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Abstract

We prove that, for every family F of n semi-algebraic sets in R
d of constant description

complexity, there exist a positive constant ε that depends on the maximum complexity of the
elements of F , and two subfamilies F1,F2 ⊆ F with at least εn elements each, such that either
every element of F1 intersects all elements of F2 or no element of F1 intersects any element of
F2. This implies the existence of another constant δ such that F has a subset F ′ ⊆ F with nδ

elements, so that either every pair of elements of F ′ intersect each other or the elements of F ′ are
pairwise disjoint. The same results hold when the intersection relation is replaced by any other
semi-algebraic relation. We apply these results to settle several problems in discrete geometry
and in Ramsey theory.

1 Introduction

Complete bipartite interaction in graph theory and in geometry. Let V (G) and E(G)
denote the vertex set and the edge set of a graph G, respectively. Let H be a fixed graph on k
vertices. Erdős, Hajnal and Pach [EHP00] proved that every graph G with n vertices, which does not
contain an induced subgraph isomorphic to H, has two disjoint subsets of vertices V1, V2 ⊆ V (G),
such that |V1|, |V2| ≥ 1

2n1/(k−1), and either all edges between V1 and V2 belong to G, or no edge
between V1 and V2 belongs to G.

Note that the weaker result, where the sizes of V1, V2 are roughly log n, instead of n1/(k−1), holds
for any n-vertex graph, and immediately follows from Ramsey’s theorem [ES35]. A related result of
Erdős and Hajnal [EH89] guarantees the existence of a complete or an empty induced subgraph with
ec

√
log n vertices, where c = c(H) > 0 is a constant. See [G97, APS01] for details concerning the well

known conjecture that this bound can be further improved to nc, for some constant c, and for some
partial results in this direction.
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The result of [EHP00] has many geometric applications, where G encodes some pattern of inter-
action between geometric entities, and where one only needs to find an appropriate forbidden graph
H. For example, it is well known [EET76, PS01] that, as k tends to infinity, almost all graphs with k
vertices cannot be obtained as the intersection graph of a family F of arcwise connected sets in the
plane. Therefore, there exists a constant δ > 0 such that every family F of arcwise connected sets
in the plane has two subfamilies F1,F2 ⊆ F with at least nδ elements each, such that either every
element of F1 intersects all elements of F2 or no element of F1 intersects any element of F2.

In the special case when F consists of straight-line segments, Pach and Solymosi [PS01] improved
the lower bound in the last statement from nδ to εn. As we will show, this improvement also applies
to the case of general arcs, provided they have constant description complexity (see below).

The goal of this paper is to show that in many geometric applications, that involve a family F of
n geometric objects and a relation R on F , one can find subfamilies F1,F2 of linear size, such that
either F1 ×F2 is fully contained in R, or F1 ×F2 is disjoint from R. As a consequence, we show that
one can find a single subfamily F ′ ⊆ F of size nδ, for some constant δ that depends on the problem
characteristics, such that either every pair of distinct elements in F ′×F ′ belongs to R, or every pair
of distinct elements in F ′ ×F ′ does not belong to R.

We present a few applications of these general results. They include subsets of line segments,
arcs, disks, or more general regions in the plane (or in higher fixed dimension), such that either every
pair of elements in the two subsets intersect each other, or every pair of elements are disjoint; subsets
of lines in 3-space, such that all lines in one subset pass above all lines in the second subset; and a
few additional applications.

Complete bipartite interaction in a general semi-algebraic setting. A real semi-algebraic

set in R
d is the locus of all points that satisfy a given finite Boolean combination of polynomial

equations and inequalities in the d coordinates. We say that the description complexity of such a set
is at most κ if in some representation the number of equations and inequalities is at most κ, and each
of them has degree at most κ. We refer to such a representation as a quantifier-free representation, and
note that semi-algebraic sets can also be defined using quantifiers involving additional variables, but
these quantifiers can always be eliminated and yield a more explicit, quantifier-free representation
of the set. See [BCR98, BPR03] for details concerning semi-algebraic sets, including quantifier
elimination in such sets.

In what follows, we are given a family F of semi-algebraic sets of constant description complexity,
and a relation R on F × F . We assume that R is also semi-algebraic, in the following sense. Since
the sets of F have constant description complexity, there exists a constant q, such that each set
f ∈ F can be represented by a point f ∗ in R

q (say, the point whose coordinates are the coefficients
of the monomials in the polynomials that define f). Then we say that R is semi-algebraic if its
corresponding representation

R∗ = {(f∗, g∗) ∈ R
2q | f, g ∈ F , (f, g) ∈ R}

is a semi-algebraic set.

The main general result of this paper is the following.

Theorem 1.1. Let F be a family of n semi-algebraic sets in R
d of constant description complexity,

and let R ⊆ F ×F be a fixed semi-algebraic relation on F . Then there exist a constant ε > 0, which

depends only on the maximum description complexity of the sets in F and of R, and two subfamilies

F1,F2 ⊆ F with at least εn elements each, such that either F1 ×F2 ⊆ R, or (F1 ×F2) ∩ R = ∅.
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A typical application of Theorem 1.1 is with R being the intersection relation. It is easy to
verify that this relation is indeed semi-algebraic, as will be detailed in Section 4. Thus we obtain
two subfamilies F1,F2 ⊆ F with at least εn elements each, such that either every element of F1

intersects all the elements of F2, or no element of F1 intersects any element of F2.

We remark that Theorem 1.1 also holds if we have two sets F ,G of semi-algebraic sets of constant
description complexity, and a semi-algebraic relation R ⊆ F × G. In this case we obtain ε > 0,
and subsets F1 ⊆ F , G1 ⊆ G, with |F1| ≥ ε|F|, |G1| ≥ ε|G|, such that either F1 × G1 ⊆ R, or
(F1 × G1) ∩ R = ∅. This remark carries over to essentially all the applications established in this
paper.

