971–978. 4

[18] D. Král’, O. Serra and L. Vena, A removal lemma for systems of linear equations over finite fields,
Israel J. Math. 187 (2012), 193–207. 4

DISCRETE ANALYSIS, 20XX:XX, 14pp. 12

http://dx.doi.org/10.19086/da


EFFICIENT ARITHMETIC REGULARITY AND REMOVAL LEMMAS

[19] L. Lovász and B. Szegedy, Regularity partitions and the topology of graphons, An Irregular Mind,
Imre Bárány, József Solymosi, and Gábor Sági editors, Bolyai Society Mathematical Studies 21
(2010), 415–446. 2

[20] M. Malliaris and S. Shelah, Regularity lemmas for stable graphs, Trans. Amer. Math. Soc. 366
(2014), 1551–1585. 2

[21] I. Z. Ruzsa, Generalized arithmetical progressions and sumsets, Acta Math. Hungar. 65 (1994),
379–388. 5

[22] I. Z. Ruzsa, An analog of Freiman’s theorem in groups, Astérisque 258 (1999), 323–326. 6

[23] I. Z. Ruzsa and E. Szemerédi, Triple systems with no six points carrying three triangles, in Combi-
natorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II, 939–945. 4

[24] T. Sanders, On the Bogolyubov-Ruzsa lemma, Anal. PDE 5 (2012), no. 3, 627–655. 5, 11

[25] T. Sanders, The structure theory of set addition revisited, Bull. Amer. Math. Soc. 50 (2013), 93–127.
5

[26] N. Sauer, On the density of families of sets, J. Combinatorial Theory Ser. A 13 (1972), 145–147. 8

[27] A. Shapira, A proof of Green’s conjecture regarding the removal properties of sets of linear equations,
J. London Math. Soc. 81 (2010), 355–373. 4

[28] S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary
languages, Pacific J. Math. 41 (1972), 247–261. 8

[29] T. C. Tao and H. V. Vu., Additive combinatorics, Cambridge University Press, 2006. 6

[30] C. Terry and J. Wolf, Stable arithmetic regularity in the finite-field model, Bull. Lond. Math. Soc. 51
(2019), 70–88. 3

[31] E. Szemerédi, Regular partitions of graphs, Problémes combinatoires et th eorie des graphes (Colloq.
Internat. CNRS, Univ. Orsay, Orsay, 1976), Colloq. Internat. CNRS, vol. 260, CNRS, Paris, 1978,
pp. 399–401. 1
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