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Abstract

We find upper bounds on the linear k-arboricity of d-regular graphs using a proba-
bilistic argument. For small k these bounds are new. For large k they blend into the
known upper bounds on the linear arboricity of regular graphs.

1 Introduction

A linear forest is a forest each of whose components is a path. The linear arboricity of a
graph G is the minimum number of linear forests required to partition E(G) and is denoted
by la(G). It was shown by Akiyama, Exoo and Harary [1] that la(G) = 2 when G is cubic,
and they conjectured that every d-regular graph has linear arboricity exactly d(d + 1)/2e.
This was shown to be asymptotically correct as d→∞ in [3], and in [4] the following result
is shown.

Theorem 1 There is an absolute constant c > 0 such that for every d-regular graph G

la(G) ≤ d

2
+ cd2/3(log d)1/3.

(Actually a slightly weaker result is proved explicitly there, but it is noted that the same
proof with a little more care gives this theorem.)

A linear k-forest is a forest consisting of paths of length at most k. The linear k-arboricity
of G, introduced by Bermond et al. [5], is the minimum number of linear k-forests required
to partition E(G), and is denoted by lak(G). In [2] it was shown that for cubic G, lak(G) = 2
for all k ≥ 9, or 7 in the case of graphs with edge-chromatic number 3. Thomassen has very
recently improved this by proving the following, which was a conjecture of [5].

Theorem 2 (Thomassen [8]) If G is cubic then la5(G) = 2.

∗School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, and Raymond and Beverly
Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research
supported in part by a Sloan Foundation grant 96-6-2, by a State of New Jersey grant and by a USA-Israel
BSF grant
†Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3052, AUSTRALIA.

Email:vjt@ms.unimelb.edu.au
‡Department of Mathematics and Statistics, University of Melbourne, Parkville, VIC 3052, AUSTRALIA.

Email:nick@ms.unimelb.edu.au. Research supported by the Australian Research Council

1



In this paper we obtain improved upper bounds on lak(G) for d-regular graphs G when
d is fairly large. Note that by simply counting edges, the linear k-arboricity of a d-regular
graph must be at least (k+1)d

2k
.

Theorem 3 There is an absolute constant c > 0 such that for every d-regular graph G and
every

√
d > k ≥ 2

lak(G) ≤ (k + 1)d

2k
+ c

√
kd log d.

Section 2 gives a quite short proof of this result. By specialising to k = d1/3/(log d)1/3

(which minimises the upper bound up to a constant factor) we immediately obtain Theorem 1.
Moreover, for sufficiently large d, Theorem 3 gives non-trivial results even when k = 2. It

is convenient to define
lak(d) = max

G is d-regular
lak(G).

Immediately we have
lak(G) ≤ lak(∆(G)) (1)

since every graph with maximum degree d occurs as a subgraph (not necessarily spanning)
of a d-regular graph, and the restriction of a linear k-forest to a subgraph is again a linear
k-forest. In Section 3 we examine for various small k the smallest d for which we obtain an
improvement over existing results, using the method of proof of Theorem 3 and also another
argument. First, for very small d Vizing’s theorem on edge-chromatic number, which gives
lak(G) ≤ d + 1 for every d ≥ 2 and k ≥ 1, is better than Theorem 3. This can be improved
by 1 for k ≥ 2 by using the argument of [7, Lemma 2.1] (where the following was proved for
cubic graphs).

Lemma 1 For every d ≥ 2 and k ≥ 2

lak(G) ≤ d.

Proof. Colour the edges of a d-regular graph G using d colours and such that the minimum
number of pairs of edges of the same colour are adjacent. Then by minimality, the colour of
an edge x appears only once among the 2d− 2 edges incident with x (since otherwise x could
be recoloured). Hence each edge is incident with only one other of the same colour, so each
colour class induces a 2-linear forest.

Throughout this paper, X(n, p) denotes a binomial random variable distributed as Bin(n, p).