A natural extension of Theorem 1.1 is to the case where R is symmetric, and we seek a single

subset F ′ ⊆ F such that either every pair of distinct elements in F ′ satisfies R, or no such pair
satisfies R. It turns out that this extension is a corollary of Theorem 1.1, except that we can no
longer guarantee that F ′ has linear size. Specifically, we show:

Theorem 1.2. Let F and R be as in Theorem 1.1, so that R is symmetric. Then there exist a

constant δ > 0, which depends only on the maximum description complexity of the sets in F and of

R, and a subfamily F ′ ⊆ F with at least nδ elements, such that either every pair of distinct elements

of F ′ belongs to R, or no such pair belongs to R.

Let us call an n-vertex graph t-Ramsey if it contains no clique and no independent set of size at
least t. The known quantitative proofs of Ramsey Theorem, like the one given in [ES35], show that
no n-vertex graph is 1

2 log2 n-Ramsey. As shown by Erdős [E47] in one of the first applications of the
probabilistic method, this is tight, up to a constant factor, namely, there are n-vertex graphs which
are 2 log2 n-Ramsey. Despite the simplicity of Erdős’ proof, there is no constructive version of it,
in the sense that there is no known deterministic algorithm that constructs a C log n-Ramsey graph
on n vertices, where C is any absolute constant, in time which is polynomial in n. The problem of
finding such an explicit construction received a considerable amount of attention, but is still wide
open. Theorem 1.2 above shows that such a construction cannot be given by defining the graph
using a semi-algebraic relation on a family of semi-algebraic sets of constant description complexity
in fixed dimension. In fact, any n-vertex graph constructed in such a way will necessarily have a
clique or an independent set of size at least nδ for some δ > 0. This can be viewed as a partial
explanation of the fact that explicit constructions of O(log n)-Ramsey graphs have so far remained
elusive.

In particular, the above implies that if the vertices of a graph are given by n vectors in R
d,

and the adjacency relation is determined by the signs of some fixed set of (symmetric) polynomials
evaluated at the corresponding vectors, the resulting graph cannot be t-Ramsey for any t = no(1).
This (nearly) settles a conjecture of Babai [B76], and improves a previous result of the first author
[A90] that showed that such graphs cannot be t-Ramsey for t = eo(

√
log n).

The problem of finding explicit constructions of graphs Gn on n vertices so that neither Gn nor
its complement contain large complete bipartite graphs with vertex classes of equal size is even more
challenging than that of finding explicit t(n)-Ramsey graphs for some slowly growing functions t(n).
In fact, there is no known explicit construction of a graph G on n vertices such that neither G nor its
complement contain a complete bipartite graph with color classes of size n1/2−ε each, for any ε > 0.
Constructions of this type may yield interesting applications in the process of extracting random
bits from weak sources of randomness, and have thus been considered by various researchers, with
no real success. See [PR04] for the best known polynomial time construction. Here, too, Theorem
1.1 can be viewed as a partial explanation of the fact that such explicit constructions have so far
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remained elusive.

All the specific geometric applications that are established in this paper, as well as many other
similar results, follow easily from Theorem 1.1 or from its corollary Theorem 1.2. We present two
proofs of Theorem 1.1. The first proof uses a standard linearization process (see [AM94]) to transform
the elements of F into vectors in a higher-dimensional space, and the relation R to the set of all pairs
of vectors with a nonnegative scalar product. One then applies the beautiful partition theorem of Yao
and Yao [YY85] (see below for details), to derive the following “linearized” version of Theorem 1.1
in which 〈u, v〉 denotes the scalar product of u and v.

Theorem 1.3. Let U and V be finite multisets of vectors in R
d. Then there are subsets U ′ ⊂ U

and V ′ ⊂ V such that |U ′| ≥ 1
2d+1 |U |, |V ′| ≥ 1

2d+1 |V |, and either 〈u, v〉 ≥ 0 for all u ∈ U ′, v ∈ V ′, or

〈u, v〉 < 0 for all u ∈ U ′, v ∈ V ′.

The second proof of Theorem 1.1 uses more advanced machinery from geometric range searching,
notably the results of Agarwal and Matoušek [AM94] on range searching with semi-algebraic sets. The
resulting proof is somewhat simpler, more general, and more direct (since it uses heavier machinery),
but supplies, in some cases, weaker estimates of the constants ε and δ.

Although both proofs use fairly standard machinery from real algebraic geometry, they are some-
what involved because they aim to establish Theorem 1.1 in full generality. However, in most
applications, the linearization process used in the first proof is easy to do “by hand”, and the rela-
tion R is just a conjunction of (what become bilinear) inequalities. In such cases the proof becomes
much simpler, and there is no need to explicitly involve the theory of semi-algebraic sets. We will
present direct derivations of several instances of the theorem, including the intersection relations for
line segments and disks in the plane, and for the above/below relation for lines in 3-space.

Applications.

Intersecting segments, disks, and regions. We first give an alternative and simpler proof of
the result of Pach and Solymosi [PS01]. That is, we show that, if S is a family of segments in general
position in the plane, then there exist two subfamilies S1, S2 ⊆ S of linear size, such that either
every segment in S1 crosses all segments in S2, or no segment in S1 crosses any segment in S2. As
a consequence, any set S of n segments in general position in the plane has a subset S ′ of at least
nδ segments, so that either every pair of them intersect or no such pair intersect. The constants
appearing in these bounds substantially improve those given in [PS01].

