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Abstract

It is shown that every set of n integers contains a subset of size Ω(n1/6) in which no element is

the average of two or more others. This improves a result of Abbott. It is also proved that for every

ε > 0 and every m > m(ε) the following holds. If A1, . . . , Am are m subsets of cardinality at least

m1+ε each, then there are a1 ∈ A1, . . . , am ∈ Am so that the sum of every nonempty subset of the set

{a1, . . . , am} is nonzero. This is nearly tight. The proofs of both theorems are similar and combine

simple probabilistic methods with combinatorial and number theoretic tools.

1 Introduction

In this paper we consider two problems in additive number theory. The problems are not directly related,

but the methods we use in tackling them are similar. The first problem deals with the existence of large

non-averaging subsets in sets of integers. A set of integers is called non-averaging if no member of the set

is the average of two or more others. Answering a problem of Erdős, Abbott proved in [4] that every set

of n integers contains a non-averaging subset of cardinality Ω(n1/13/(log n)1/13). His method, together

with the result of Bosznay [8] mentioned in the next section, can be used to get an Ω(n1/7−ε) bound, for

any ε > 0. Here we improve this estimate and prove the following.

Theorem 1.1 Every set of n integers contains a non-averaging subset of cardinality Ω(n1/6).
∗School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540 and Department of Mathematics, Raymond

and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel. Email: noga@math.tau.ac.il. Research

supported in part by a State of New Jersey grant, by a United States Israeli BSF grant and by the Hermann Minkowski

Minerva Center for Geometry at Tel Aviv University.
†Mathematical Institute of the Hungarian Academy of Sciences, Budapest, P.O.B. 127, H-1364, Hungary. Email:

ruzsa@math-inst.hu. Research supported in part by the Hungarian National Foundation for Scientific Research, Grants

No. 17433 and 25617.

1



The second problem we consider deals with non-vanishing transversals. Let A1, . . . , Am be m sets of

integers. A transversal (for the sets Ai) is a sequence (a1, . . . , am), where ai ∈ Ai. It is a non-vanishing

transversal if for every ∅ 6= I ⊂ {1, . . . ,m},
∑
i∈I ai 6= 0. Let g(m) denote the minimum number g so that

for every m sets of cardinality g each there is a non-vanishing transversal. It is not difficult to see that

g(m) > m. Indeed, if b1 < . . . < bm is an arbitrary set of integers, and Ai = {bi − b1, bi − b2, . . . , bi − bm}

then the sets Ai are of size m each, and contain no non-vanishing transversal. To see this, note that

for any choice of elements ai = bi − bji ∈ Ai, the directed graph on the vertices 1, . . . ,m whose directed

edges are all edges (i, ji) for 1 ≤ i ≤ m has all outdegrees 1 and hence contains a directed cycle, giving a

nontrivial subset of the numbers ai whose sum is 0.

L. Goddyn and M. Tarsi (private communication) conjectured that this is best possible.

Conjecture 1.2 (Goddyn and Tarsi) For every m ≥ 1, g(m) = m + 1. That is: for every family of

m sets of m+ 1 integers each, there is a non-vanishing transversal.

Here we prove the following weaker statement.

Theorem 1.3 For every ε > 0 there exists an m0 = m0(ε) such that for every m > m0, g(m) ≤ m1+ε.

The proofs of Theorems 1.1 and 1.3 are similar, and apply the second moment method. The proof

of Theorem 1.1 is simpler, and is presented in Section 2. The basic idea in it is a simplified version of

the method of Komlós, Sulyok and Szemerédi in [13] (see also [14]). The proof of Theorem 1.3 is more

complicated, and is presented (in a somewhat stronger form) in Section 3. The proof combines the second

moment method with some number theoretic tools and graph theoretic arguments. The basic approach

resembles the one in [5], but several new ingredients are incorporated.

2 Non-averaging subsets

Let f(n) denote the maximum possible size of a non-averaging subset of N = {1, . . . , n}. Several papers

([16], [11], [1], [2], [3], [8]) deal with the problem of determining or estimating f(n). The best known lower

estimate is due to Bosznay [8], who modified the constructions of Abbott in [1], [2], [3] and constructed

a non-averaging subset of cardinality Ω(n1/4) of N . His construction, as well as those in [1], [2], [3], is

based on the clever (and simple) method of Behrend [6], in his construction of a dense subset of N that

contains no three-term arithmetic progression. The best known upper bound for f(n) follows from the

results in [9], which supply an upper bound of O(n log n)1/2. Therefore

Ω(n1/4) ≤ f(n) ≤ O((n log n)1/2). (1)
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Let h(n) denote the maximum h so that every set of n integers contains a non-averaging subset of

cardinality h. The following proposition, together with the lower bound in (1), implies the assertion of

Theorem 1.1.