2 Proof of Theorem 3

Lemma 2 Let k ≥ 2, let d ≥ 4 be even and define f(d, k) to be the least integer which satisfies

1
2e(k + 1)(d2 − d+ 2)P (X(d/2, 1/(k + 1)) > f(d, k)) < 1.

Then
lak(d) ≤ (k + 1)f(d, k) + lak(2f(d, k)).
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Proof. Let G be a d-regular graph. Orient its edges along an Euler cycle. Then each vertex
has indegree and outdegree d/2. Colour the vertices randomly with k + 1 colours.

Let A+
v,i (A−v,i) be the event that the number of vertices of colour i in the out-neighbourhood

(in-neighbourhood) of vertex v is strictly greater than f(d, k). Every event A−v,i is independent
of every other except the events A−v,j for j 6= i (there are k of these), A−w,j where w 6= v and
there is a vertex u such that (u, v) and (u,w) are in G (there are at most (k+1)(d/2)(d/2−1)
of these), and events A+

w,j where there is some vertex u such that (u, v) and (w, u) are in G
(there are at most (k + 1)(d/2)2 of these). Hence every event is independent of all except at
most (k + 1)d(d− 1)/2 + k of the others.

Since k + 1 > 1,
P(A±v,i) = P (X(d/2, 1/(k + 1)) > f(d, k))

and so by the assumption of the lemma

e((k + 1)d(d− 1)/2 + k + 1)Pr(A±v,i) < 1.

Hence, by the Lovász Local Lemma, (c.f., e.g., [4], Chapter 5, Corollary 1.2), it is possible to
colour the vertices such that none of the events A±v,i occurs. The set of all edges from a vertex
of colour i to one of colour j, where i 6= j forms a bipartite graph of degree at most f(d, k).
This can be covered by f(d, k) matchings. (For example, see corollary 5.2 of Hall’s theorem
in Bondy and Murty [6].) Call a matching from colour i to colour j a matching of type (i, j).

Consider the complete multi-graph MKk+1 on k+1 vertices, where each vertex represents
a colour and each pair of vertices is connected by two parallel edges (which we call the
first and second edge). This can be covered by k + 1 paths of length k (described modulo
k + 1 by t, (t− 1), (t+ 1), (t− 2), (t+ 2), . . .). Denote one of these paths by (i1, i2, . . . , ik+1).
Assign to each edge {ij, ij+1} of this path a matching of type (min{ij, ij+1},max{ij, ij+1})
if the above edge is the first edge of MKk+1 connecting ij and ij+1, and a matching of type
(max{ij, ij+1},min{ij, ij+1}) if it is the second edge. Note that the union of any k matchings
assigned in such a way to the k edges of the path is a linear k-forest in G. Since there are
at most f(d, k) matchings of each type, and since the k + 1 paths cover MKk+1, all edges
joining vertices of distinct colours can be covered with (k + 1)f(d, k) linear k-forests. The
edges of G remaining uncovered, joining vertices of the same colour, induce a subgraph with
in- and out-degrees at most f(d, k), and so can be covered by lak(2f(d, k)) linear k-forests.
The lemma follows.

We now prove Theorem 3. Clearly we can assume d is even. By [4, Theorem A.11] there
is an absolute constant c0 such that for all 2 ≤ k ≤ d2/3 (a range chosen just for convenience),

f(d, k) <
d

2(k + 1)
+ c0

√
d log d

k
. (2)

Put

h(d) = lak(d)− (k + 1)d

2k
.

Applying Lemma 2 to (2) gives

h(d) ≤ c0(k + 1)2

k

√
d log d

k
+ h(2f(d, k)) (3)
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for d ≥ k3/2. We can assume d is sufficiently large to ensure that (2) implies, say, f(d, k) <
2d

2(k+1)
. Thus by induction/iteration on d starting with h(d) ≤ d for d ≤ k3/2, (3) gives that

h(d) ≤ c0(k + 1)2

k3/2
[
√
d0 log d0 +

√
d1 log d1 + · · ·+

√
dq−1 log dq−1 ] + h(dq),

where d0 = d, di = 2f(di−1, k) for all i and dq ≤ k3/2. The sum in the square brackets is easily
seen to be bounded by O(

√
d log d) and the desired result follows.