We then demonstrate the generality of our approach by first obtaining similar results for the
intersection relation between disks in the plane, where the linearization can also be done “by hand”.
In fact, as has already been mentioned, the result continues to hold for the intersection relation of any
family of simply shaped regions in the plane or in any fixed dimension, and we conclude this set of
applications by formulating and proving it for arbitrary semi-algebraic sets (of constant description
complexity).

Lines in 3-space. Using the fact that there exists no perfect weaving pattern of five lines in R
3

[PPW93], Erdős, Hajnal and Pach [EHP00] proved that there exists a positive constant δ such that
every family L of n straight lines in general position in 3-space has two subfamilies L1,L2 ⊆ L with
at least nδ elements each, such that every element of L1 passes above all elements of L2. They have
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raised the question whether one can replace the bound nδ by εn. In Section 5, we answer their
question in the affirmative. Specifically, we show in Theorem 5.1 that any family L of n straight
lines in general position in 3-space has two subfamilies L1,L2 ⊆ L with at least n/64 elements each,
such that every element of L1 passes above all elements of L2.

Erdős, Hajnal and Pach [EHP00] also raised the question whether there exists a positive constant
δ such that every family L of n straight lines in general position in 3-space contains a tournament

on k ≥ nδ lines, that is, a sequence `1, `2, . . . , `k of k ≥ nδ lines, such that `i passes above `j for all
i < j. We answer this question in the affirmative as well, with δ = 1/6; it is an easy corollary of
Theorem 5.1, or rather a specialized version of Theorem 1.2.

Miscellaneous results. Clearly, the technique in this paper can be applied to a wide variety of
similar relations. Here are two representative applications:

(a) Let C be a set of n circles in 3-space. Then there exist two subsets C1, C2 of C of linear size, such
that either every pair in C1 × C2 forms a link, or no such pair forms a link. Moreover, C contains a
subset C ′ of at least nδ circles, for some constant δ, such that either every pair of distinct circles in
C ′ forms a link, or no such pair forms a link.

(b) Two line segments in the plane are in T -position if the line containing one of the segments
intersects the other segment. A segment T -graph is a graph whose vertices are a collection of pairwise
disjoint line segments in the plane, where two vertices are adjacent iff the corresponding segments
are in T -position. The study of segment T -graphs has been motivated by the investigation of certain
problems on common transversals for families of disjoint segments in the plane. In [AKS90] it is
shown that some graphs are not segment T -graphs. Our results here imply the following stronger
statement, showing that typical graphs are not segment T -graphs: Any segment T -graph contains
two linear-size subsets of vertices, so that either every vertex of the first set is adjacent to every
vertex of the second, or no vertex of the first set is adjacent to any vertex of the second.

The paper is organized as follows. In Section 2 we present the proof of Theorem 1.3, and then
describe the first proof of Theorem 1.1 and the derivation of its corollary, Theorem 1.2, in Section 3.
The second proof is given later, in Section 6. We first present the applications to intersecting
segments, disks, and regions (Section 4), and to lines in 3-space (Section 5). In many of these
applications, the first proof can be applied with the linearization done explicitly “by hand”. The
final section, Section 7, contains a brief discussion of the other problems mentioned above, together
with some concluding remarks.

2 Proof of Theorem 1.3

A major tool in our analysis is the following result of Yao and Yao [YY85], that has been an important
stepping stone in the early development of the theory of geometric range searching, and whose proof
uses the Borsuk-Ulam theorem (see, e.g., [M03]).

Theorem 2.1 (Yao and Yao [YY85]). Given a continuous and everywhere positive density func-

tion on R
d, one can partition R

d into 2d regions, each with mass equal to 1
2d , such that every

hyperplane in R
d must avoid at least one of the regions.

Moreover, the partition of R
d yielded by the theorem is such that each region is a convex poly-

hedral cone, and all cones have a common apex (the center in [YY85]).
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It is an immediate corollary of the discrete version of the Yao-Yao theorem that, given a finite
set V of vectors in R

d, one can partition R
d into 2d convex polyhedral cones with a common apex

c, such that the closure of each cone contains at least |V |
2d vectors of V . In addition, this partition

has the property that any closed halfspace fully contains one of the cones, and any open halfspace
contains one of the cones, possibly without its apex c.

Let us now turn to the proof of Theorem 1.3. Observe that we may assume that at most |U |
2d of

the vectors in U are equal to 0, and that at most |V |
2d of the vectors in V are equal to c. Otherwise,

Theorem 1.3 follows readily.

To each vector 0 6= u ∈ U we assign the hyperplane Hu = {x ∈ R
d : 〈u, x〉 = 0}. It induces a

partition of R
d into the two halfspaces

H+
u = {x ∈ R

d : 〈u, x〉 ≥ 0},
H−

u = {x ∈ R
d : 〈u, x〉 < 0}.

There are two possible cases:

Case 1. For at least half of the vectors u, the positive halfspace H+
u contains a cone of the partition.

In this case at least 1
2d of those halfspaces contain the same cone, so they all contain the endpoints

of all the vectors in a subset of V of size |V |
2d . Thus, we have found a subset U ′ ⊆ U of size 1

2d+1 |U |
and a subset V ′ ⊆ V of size |V |

2d , such that 〈u, v〉 ≥ 0 for every u ∈ U ′, v ∈ V ′.