Proposition 2.1 For every n ≥ k,

h(n) ≥ min{ k, 1
2
f(bn/k2c) }.

Proof. Let A = {a1, . . . , an} be an arbitrary set of n integers. Our objective is to show it contains a

large non-averaging subset. Put r = bn/k2c. By the definition of the function f there is a non-averaging

subset S of cardinality f(r) of {1, . . . , r}. For each s ∈ S, let Is denote the interval [ s−1
rk ,

s−1
rk + 1

n). We

claim that if b0, b1, . . . , bp is any set of p+ 1 ≤ k + 1 reals, where the points bi are in some p+ 1 distinct

intervals Is from the intervals above, then the equation pb0 ≡
∑p
i=1 bi (mod 1) is not satisfied. This is

because if the last equation holds, then, in fact pb0 =
∑p
i=1 bi since both sides of the last equation are

smaller than 1. Moreover, by the definition of the intervals and as p/n ≤ k/n ≤ 1/kr, the last equation

contradicts the fact that S is non-averaging, proving the claim.

It follows that if there are two reals α, β so that the set αA + β (mod 1) intersects at least q of the

intervals Is, s ∈ S, then A contains a non-averaging subset of size min{k, q}. Indeed, choose min{k, q}

of the intervals that intersect αA + β ( mod 1), and for each of them choose some a ∈ A for which

αa + β (mod 1) is in the interval. The set of all the chosen elements is clearly non-averaging. This

is because otherwise pa0 = a1 + . . . + ap for some chosen elements ai, implying that p(αa0 + β) ≡∑p
i=1(αai + β) (mod p), which is impossible, by the discussion above.

To complete the proof it remains to show that there are α, β for which αA + β (mod 1) intersects

sufficiently many intervals Is. To do so we choose, randomly and independently, α and β in [0, 1),

according to a uniform distribution. Fix an interval I = Is for some s ∈ S, and let X denote the random

variable counting the number of elements a of A for which za = αa+ β (mod 1) ∈ I. X is the sum of the

n indicator random variables Xa, a ∈ A, where Xa = 1 iff za ∈ I. The random variables Xa are pairwise

independent and Prob(Xa = 1) = 1/n for all a ∈ A. This is because for every two distinct members

a, a′ of A, the ordered pair (za, za′) attains all values in [0, 1)2 according to a uniform distribution, as α

and β range over [0, 1). Therefore, the expectation and variance of X satisfy E(X) = n · 1/n = 1 and

VAR(X) = n(1/n)(1 − 1/n) ≤ 1. Let pi denote the probability that X = i. By the Cauchy Schwartz

inequality

(E(X))2 = (
∑
i>0

ipi)2 = (
∑
i>0

i
√
pi
√
pi)

2

3



≤ (
∑
i>0

i2pi)(
∑
i>0

pi) = E(X2)Prob(X > 0) = (VAR(X) + (E(X))2)Prob(X > 0).

Therefore, Prob(X > 0) ≥ 1/2, that is; the probability that αA+β (mod 1) intersects I is at least a half.

By linearity of expectation we conclude that the expected number of intervals Is containing a member

of αA + β (mod 1) is at least |S|/2 and hence there is a choice for α and β for which at least |S|/2 =

f(r)/2 = 1
2f(bn/k2c) intervals Is contain members of αA + β (mod 1). By the above discussion, this

implies the assertion of the proposition, and completes the proof of Theorem 1.1. 2

3 Non-vanishing transversals

In this section we prove Theorem 1.3 in the following sharper form.

Proposition 3.1 There exists a positive constant c so that for every m

g(m) ≤ mec
√

logm log logm.

The basic probabilistic approach in the proof is similar to the one in the previous section, but there are

various additional ideas. For any real x, let {x} = x( mod 1) denote the fractional part of x. Given m sets

A1, . . . , Am of size n ≥ mec
√

logm log logm each, our objective is to show that there exists a non-vanishing

transversal. To do so, we prove the existence of a real γ and ai ∈ Ai so that {γai} > 0 for all i and∑m
i=1{γai} < 1. This clearly implies that {a1, . . . , am} is a non-vanishing transversal. For each set Ai,

define fi(γ) = mina∈Ai{γa}. Let γ be chosen randomly in [0, 1), according to a uniform distribution.

Since the probability that fi(γ) = 0 is zero for every i, it suffices to show that with positive probability∑m
i=1 fi(γ) < 1. To do so, it is enough to show that the expected value of the last sum is less than 1. By

linearity of expectation it is sufficient to show that the expected value of each fi is less than 1/m. It thus

suffices to prove the following.

