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Abstract

We consider anti-Ramsey type results. For a given coloring ∆ of the k-element subsets of an
n-element set X, where two k-element sets with nonempty intersection are colored differently, let
inj∆(k, n) be the largest size of a subset Y ⊆ X, such that the k-element subsets of Y are colored
pairwise differently. Taking the minimum over all colorings, i.e. inj(k, n) = min∆ {inj∆(k, n)},
it is shown that for every positive integer k there exist positive constants ck, c∗k > 0 such that
for all integers n, n large, the following inequality holds

ck · (ln n)
1

2k−1 · n
k−1
2k−1 ≤ inj(k, n) ≤ c∗k · (ln n)

1
2k−1 · n

k−1
2k−1 .

1 Introduction

In recent years some interest was drawn towards the study of anti-Ramsey type results, cf. for

example [ESS 75], [Ra 75], [Al 83], [SS 84], [GRS 89]. In particular, they include topics like

Canonical Ramsey Theory and spectra of colorings. Some of these results show a close connection

to the theory of Sidon-sequences, cf. [BS 85], [So 90], and recently they turned out to be also fruitful

in determining bounds for canonical Ramsey numbers, cf. [LR 90]. The general problem is: given

a graph or hypergraph, where the edges are colored with certain restrictions on the coloring like,

for example, edges of the same color cannot intersect nontrivially, one is interested in the largest

size of some totally multicolored subgraph of a given type. In this paper we study this question for

colorings of complete uniform hypergraphs.

Let ∆: [X]k −→ ω, where ω = {0, 1, . . .}, be a coloring of the k-element subsets of X. A subset

Y ⊆ X is called totally multicolored if the restriction of ∆ to [Y ]k is a one-to-one coloring.

For coloring edges in complete graphs, where the coloring is such that edges of the same color

are not incident, Babai gave bounds for the largest totally multicolored complete subgraph Kk:
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Theorem 1 [Ba 85] Let n be a positive integer. Let X be an n-element set and let ∆:E(Kn) −→

ω, where ω = {0, 1, 2, . . .}, be a coloring of the edges of the complete graph Kn on n vertices, such

that incident edges get different colors. Then there exists a totally multicolored complete subgraph

Kk, which satisfies

k ≥ (2 · n)
1
3 . (1)

Moreover, for n large, there exists a coloring ∆:E(Kn) −→ ω, where incident edges are colored

differently, such that the largest totally multicolored complete subgraph Kk satisfies

k ≤ 8 · (n · ln n)
1
3 . (2)

Here we improve the lower bound in Theorem (1) and show that the upper bound is tight, up

to a constant factor. Moreover, we generalize Babai’s result to colorings of k-uniform complete

hypergraphs. Specifically, we prove

Theorem 2 Let k be a positive integer with k ≥ 2. Then there exist positive constants ck, c∗k > 0

such that for all positive integers n with n ≥ n0(k) the following holds.

Let X be a set with |X| = n and let ∆: [X]k −→ ω be a coloring, where ∆(S) 6= ∆(T ) for all

sets S, T ∈ [X]k with S 6= T and |S ∩ T | ≥ 1. Then there exists a totally multicolored set Y ⊂ X

of size

|Y | ≥ ck · (ln n)
1

2k−1 · n
k−1
2k−1 . (3)

Moreover, there exists a coloring ∆: [X]k −→ ω, where ∆(S) 6= ∆(T ) for all different S, T ∈ [X]k

with |S ∩ T | ≥ 1, such that every totally multicolored subset Y ⊂ X satisfies

|Y | ≤ c∗k · (ln n)
1

2k−1 · n
k−1
2k−1 . (4)

The proof relies heavily on probabilistic arguments. The lower bound is proved is Section 2 and

the upper bound is established in Section 3.