Case 2. For at least half of the vectors u, the negative halfspace H−
u contains a cone minus the

center c. In this case at least 1
2d of those halfspaces contain the same cone (minus its apex). We

denote the vectors whose endpoints lie in this cone (excluding the vectors equal to c) by V ′. Clearly,
|V ′| ≥ 1

2d (1 − 1
2d )|V | > 1

2d+1 |V |. Let U ′ denote the set of nonzero vectors u ∈ U such that H−
u

contains all the endpoints of the vectors of V ′. Then |U ′| ≥ 1
2d (1− 1

2d )|U | > 1
2d+1 |U |, and any pair of

vectors u ∈ U ′ and v ∈ V ′ satisfies 〈u, v〉 < 0. 2

Remark: If all the elements of U are distinct and all the elements of V are distinct, as will be
the case in most of our applications, then the sizes of the sets U ′, V ′ yielded by the theorem are at
least 1

2d |U | − 1 and 1
2d |V | − 1, respectively. In addition, if the elements of U and V are in general

position, again, a situation that holds in most of our applications, then the sizes of U ′, V ′ slightly
further improve to 1

2d |U | and 1
2d |V |, respectively.

3 First Proof of Theorem 1.1

We recap the discussion in the introduction: Since each of the semi-algebraic sets in F has description
complexity ≤ κ, there exists a constant q = q(κ), such that each f ∈ F can be parametrized as a
point f ∗ ∈ R

q. Let F∗ denote the set of these points. In addition, the relation R can be mapped
into a semi-algebraic set R∗ in R

2q. More precisely, for any pair of sets f, g ∈ F , we can express
the condition (f, g) ∈ R as a Boolean combination of polynomial equations and inequalities in the
coordinates of the points f ∗, g∗, and this defines the representation R∗. For each g ∈ F , let Σg

denote the set {f ∗ ∈ R
q | (f∗, g∗) ∈ R∗}.

The next step is to transform the problem further so that the polynomials appearing in the
definition of any of the sets Σg become linear. This linearization process is fairly standard, and is
described in detail by Agarwal and Matoušek [AM94]. It results in an embedding ϕ of R

q as an
algebraic variety within some space R

Q of larger dimension Q, and a transformation, which we also
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denote by ϕ, of each set Σg into a polyhedral region in R
Q. More specifically, the Boolean combination

that defines Σg remains the same, and each of the equations and inequalities that appear there is
mapped into a bilinear equation or inequality.

We first replace each equation of the form P = 0 in the definition of R∗ by the two inequalities
P ≥ 0 and P ≤ 0. Suppose that there are now k bilinear inequalities in the definition of R∗. We run
a k-step process, where the j-th step starts with two subsets F ′

j−1,F ′′
j−1 of F , and extracts from them

subsets F ′
j ⊆ F ′

j−1, F ′′
j ⊆ F ′′

j−1, such that |F ′
j | ≥ 1

2Q+1 |F ′
j−1|, |F ′′

j | ≥ 1
2Q+1 |F ′′

j−1|, and either every
pair (f, g) ∈ F ′

j×F ′′
j is such that (f ∗, g∗) satisfy the j-th inequality in the definition of R∗, or no such

pair satisfies this inequality. Starting the process with F ′
0,F ′′

0 := F , it is then clear that the final
pair of subsets F ′

k,F ′′
k are such that |F ′

k|, |F ′′
k | ≥ 1

2k(Q+1) |F|, and either every pair (f, g) ∈ F ′
k × F ′′

k

satisfies R, or none of these pairs satisfies R. This is because each of the inequalities that appear in
the representation of R∗ has a fixed sign for every pair f ∗, g∗, with (f, g) ∈ F ′

k × F ′′
k . Since R only

depends on these signs, the claim follows. This completes the proof of the theorem. 2

Remark: By the remark at the end of the preceding section, if we assume that the sets in F are in
general position, we can improve the constant 1

2k(Q+1) yielded by the proof to 1
2kQ .

3.1 Proof of Theorem 1.2

Define a family of perfect graphs G as follows: the trivial graph with one vertex belongs to the
family, and if two graphs H1,H2 belong to the family, then so does their disjoint union, and their
join (that is, the graph obtained from their disjoint union by adding all edges between vertices of H1

and vertices of H2). The family G is the family of all complement reducible graphs, or cographs for
short; see, e.g., [CPS85]. Obviously, every induced subgraph of a cograph is also a cograph, and it
is easy to prove by induction that every cograph is perfect, that is, the chromatic number of every
induced subgraph of it is equal to the size of the largest clique in this subgraph. It follows that
any cograph on m vertices contains either a clique or an independent set of size at least

√
m, since

if it contains no clique of size
√

m its chromatic number is at most
√

m and hence it contains an
independent set of size at least

√
m.

Suppose, now, that F and R are as in Theorem 1.1, so that R is symmetric. Let G be a graph
whose n vertices are the members of F , where two such vertices f, g are adjacent if and only if
(f, g) ∈ R. Let h(t) denote the largest number h such that any induced subgraph of G on t vertices
contains an induced subgraph on h vertices which is a member of G. Clearly h(1) = 1. In addition,
we claim that there exists an ε > 0 that depends only on the the maximum description complexity
of the elements of F and of R, so that for every t, h(t) ≥ 2h(εt). Indeed, in any induced subgraph
of G with t vertices we can find, by Theorem 1.1, two disjoint sets of vertices F1,F2, each of size
at least εt, such that either G contains all edges connecting a member of F1 and a member of F2,
or it contains none of these edges. (Note that the theorem does not ensure that the two sets F1,F2

are disjoint, but this can clearly be ensured by replacing, if needed, each set Fi by a subset of half
its size, so that the two subsets are disjoint.) By definition, the induced subgraph of G on Fi, for
i = 1, 2, contains an induced subgraph Hi on at least h(εt) vertices, and the desired claim follows
from the definition of the class G of cographs. Solving the recurrence, we conclude that h(n) ≥ nγ ,
where γ = log(1/ε) 2 > 0 depends only on the maximum description complexity of the members of
F and of R, implying that our graph G contains an induced subgraph on at least nγ vertices that
belongs to G. By the discussion in the beginning of the proof, this implies that G contains either a
clique or an independent set of size at least nγ/2, implying the assertion of the theorem. 2
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sR

tL

tR

s

t

Figure 1: Intersection of the segments s and t.