Lemma 3.2 There exists a positive constant c so that for every m, if A is set of n ≥ mec
√

logm log logm

nonzero integers, then the expected value of f(γ) = mina∈A{γa} < 1/m.

We derive the last lemma from the following result.

Lemma 3.3 There exists a positive constant c′ so that for every n and t > 0, if A is set of n nonzero

integers, and γ is randomly chosen in [0, 1), then the probability that {γa} > t for all a ∈ A is at most

ec
′
√

logn log logn

tn
.
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Although this is not really essential, it is convenient to assume in the proof of the last two lemmas,

that all members of A have the same sign (since at least half of them have the same sign, and we may

replace n by n/2 without any change in the estimates). Note that if k is a positive integer and t is a real

between 0 and 1, then the set {γ : {γk} ≤ t} is precisely the set

X =
k−1⋃
j=0

[j/k, j/k + α],

where α = t/k. The probability that a random γ in [0, 1) lies in this set is precisely the measure µ(X) (= t)

of the set X. In order to apply the second moment method we need to compute the measure of the

intersection of two such sets. This is done in the following two lemmas.

Lemma 3.4 Let k, l be coprime positive integers, t, z ∈ [0, 1], α = t/k, β = z/l. Consider the sets

X =
k−1⋃
j=0

[j/k, j/k + α], Y =
l−1⋃
j=0

[j/l, j/l + β].

Then

µ(X ∩ Y ) = tz +
1
kl

∆({tl}, {zk}),

where ∆(x, y) = min(x, y)− xy.

Proof. The differences of the form u/k−v/l are identical modulo one with the numbers j/(kl). Consider

the pair with difference j/(kl), where

−1
2
<

j

kl
≤ 1

2
.

Assume α ≤ β. The length of the intersection of the corresponding intervals is

min(α, β − j

kl
)

for 0 ≤ j ≤ βkl,

α− |j|
kl

for j < 0, |j| ≤ αkl, and 0 otherwise. So

s = µ(X ∩ Y ) =
∑

0≤j≤βkl
min(α, β − j

kl
) +

∑
0<j<αkl

(α− j

kl
).

Put αkl = tl = p+ ε, βkl = zk = q + δ with 0 ≤ ε, δ < 1. Then

skl =
q∑
j=0

min(p+ ε, q + δ − j) +
p∑
j=1

(p+ ε− j)
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=
q−p+1∑
j=0

(p+ ε) + p+ min(ε, δ) +
q∑

j=q−p+1

(q + δ − j) +
p∑
j=1

(p+ ε− j)

= (p+ ε)(q + δ) + min(ε, δ)− εδ

as claimed. 2

Lemma 3.5 Let k and l be two not necessarily coprime positive integers, and define k′ = k/(k, l),

l′ = l/(k, l), where (k, l) is the greatest common divisor of k and l. Then for the sets X and Y defined in

Lemma 3.4 we have

µ(X ∩ Y ) = tz +
(k, l)2

kl
∆({tl′}, {zk′}).

Proof. The systems of intervals in the definition of X and Y can be obtained from (k, l) copies of the

corresponding system for k′, l′ after shrinking it by a factor of (k, l), hence the result is the same as that

of Lemma 3.4 for k′, l′. 2

Lemma 3.6 Let A be a set of n nonzero integers of the same sign, and write

f(γ) = min
a∈A
{γa}.

If γ is chosen randomly and uniformly in [0, 1) then

Prob(f(γ) > t) ≤ S

n2t
,

where

S =
∑
a∈A

∑
b∈A

(|a|, |b|)
max(|a|, |b|)

.

Proof. We may assume that all members of A are positive, since otherwise we can replace each a ∈ A

by −a and replace γ by 1− η to deduce the result from the positive case. For each a ∈ A let Za denote

the indicator random variable whose value of 1 iff {γa} ≤ t, and define Z =
∑
a∈A Za. Clearly, the

expectation of each Za is t and hence the expected value of Z is E(Z) = nt.

By Lemma 3.5, for each a, b ∈ A the expectation of the product ZaZb is

t2 +
(a, b)2

ab
∆({a′t}, {b′t}).

We estimate ∆ by tmin(a′, b′) and conclude that

E(ZaZb) ≤ t2 + t
(a, b)

max(a, b)
.
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Hence, the variance of Z satisfies

VAR(Z) = E(Z2)− (E(Z))2 =
∑
a∈A

∑
b∈A

E(ZaZb)− n2t2 ≤ tS.