3 Small d and k

We first have a type of monotonicity result which appears essentially in [2]. (It was presented
there in a special case, but the general argument given here is identical.)

Lemma 3 For every k ≥ 2 and d ≥ 2

lak(d) ≤ lak(d− 1) + 1.

Proof. Let G be d-regular and let M be a maximum matching in G. Then G−M has vertices
of degrees d − 1 and d, and the vertices of degree d form an independent set, B, say. The
subgraph of G−M induced by the edges incident with B is bipartite and, by Hall’s theorem
and considerations of degrees, contains a matching, M ′, which covers the vertices in B. Thus
G′ = G− (M ∪M ′) has maximum degree at most d− 1. By maximality of M , M ∪M ′ is a
linear forest with maximum path length at most 2. The lemma now follows from (1).

A corollary of Thomassen’s result is therefore that la5(G) ≤ d− 1 for any d-regular graph
G, d ≥ 3. But for d ≥ 8 this can be improved as in the following.

Corollary 1 For d ≥ 3, la5(d) ≤ min{d− 1, d2d+2
3
e}.

Proof. The bound d − 1 is explained above. For the other bound, cover the edges of a d-
regular graph by d + 1 matchings by Vizing’s theorem, split these matchings into groups of
three to obtain dd+1

3
e graphs with maximum degree 3, and find two linear 5-forests in each

using (1) and Theorem 2. This gives the upper bound 2dd+1
3
e, which can be reduced by 1

whenever d ≡ 0 (mod 3), (by taking one of the matchings as a linear forest), yielding d2d+2
3
e.

We can improve on this result for any k if d is sufficiently large using Lemma 2.

Theorem 4 For k ≥ 2 and d even,

lak(d) ≤ (k + 3)f(d, k),

where f(d, k) is as in Lemma 2.
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Proof. Just apply Lemma 1 to estimate lak(2f(d, k)) in Lemma 2.

It turns out that this gives a better result for the small values of d which we will next
consider than iterating the bound in Lemma 2 as in the proof of Theorem 3.

By calculating f(d, k) in Theorem 4 for various values of d and k < 5 using the exact values
in the appropriate binomial distribution, we obtain the following table. (For k ≥ 5 we would
have to go to much larger d to obtain an improvement over Corollary 1.) The entry for given k
and d−j gives the least value of d for which we obtain the bound lak(d) ≤ d−j. Computations
were arbitrarily terminated at j = 10. For any d′ > d, it follows that lak(d

′) ≤ d′ − j by
Lemma 3. This fills in bounds on lak(d) for values of d in between the ones appearing in the
table. Lemma 1 covers all j ≤ 0.

d− j k = 2 k = 3 k = 4

d− 1 3026 1580 1282
d− 2 3042 1580 1290
d− 3 3058 1600 1298
d− 4 3074 1600 1306
d− 5 3080 1620 1314
d− 6 3096 1620 1322
d− 7 3112 1634 1330
d− 8 3128 1634 1338
d− 9 3134 1654 1346
d− 10 3150 1654 1354

Table 1. Values of d for which lak(d) ≤ d− j, j ≤ 10, by Theorem 4.

Note that if the table were extended to the right, Theorem 2 gives 3 for the entries in the
first row for k ≥ 5, and Corollary 1 gives 8 for the row d − 2, 11 for d − 3, and so on. The
results from Theorem 4 in a given row appear to increase with k for all k ≥ 6, at least for
d − i ≥ d − 10. Nevertheless, asymptotically the larger values of k will give better results if
the method is iterated as in Theorem 3, but not necessarily from Theorem 4, so that for k
sufficiently large the bound drops even below 2d/3.
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