2 The proof of the lower bound

Let F = (V, E) be a hypergraph with vertex set V and edge set E . For a vertex x ∈ V let

degF (x) denote the degree of x in F , i.e. the number of edges e ∈ E containing x, and let
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∆(F) = max {degF (x) | x ∈ V}. Our lower bound is based on the following result of Ajtai,

Komlós, Pintz, Spencer and Szemerédi:

Theorem 3 [AKPSS 82] Let F be an (r + 1)-uniform hypergraph on N vertices. Assume that

(i) F is uncrowded ( i.e. contains no cycles of length 2, 3 or 4 ) and

(ii) ∆(F) ≤ tr, where t ≥ t0(r), and

(iii) N ≥ N0(r, t),

then the maximum independent set of F has size

α(F) ≥ 0.98
e
· 10−

5
r · N

t
· (ln t)

1
r . (5)

We want to apply this Theorem with the parameters r+1 = 2·k and t = N δ, where δ ≈ 1
r·(2r−1) .

The proof given in [AKPSS 82] suggests that N0(r, t) should be at least t4r+O(1). Indeed, these

calculations can be avoided, as the statement of Theorem (3) is strong enough to imply the same

statement, where condition (iii) is dropped.

Theorem 3’ Let G be an (r + 1)-uniform hypergraph on n vertices. Assume that

(i) G is uncrowded and

(ii) ∆(G) ≤ tr, where t ≥ t0(r),

then

α(G) ≥ 0.98
e
· 10−

5
r · n

t
· (ln t)

1
r . (6)

To see that Theorem (3) implies (the seemingly stronger) Theorem (3’) consider a hypergraph

G on n vertices, which satisfies the assumptions of Theorem (3’). Let m be a positive integer with

m >
N0(r, t)

n

and consider the hypergraph Fm consisting of m vertex disjoint copies of G. Then Fm has N = m·n

vertices and satisfies the assumptions (i), (ii) and (iii) of Theorem (3). We infer that

m · α(G) = α(Fm) ≥ 0.98
e
· 10−

5
r · N

t
· (ln t)

1
r
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and thus

α(G) ≥ 0.98
e
· 10−

5
r · n

t
· (ln t)

1
r .

We can now prove the lower bound in Theorem (2). The basic idea is to define a hypergraph

on the set of vertices X whose edges are all unions of pairs of members of [X]k which have the

same color. Then we choose an appropriate random subset of the set of vertices and show that

with positive probability the induced hypergraph on this set does not contain too many edges, and

contains only a small number of cycles of length 2,3 or 4. We can then delete these cycles and apply

Theorem (3’) to obtain the desired result. The actual calculations are somewhat complicated and

are described below. A similar application of Theorem (3’) is given in [RS 91].

Proof: Let ∆: [X]k −→ ω be a coloring, which satisfies the assumptions in Theorem (2). We may

assume that |X| = n is divisible by k. This will not change the calculations asymptotically. Put

r+ 1 = 2 · k and consider an (r+ 1)-uniform hypergraph H with vertex set X and with U ∈ E(H),

where E ⊆ [X]r+1, being an edge of H if and only if there exist different k-element subsets S, T ⊂ U

with ∆(S) = ∆(T ). Indeed, by assumption on the coloring ∆ the sets S and T are disjoint. Note

that if Z ⊆ X is an independent set of H, then Z is totally multicolored. Our aim is to find a large

independent set in H.

As there are at most n
k k-element subsets of the same color, we infer that the number of edges

of H satisfies

|E(H)| ≤
(n
k

)
n
k

·
(
n
k

2

)
≤ 1

2 · k2 · (k − 1)!
· nk+1 . (7)

For i = 2, 3, 4 we will further bound the number µi of i-cycles in H.

For distinct vertices x, y of H let degH(x, y) be the number of edges of H containing both

vertices x and y. Let

{x, y} ⊂ U ∈ E(H) (8)

for some set U . Let S, T ∈ [X]k be such that S ∪ T = U and ∆(S) = ∆(T ). As S and T are

by assumption disjoint sets, we may assume without loss of generality that one of the following

possibilities happens:

(i) either x ∈ S and y ∈ T
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(ii) or {x, y} ⊂ S.