4 Crossing Patterns of Segments, Disks, and Regions

In deriving the first two results, we construct the corresponding linearization explicitly, and rely
directly on Theorem 1.3, thereby bypassing the general Theorem 1.1.

4.1 Crossing segments.

We first provide an alternative proof of the result of Pach and Solymosi [PS01], with considerably
improved constants.

Theorem 4.1 ([PS01]). Let S be a family of segments in general position in the plane. Then there

exist two subfamilies S1, S2 ⊆ S, such that |S1|, |S2| ≥ 1
213 |S|, and either every segment in S1 crosses

all segments in S2, or no segment in S1 crosses any segment in S2.

Proof: We may assume that no segment in S is vertical. We split S into two subsets S ′, S′′ of equal
size, such that the slope of every segment in S ′ is smaller than the slopes of all segments in S ′′.

Represent each segment s ∈ S by the pair (sL, sR) of its left and right endpoints. Let s ∈ S ′, t ∈
S′′. Then s ∩ t 6= ∅ if and only if (see [dBvKOS00] and Figure 1)

Left-Turn(sL, sR, tL) < 0
Left-Turn(sL, sR, tR) > 0
Left-Turn(tL, tR, sL) > 0
Left-Turn(tL, tR, sR) < 0,

(1)

where

Left-Turn(a, b, c) =

∣

∣

∣

∣

∣

∣

1 xa ya

1 xb yb

1 xc yc

∣

∣

∣

∣

∣

∣

.

We next rewrite each of the conditions in (1) as an inequality involving the scalar product of a vector
that depends on s and a vector that depends on t. For example, the first inequality can be rewritten
as 〈u1(s), v1(t)〉 > 0, where

u1(s) = (xsL
ysR

− ysL
xsR

, ysR
− ysL

, xsR
− xsL

)

v1(t) = (−1, xtL , −ytL),

and similarly for the other inequalities, where we rewrite the j-th inequality, for j = 2, 3, 4, as
〈uj(s), vj(t)〉 > 0, with uj(s) and vj(t) appropriately defined.
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To enforce all inequalities in (1), we apply Theorem 1.3 four times, where in each step we enforce
one of the inequalities. In the first step we map S ′ to the set U1 = {u1(s) | s ∈ S′}, and map
S′′ to the set V1 = {v1(t) | t ∈ S′′}. Applying Theorem 1.3 to these sets, and using the general
position assumption, we conclude that there exist subsets S ′

1 ⊆ S′, S′′
1 ⊆ S′′, such that |S ′

1| ≥ 1
8 |S′|,

|S′′
1 | ≥ 1

8 |S′′|, and either every pair of segments (s, t) ∈ S ′
1 ×S′′

1 satisfies the first inequality in (1), or
no such pair of segments satisfies it. In the latter case, no segment of S ′

1 intersects any segment of
S′′

1 and we are done. In the former case, we proceed to the next pruning step with S ′
1 and S′′

1 , and
extract from them subsets S ′

2, S
′′
2 such that either all pairs in S ′

2 × S′′
2 satisfies the second inequality

in (1), or no such pair satisfies it. Continuing this process for at most two more steps, we end up

with subsets S1 ⊆ S′, S2 ⊆ S′′, such that |S1| ≥
(

1
8

)4 |S|
2 = 1

213 |S|, |S2| ≥ 1
213 |S|, and either every

pair of segments (s, t) ∈ S1 × S2 intersect each other, or all such pairs are disjoint. 2

We remark that our constant c = 1
213 is much larger than the one provided by the analysis of

[PS01], and the new proof is conceptually simpler.

4.2 Crossing disks.

Our approach can be easily applied to prove Ramsey-type results of this kind for families of other
geometric objects. For example, we have:

Theorem 4.2. Let S be a family of disks in the plane. Then there exist two subfamilies S1, S2 ⊆ S,

such that |S1|, |S2| ≥ 1
210 |S|, and either every disk in S1 intersects all the disks in S2, or every disk

in S1 is disjoint from all the disks in S2.

Proof: Represent a disk d by the coordinates (xd, yd) of its center and by its radius rd. Then a pair
of disks s, t ∈ S intersect each other if and only if 〈u(s), v(t)〉 ≥ 0, where

u(s) = ( −x2
s, 2xs, −1, −y2

s , 2ys, −1, r2
s , 2rs, 1 )

v(t) = ( 1, xt, x2
t , 1, yt, y2

t , 1, rt, r2
t ).

The assertion now follows from Theorem 1.3, applied in 9-space. 2

4.3 Crossing regions.

Finally, we consider the crossing pattern of general semi-algebraic sets, and show:

Theorem 4.3. Let F be a family of semi-algebraic sets of constant description complexity in R
d.

Then there exists ε > 0 that depends only on the maximum description complexity of the sets in F ,

and there exist two subfamilies F ′,F ′′ ⊆ F such that |F ′|, |F ′′| ≥ ε|F|, and either every element of

F ′ intersects all the elements of F ′′, or no element of F ′ intersects any element of F ′′.

Proof: This is an immediate application of Theorem 1.1, with the relation R defined as {(f, g) ∈
F × F | f ∩ g 6= ∅}. We need to show that R is indeed semi-algebraic, in the sense defined in the
introduction. Following the notation in that definition, let q be a constant dimension such that the
elements of F can be represented as points in R

q. Then we can represent R as

R∗ = {(f∗, g∗) ∈ R
2q | f, g ∈ F and ∃x ∈ R

d | x ∈ f and x ∈ g}.