By Chebyshev’s inequality it thus follows that

Prob(f(γ) > t) = Prob(Z = 0) ≤ VAR(Z)
(E(Z))2

≤ S

n2t
,

as needed. 2

The next task is to bound S. We first need the following simple lemma.

Lemma 3.7 Let a/b be a reduced fraction, and let r and s be positive integers. Then the number of

solutions of the equation
x1x2 . . . xs
y1y2 . . . ys

=
a

b
, (2)

with xi, yj integers |xi| ≤ r and 0 < yj ≤ r for all i, j is at most 2s−1(r(1 + log r)s−1)s.

Proof. The number of possible sign-patterns of the numbers xi is clearly 2s−1 and hence we restrict

our attention to bounding the number Ma,b defined as the number of solutions of (2) in which xi, yj are

positive integers which do not exceed r. For any integer m, let τr,s(m) be the number of solutions of

m = x1x2 . . . xs, 1 ≤ xi ≤ r.

If (2) holds then x1 . . . xs = aX and y1 . . . ys = bX for some integer X and hence, by Cauchy Schwartz

Ma,b =
∑
X≥1

τr,s(aX)τr,s(bX) ≤ (
∑
X≥1

τ2
r,s(aX))1/2(

∑
X≥1

τ2
r,s(bX))1/2 ≤

∑
X≥1

τ2
r,s(X) = M1,1.

However,

M1,1 =
r∑

x1,...,xs=1

τr,s(x1 . . . xs) ≤
r∑

x1,...,xs=1

τr,s(x1) . . . τr,s(xs) = (
r∑

x=1

τr,s(x))s.

Clearly
r∑

x=1

τr,s(x) =
r∑

x1,...,xs−1=1

b r∏s−1
i=1 xi

c ≤ r(
r∑
i=1

1/i)s−1 ≤ r(1 + log r)s−1.

Therefore, M1,1 ≤ (r(1 + log r)s−1)s and the desired result follows. 2

In the proof of the next lemma we need some graph theoretic arguments. A walk of length s in an

undirected, simple graph G = (V,E) is a sequence v0, v1, . . . , vs of (not necessarily distinct) vertices of G

such that vi−1vi ∈ E for all 1 ≤ i ≤ s. The following lemma is proved in [10] using some linear algebra

tools. (The proof for even values of s is attributed in [10] to Godsil; the general case follows from an

earlier result in linear algebra, first proved in [7].) Here we present a more elementary proof of the same

result.
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Lemma 3.8 ([10]) The number of walks of length s in any graph G = (V,E) on n vertices and e edges

with average degree d = 2e/n is at least nds.

Proof. Let F (n, e) denote the minimum possible number of walks of length s in a graph of n vertices

and e edges. We first prove the weaker estimate

F (n, e) ≥
(
e

2n

)s
n,

4−s times the claimed bound. We do this by induction on n; for n ≤ 2 this is trivially true.

Let δ be the minimum degree. If δ ≥ d/4, the claim is obvious.

Assume δ < d/4 = e/(2n). Omit a vertex of minimum degree from the graph. By the induction

hypothesis we have

F (n, e) ≥ F (n− 1, e− δ) ≥ (n− 1)
(

e− δ
2(n− 1)

)s
≥ n

(
e

2n

)s
.

To show the last inequality, rearrange it as(
1− δ

e

)s/(s−1)

≥ 1− 1
n
.

Since s ≥ 2, the left side is at least(
1− δ

e

)2

≥
(

1− 1
2n

)2

> 1− 1/n.

Now we get rid of the 4s term. Consider the m’th direct power of our graph, that is, the graph

whose vertex set is the Cartesian product of m copies of V in which the vertices (v1, v2, . . . , vm) and

(u1, u2, . . . , um) are connected iff viui ∈ E for all 1 ≤ i ≤ m. This graph has nm vertices, average degree

dm (2m−1em edges), and pm walks of length s if the original graph had p. Thus

pm ≥ nm(dm/4)s.

Taking the m’th root and making m→∞ we get the desired result. 2

Remark: An embedding of a graph H = (U,F ) in a graph G = (V,E) is a (not necessarily injective)

mapping f : U 7→ V such that for every edge uv of H, f(u)f(v) is an edge of G. The above proof easily

extends and implies that for every tree H with s+ 1 vertices, and for every graph G with n vertices and

average degree d, the number of embeddings of H in G is at least dsn. This was first proved by Sidorenko

[15] (see also [12]) using a different method.

Using the last lemma we next prove the following,
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Lemma 3.9 Let u1 < u2 . . . < un be an arbitrary set of n nonzero integers and let r be a positive integer.