The number of edges U ∈ E(H) satisfying (8) and (i) ((8) and (ii)) is bounded from above by(n−2
k−1

)
( (nk − 1) ·

(n−2
k−2

)
respectively).

Summing, we obtain that

degH(x, y) ≤
(
n− 2
k − 1

)
+
(
n

k
− 1

)
·
(
n− 2
k − 2

)
<

2 · k − 1
k!

· nk−1 . (9)

Using (9) one easily sees that

µ3 ≤ c3 · n3k

µ4 ≤ c4 · n4k .

We will now discuss the 2-cycles: for j = 2, 3, . . . , 2k − 1 let νj be the number of (unordered)

pairs of edges of H intersecting in a j-element set. We clearly have µ2 =
∑2k−1
j=2 νj .

Set

p = n−
1
2
− 1

4k−1 .

Let Y be a random subset of X with vertices chosen independently, each with probability p. Then

Prob (|Y | ≈ p · n) > 0.9 . (10)

For i = 3, 4 let µi(Y ) be the random variable counting the number of i-cycles no two of whose

edges form a two cycle of the subgraph of H induced on a set Y . Similarily, for j = 2, 3, . . . , 2k− 1

let νj(Y ) be the random variable counting the number of (unordered) pairs of edges of H induced

on Y , which intersect in j vertices. Let E(µi(Y )) and E(νj(Y )) be the corresponding expected

values.

It is easy to see that

E(µi(Y )) ≤ p(2k−1)·i · ci · nki = o(p · n) (11)

for i = 3, 4 (and k ≥ 2).

In order to give an upper bound on E(νj(Y )) we will first estimate νj .

Fix an edge S ∈ E(H) ⊆ [X]2k and fix nonnegative integers j0 and j1 with j0, j1 ≤ k. We will

count the number of unordered pairs {T0, T1}, which satisfy

∆(T0) = ∆(T1) (12)
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and

j0 = |S ∩ T0| , j1 = |S ∩ T1| . (13)

Assume first that j0, j1 ≥ 1. Fixing the set T0, there are at most
⌊

2k−j0
j1

⌋
sets T1 satisfying (12)

and (13). If we apply the same argument also when T1 is fixed we infer that the number of pairs

{T0, T1}, which satisfy (12) and (13), is bounded from above by

min

{(
2k
j0

)
·
⌊

2k − j0
j1

⌋
·
(

n

k − j0

)
,

(
2k
j1

)
·
⌊

2k − j1
j0

⌋
·
(

n

k − j1

)}
.

Assume now that j0 = 0 and j1 ≥ 1. Having fixed the set T1 there are at most (nk − 2) sets T0,

which satisfy (12) and (13). Therefore, the number of such pairs {T0, T1} is bounded from above

by (
2k
j1

)
·
(

n

k − j1

)
· n
k
.

Setting j = j0 + j1 ≥ 2 and summing this means, that for every edge S ∈ E(H) there are at

most

cj,k · nk−d
j
2
e + c

′
j,k · nk−j+1

≤ c̄j,k · nk−d
j
2
e

edges T ∈ E(H) such that |S ∩ T | = j, and hence with (7) we have

νj ≤ c̄j,k · nk−d
j
2
e · |E(H)|

≤ c∗j,k · n2k+1−d j
2
e ,

where c∗j,k is a constant depending on j and k only. Thus, for j = 2, 3, . . . , 2k − 1 it follows that

E(µ2(Y )) =
2k−1∑
j=2

E(νj(Y ))

≤
2k−1∑
j=2

p4k−j · c∗j,k · n2k+1−d j
2
e

= o(p · n) . (14)
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Summarizing (10), (11) and (14) and the fact that

E(|E(H) ∩ [Y ]2k|) = p2k · |E(H)| , (15)

we infer that there exists a subset Y0 ⊂ X with |Y0| ≈ p · n, µi(Y0) = o(p · n) and νj(Y0) = o(p · n)

for i = 3, 4 and j = 2, 3, . . . , 2k − 1 and with |E(H) ∩ [Y0]2k| ≤ 2 · p2k · |E(H)|.