9



This is clearly a semi-algebraic set in R
2q. We can apply quantifier elimination (see, e.g., Theorem

2.74 of [BPR03]) to rewrite R∗ as a quantifier-free semi-algebraic set. Then, for each g ∈ F , the
corresponding region

Σg = {f∗ | (f∗, g∗) ∈ R∗}
is also given as a quantifier-free semi-algebraic set, and all these sets have constant description
complexity. The theorem is now an immediate corollary of Theorem 1.1. 2

By a similar reasoning, Theorem 1.2 implies the following:

Theorem 4.4. Let F be a family of semi-algebraic sets of constant description complexity in R
d.

Then there exist δ > 0 that depends on the maximum description complexity of the sets in F , and a

subfamily F ′ ⊆ F of size at least nδ, such that either every element of F ′ intersects all other elements

of F ′, or no element of F ′ intersects any other element of F ′.

Remarks.

(a) Clearly, Theorem 4.4 also applies to the two special cases studied above. For the case of segments,
we obtain a subset S ′ of at least n1/26 segments, so that either all of them are pairwise crossing, or
all of them are pairwise disjoint. For the case of disks, the corresponding subset has at least n1/20

disks. A related result by Aronov et al. [AEG+94] considers the set of all
(

n
2

)

segments that connect

n points in the plane in general position, and shows the existence of a subset of Ω(n1/2) segments,
every pair of which intersect.

(b) Let F and G be two families of semi-algebraic sets of constant description complexity ∆ with
|F| = m, |G| = n. Define their intersection graph as a bipartite graph with vertex classes F and G,
where f ∈ F and g ∈ G are connected by an edge if and only if they have a point in common. As
pointed out in the Introduction, Theorem 4.3 also holds in the following bipartite form: There is a
constant ε = ε(∆) > 0 and subfamilies F ′ ⊆ F ,G′ ⊆ G with |F ′| ≥ ε|F|, |G ′| ≥ ε|G|, such that either
all edges between F ′ and G′ belong to the intersection graph or none of them do.

Clearly, the total number of labeled bipartite graphs with m and n elements in their vertex classes
is 2mn. However, it follows from the last statement that only a negligible proportion of them can be
obtained as intersection graphs of families of semi-algebraic sets of constant description complexity.
Denoting by f(m,n) the (base two) logarithm of the number of all such graphs, we easily obtain the
recurrence:

f(m,n) ≤ 1 + H(ε)(m + n) + f(εm, (1 − ε)n) + f((1 − ε)m, εn) + f((1 − ε)m, (1 − ε)n),

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function. This implies f(m,n) =
O((mn)1−γ), for a suitable γ = γ(∆) > 0. This bound can be further improved to O((m+n) log(m+
n)), by applying the Thom-Milnor-Warren theorem from real algebraic geometry to the polynomials
that define the intersection relation [A90, BPR03]. We omit the details.

5 Lines in Space

In this section we show the following result.

Theorem 5.1. Any family L of n straight lines in general position in 3-space has two subfamilies

L1,L2 ⊆ L with at least n/64 elements each, such that every element of L1 passes above all elements

of L2.
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We exploit a standard representation of lines, using Plücker coordinates (see [CEG+96]), which
we briefly review here for the convenience of the reader. Let ` be an oriented line in R

3, and let
a, b be two points on ` such that ` is oriented from a to b. Let [a0, a1, a2, a3], [b0, b1, b2, b3] be the
homogeneous coordinates of a and b, with a0, b0 being the homogenizing weights.1 The Plücker
coordinates of ` are the six real numbers

π(`) = [π01, π02, π12, π03, π13, π23],

where πij = aibj − ajbi, for 0 ≤ i < j ≤ 3. The most important property of this representation
is that incidence between lines is a bilinear predicate. Specifically, define a second set of Plücker
coordinates by

$(`) = [π23,−π13, π03, π12,−π02, π01].

Then `(1) is incident to `(2) if and only if their Plücker coordinates satisfy the relationship

`(1) � `(2) := 〈π(`(1)), $(`(2))〉 = π
(1)
01 π

(2)
23 −π

(1)
02 π

(2)
13 +π

(1)
12 π

(2)
03 +π

(1)
03 π

(2)
12 −π

(1)
13 π

(2)
02 +π

(1)
23 π

(2)
01 = 0, (2)

where π(1) = π(`(1)) and π(2) = π(`(2)).

The Plücker coordinates are homogeneous, and yield a mapping of lines in 3-space to points in the
real projective 5-space. If we assume that the given lines are in general position, we can normalize
the Plücker coordinates by setting the homogenizing weights a0, b0 to 1, thus obtaining points in
R

5. With some care, we can then use the �-relation to express the relation that one line passes
above another. Specifically, under this normalization, the sign of `(1) � `(2) is positive if and only if
the orientation of `(1) relative to `(2), namely, the orientation of the simplex abcd where a, b ∈ `(1),
c, d ∈ `(2), `(1) is oriented from a to b and `(2) is oriented from c to d, is positive. Denote by ¯̀ the
projection of a nonvertical line ` onto the xy-plane. If we assume that neither `(1) nor `(2) is vertical,
and if we orient them so that ¯̀(2) lies clockwise to ¯̀(1), then `(1) � `(2) > 0 if and only if `(2) passes
above `(1).