Then the number of pairs i ≤ j for which in the expression of ui/uj as a reduced fraction a/b with b > 0

satisfies |a|, b ≤ r is at most

n1+1/sr(1 + log r)s−1,

for any positive integer s.

Proof. Define a graph G = (V,E) on the set of vertices V = {1, . . . , n}, in which the pair ui, uj forms an

edge iff in the expression of ui/uj as a reduced fraction a/b with b > 0, both |a| and b are bounded by r.

Let d = 2|E|/n denote the average degree of G. By Lemma 3.8 there are at least nds walks of length s in

G, and hence at least ds/n of them starting at the same vertex, say i = i0, and ending at the same vertex,

say j. Suppose uj/ui = a/b, where a/b is reduced. Every walk i0i1 . . . is ending at j defines a solution

of the equation (2) by letting xq/yq denote the expression of uq/uq−1 as a reduced fraction with positive

denominator. By the definition of the graph G, each |xq| and yq is bounded by r, and different walks

supply different solutions. Hence, by Lemma 3.7, the number of walks is at most 2s−1(r(1 + log r)s−1)s.

Therefore

ds/n ≤ 2s−1(r(1 + log r)s−1)s,

implying the assertion of the lemma. 2

Lemma 3.10 There exists an absolute positive constant c so that the following holds. Let u1 < u2 . . . <

un be an arbitrary set of n nonzero integers, and define

S =
n∑
i=1

n∑
j=1

(|ui|, |uj |)
max{|ui|, |uj |}

.

Then

S ≤ nec
√

logn log logn.

Proof. For all r,1 ≤ r ≤ n, let nr denote the number of ordered pairs (ui, uj) for which

(|ui|, |uj |)
max{|ui|, |uj |}

≥ 1/r.

It is easy to see the last fraction is at least 1/r iff in the expression of ui/uj as a reduced fraction a/b

with positive denominator, both |a| and b are at most r. Therefore, by Lemma 3.9,

nr ≤ 2n1+1/sr(1 + log r)s−1
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for every positive integer s. Put n0 = 0 and observe that the total contribution of the pairs (ui, uj) for

which (|ui|,|uj |)
max{|ui|,|uj |} < 1/n to the sum S does not exceed n. Therefore, for every s ≥ 1

S ≤ n+
n∑
r=1

1
r

(nr − nr−1) = n+
1

n+ 1
nn +

n∑
r=1

nr(
1
r
− 1
r + 1

)

≤ 2n+
n∑
r=1

4n1+1/sr(1 + log r)s−1 1
r(r + 1)

≤ 2n+ 4n1+1/s(1 + log n)s.

Taking s = b
√

logn
log lognc we conclude that

S ≤ ne(2+o(1))
√

logn log logn,

implying the desired result. 2

Remark: The assertion of the last lemma is nearly tight, as there are n distinct nonzero integers

u1, . . . , un for which the sum S is at least nec
′
√

logn/ log logn. To see this let k = blog2 nc, let 2 = p1 <

p2 . . . < pk be the k smallest primes and let the numbers ui contain all numbers of the form
∏k
i=1 p

εi
i ,

where each εi ∈ {0, 1}. The number of ordered pairs of products ui and uj as above, in which each

product contains precisely l primes not in the other one, is(
k

l

)(
k − l
l

)
2k−2l.

For each such product, (ui, uj)/max{ui, uj} is at least the reciprocal of the product of the largest l primes

among p1, . . . , pk, which is at least, say, 1/(2k log k)l. It follows that for the above set of integers

S ≥
(
k

l

)(
k − l
l

)
2k−2l(2k log k)−l ≥ (

k − l
l

)2l2k−2l(2k log k)−l = n
(k − l)2l

l2l23l(k log k)l
.

Taking, e.g., l = b0.1
√
k√

log k
c the desired estimate follows.

Returning to the proof of the main result observe, now, that the assertion of Lemma 3.3 follows by

applying Lemma 3.6 and Lemma 3.10 (where we consider here either the subset of all positive members

or the subset of all negative members of A). The proof of Lemma 3.2 follows easily from Lemma 3.3;

indeed

E(f(γ)) ≤ 1
n
Prob(f(γ) ≤ 1/n) +

dlog2 ne∑
i=1

2i

n
Prob(

2i−1

n
< f(γ) ≤ 2i

n
)

≤ 1
n

+
dlog2 ne∑
i=1

2i

n

ec
′
√

logn log logn

2i−1
≤ 1
n

+
2dlog2 ne

n
ec
′
√

logn log logn,
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implying the desired result. The assertion of Proposition 2.1 and that of Theorem 1.3 follow. 2
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