Now, we are ready to prove Theorem 5.1. Orient the lines of L so that their xy-projections
are oriented from left to right. Let L+ (resp., L−) denote the subset of the n/2 lines of L whose
xy-projections have the largest (resp., smallest) slopes. Set U := {π(`) | ` ∈ L+} and V := {$(`) |
` ∈ L−}. By Theorem 1.3, and the fact that our lines are all distinct and in general position, there
exist subsets L1 ⊆ L+, L2 ⊆ L−, each of size at least 1

25 · n
2 = n

64 , such that either `(1) � `(2) > 0 for

every pair `(1) ∈ L1, `(2) ∈ L2, or `(1) � `(2) < 0 for every pair `(1) ∈ L1, `(2) ∈ L2. (We do not have
equality since we have assumed that the lines are in general position). In other words, either every
line of L2 passes above all the lines of L1, or every line of L2 passes below all the lines of L1. This
completes the proof of Theorem 5.1. 2

Let f(n) denote the largest integer so that any collection of n lines in general position in 3-space
contains a tournament of f(n) lines, as defined in the introduction. Then, by Theorem 5.1, we have
f(n) ≥ 2f(n/64). Solving the recurrence, we get f(n) ≥ n1/6. This yields an affirmative answer to
the question of Erdős et al. [EHP00]:

Corollary 5.2. Every family L of n straight lines in general position in 3-space contains k ≥ n1/6

elements `1, `2, . . . , `k, such that `i passes above `j for all i < j.

It is very likely that the exponent 1/6 in the last statement can be replaced by a better constant c.
J. Cooper and U. Wagner (personal communication) showed by an easy modification of a construction
in [PT00] that c cannot exceed log7 3 ≈ 0.565.

1This means that when a0 6= 0, the Cartesian coordinates of a are (a1/a0, a2/a0, a3/a0), and similarly for b.
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6 Second Proof of Theorem 1.1

As in the introduction, we represent the elements of F as points in R
q, represent the relation R as a

semi-algebraic set in R
2q, and construct the regions Σf , for f ∈ F . For the convenience of the proof,

we slightly modify this notation, and consider the problem in the following setup. We have a set F
of points in R

q, and a family G of semi-algebraic sets of constant description complexity in R
q. The

goal is to show the existence of linear-size subsets F ′ ⊆ F , G′ ⊆ G, such that either f ∈ g for every
pair (f, g) ∈ F ′ × G′, or f /∈ g for every pair (f, g) ∈ F ′ × G′. Put m := |F| and n := |G|.

The arrangement A(G) of G is the decomposition of R
q into relatively open maximal connected

sets (cells), such that each cell is contained in a fixed subset of elements of G and avoids all the other
elements (see [SA95]). Since the elements of G have constant description complexity, the standard
theory of real algebraic geometry (see [BPR03]) implies that the complexity of A(G), namely, the
number of cells in this decomposition, is O(nq), with a constant of proportionality that depends on
q and on the maximum complexity of the elements of G.

We fix a constant parameter r, choose a random sample G0 of r elements of G, and construct
the arrangement A(G0). Next, we construct the vertical decomposition A‖(G0) of A(G0) [CEGS89].
This is a recursively-defined decomposition of the cells of A(G0) into subcells of constant description
complexity (which, in general, is much larger than the complexity of the elements of G, but still
a constant); see [SA95, AS00] for more details concerning vertical decompositions. As shown in
[CEGS89], and enhanced by the recent improvement of [K01], the number of cells in A‖(G0) is at
most cr2 for q = 2, at most cr3β(r) for q = 3, where β(r) is an extremely slowly growing function of
r related to the inverse Ackermann function, and at most cr2q−4+ε, for any ε > 0, for q ≥ 4, where
in all cases c is a constant that depends on q and on the description complexity of the elements of G
(and on ε for q ≥ 4). We continue the proof assuming that q ≥ 4. The other cases can be handled
in a similar (and simpler) manner.

Let τ be a cell of A‖(G0), and let g ∈ G. We say that g crosses τ if g ∩ τ 6= ∅ but g does not
fully contain τ . The standard theory of random sampling (see, e.g., [AE98, CS89, S03]) implies that,
with high probability, each cell of A‖(G0) is crossed by (i.e., intersects but not contained in) at most
c1n

r
log r elements of G, where c1 is a constant that depends on q and on the description complexity

of the elements of G (but is independent of r). Let us then assume that G0 does indeed satisfy this
property.

For each cell τ of A‖(G0), let Gτ be the subset of the elements of G that cross τ , and set Fτ := F∩τ .

There must exist a cell τ satisfying |Fτ | ≥
m

cr2q−4+ε
. Then every element g ∈ G \ Gτ either fully

contains τ or is disjoint from τ . Setting

α =
1

cr2q−4+ε
,

β =
1

2

(

1 − c1

r
log r

)

≈ 1

2
,

we conclude that there exist a subset F ′ = Fτ of at least αm elements of F , and a subset G ′ of at
least βn elements of G, such that either each element of F ′ is contained in every element of G ′, or no
element of F ′ is contained in any element of G ′. 2

Discussion. (a) The second proof of Theorem 1.1 does not depend on the linearization of the
elements of G, and is therefore more general than the preceding one. Such a linearization is easy to
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obtain when each element of G is defined by a single polynomial equality or inequality, but when each
element of G is defined by a Boolean combination of constraints, such a linearization may be difficult
to obtain, without resorting to additional levels of decomposition. See, e.g., the case of crossing
segments in the plane (Theorem 4.1), where the linearization-based technique had to be applied four
levels in succession.

(b) It is also interesting to note that the size of G ′ can be guaranteed to be almost half the size of G.
It is not clear which of the two proofs yields a better lower bound on the size of F ′. The advantage
of the first proof of Theorem 1.1 is that there are no additional hidden constants in the fractions

1
2d+1 (or 1

2d ), whereas the constant c in the second proof is typically quite large. On the other hand,
the dimension d in the first approach depends on the linearization of the elements of G and can be
much larger than the dimension q of the ambient space in which F is naturally defined.

(c) From a historical perspective, the theorem of Yao and Yao is a precursor to the more general
and advanced decomposition methods that have been later developed for range searching and related
applications, and that we have used in the second proof. Problems that can be reduced to the setup
where the Yao-Yao result can be applied benefit from this simpler and more elegant decomposition,
but the new techniques allow us to extend the analysis to considerably more general situations.

7 Miscellaneous Applications and Conclusion

Theorem 1.1 easily implies the statement about segment T -graphs mentioned in the introduction:
there exists an ε > 0 such that every collection S of n segments in the plane contains two subsets
S1, S2, each of size at least εn, such that either every s1 ∈ S1 and s2 ∈ S2 are in T -position, or no
s1 ∈ S1, s2 ∈ S2 are in T -position. Indeed, the condition of being in T -position can be expressed as
the conjunction of just the first two inequalities in (1), and the proof is then just a simplified variant
of the proof of Theorem 4.1, yielding the constant ε = 1

27 . By a similar reasoning, one can deduce
from Theorem 1.1 that every collection of n circles in 3-space contains two subsets C1, C2 of linear
size such that either every pair in C1 × C2 forms a link, or no such pair forms a link. Many other
variants of our general results can be similarly established.

Let P be a family of semi-algebraic sets in R
d. Define its crossing density, δ(P), as the number

of crossing pairs (p, p′) in P × P, divided by |P|2. Clearly, we have 0 ≤ δ(P) ≤ 1. Similarly, define
the non-crossing density, δ̄(P). Then we can use the combinatorial machinery of Pach and Solymosi
which is based on the regularity lemma of Szemerédi (see Theorem 3.3 in [PS01]), combined with
Theorem 1.1, and obtain the following density Ramsey-type results for semi-algebraic sets.

Corollary 7.1. Let P be a family of n semi-algebraic sets of constant description complexity in

R
d, such that δ(P) ≥ c > 0. Then there exist a constant ε > 0, depending on c and on the

maximum description complexity of the sets in P, and two disjoint subfamilies P ′,P ′′ ⊆ P, such that

|P ′|, |P ′′| ≥ εn, and every set in P ′ crosses all the sets in P ′′.

Corollary 7.2. Let P be a family of n semi-algebraic sets of constant description complexity in R
d,

such that δ̄(P) ≥ c > 0. Then there exist a constant ε > 0, depending on c and on the maximum

description complexity of sets in P, and two disjoint subfamilies P ′,P ′′ ⊆ P, such that |P ′|, |P ′′| ≥ εn,

and no set in P ′ crosses any set in P ′′.

As above, these density Ramsey-type results can be extended to cases where the intersection
relation is replaced by any other semi-algebraic relation.
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The lower estimate for the cardinalities of U ′, V ′ in Theorem 1.3 contains a 1
2d+1 -factor. This

exponentially small factor is indeed needed, though we do not know if the base of the exponent is
tight. That is, there are examples of two sets U, V ⊂ R

d of n points each, such that the conclusion
of the theorem does not hold for any two subsets U ′ ⊂ U, V ′ ⊂ V of sizes bigger than n

cd for some

c > 1. One simple example is obtained by taking U = V = {+1,−1}d. If there are are U ′, V ′ such
that 〈u, v〉 ≥ 0 for all u ∈ U ′, v ∈ V ′ we can replace V ′ by −V ′ and conclude that 〈u, v〉 ≤ 0 for
all u ∈ U ′, v ∈ V ′. As this holds in the second possible conclusion of the theorem as well, we can
assume that this is always the case. This means that the Hamming distance between each member
of U ′ and each member of V ′ is at least d/2, implying, by the known isoperimetric inequality for

the Hamming cube (see [H66]), that min{|U ′|, |V ′|} ≤ ∑d/4
i=0

(d
i

)

≤ 2H(1/4)d. This gives the required
exponential dependence on d (and if we wish to have a fixed d and large n we can simply duplicate
every point n/2d times). A somewhat better, similar, example can be obtained by using the usual
isoperimetric inequality on the continuous unit sphere in R

d. It is known (see, e.g., [Sch03]) that
if we have two sets on the unit sphere in R

d and the distance between them is at least f , we can
replace each set by a cap of the same measures, where the centers of the caps are antipodal points,
keeping the distance at least f . It follows that if U ′, V ′ are two measurable sets on the unit sphere,
and 〈u, v〉 ≤ 0 for all u ∈ U ′, v ∈ V ′, then the relative measure of at least one of these sets is at

most 1+o(1)

2d/2 . By repeating the reasoning above and by letting U and V be two random sets on the
unit sphere of size n each, where n tends to infinity, this implies that the assertion of Theorem 1.3
does not hold if we replace the n

2d+1 estimate by more than n
(1−o(1))2d/2 . We omit the details.

The Ramsey-type conjecture of Erdős and Hajnal, mentioned in the introduction, that any graph
on n vertices which does not contain an induced copy of some fixed graph H, contains either a clique
or an independent set of size nc for some c = c(H) > 0, remains open. Theorem 1.2 shows that the
assertion of this conjecture holds for a wide class of graphs defined by semi-algebraic relations of
constant description complexity, and it may well be the case that the assertion holds for additional
classes of graphs defined by geometric conditions. In particular, as mentioned in the introduction, it
is known that intersection graphs of any family F of n arcwise connected sets in the plane contains
two subfamilies F1,F2 of size at least nδ each, so that either every element of F1 intersects every
element of F2, or no element of F1 intersects any element of F2. It will be interesting to decide if a
stronger conclusion holds: there is always one subfamily F ′ ⊂ F of size at least nδ such that either
every two distinct elements of F ′ intersect, or no two distinct elements of F ′ intersect. This remains
open.
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