We delete from Y0 all vertices, which are contained in i-cycles of length i = 2, 3, 4 to obtain a

subset Y1 ⊆ Y0 with |Y1| ≈ p · n, such that the subgraph induced on Y1 is uncrowded and has at

most 2 · p2k · |E(H)| edges.

Finally, delete all vertices Y1 with degree bigger than

8 · k · p2k · |E(H)|
p · n

.

We obtain a subset Z ⊆ Y1 with at least p·n
2 · (1 − o(1)) vertices such that the subgraph G of H

induced on the set Z satisfies the assumptions of Theorem (3’) with

∆(G) ≤ t2k−1 =
8 · k · p2k · |E(H)|

p · n
≤ 4
k!
· p2k−1 · nk ,

hence,

t ≤
(

4
k!

) 1
2k−1

· p · n
k

2k−1 .

We apply Theorem (3’) to the hypergraph G and obtain

α(H) ≥ α(G)

≥ 0.98
e
· 10−

5
r · |Z|

t
· (ln t)

1
r

≥ (1− o(1)) · 0.49
e
·
(

k!
4 · 105

) 1
2k−1

·
(

1
(4k − 1) · (4k − 2)

) 1
2k−1

· n
k−1
2k−1 · (ln n)

1
2k−1 .

This completes the proof of the lower bound.

3 The proof of the upper bound

Let k, n be positive integers, where n is divisible by k. Let X be a set of vertices with |X| = n. A

perfect k-matching on X is a collection of n
k pairwise disjoint k-element subsets of X.
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The number of perfect k-matchings of an n-element set, n divisible by k, is given by(n
k

)
·
(n−k
k

)
·
(n−2k

k

)
· . . . ·

(k
k

)
n
k !

=
n!

(k!)
n
k · nk !

.

In the following we prove the upper bound given in Theorem (2). The basic idea is similar to

the one used by Babai in [Ba 85], but there are several complications.

Proof: Let X be a set with |X| = n, and assume that n is divisible by k. As long as k is fixed,

this will not change the calculations asymptotically. Let m = dcnk−1e, where c = 1
(k−1)!·8 . Let

M1,M2, . . . ,Mm be random perfect k-matchings, chosen uniformly randomly and independently

from the set of all perfect k-matchings. Put Hj = ∪i<jMi, hence Hj is the set of all k-element

subsets occurring in one of the first (j − 1) perfect k-matchings Mi, i < j. Define a coloring

∆: [X]k −→ ω in the following way: for j = 1, 2, . . . ,m color the sets in Mj \Hj with color j, and,

in order to complete the coloring, color those sets in [X]k \Hm+1 with new colors in an arbitrary

way, compatible with the assumptions. (E.g., using a different color for each edge).

Now let Y ⊆ X be a subset of X with |Y | = l, where l > n
1
k+1 but l = o(n

k−1
k ). Our objective

is to estimate the probability that Y is totally multicolored. Very roughly, this is done as follows.

We show that with a high probability Y does not contain too many edges of any single matching,

and hence it does not contain too many edges of Hj for every j. If this occurs, then for each j,

with a reasonably high probability Y does contain two edges of Mj that do not lie in Hj (and thus

have the same color). This implies that with extremely high probability such two edges exist for

some j, and hence Y is not totally multicolored.

The actual proof is rather complicated, and is described in the following sequence of lemmas.

Lemma 1 For all integers j, t, 1 ≤ j ≤ m and t ≥ 0, the following inequality holds

Prob (|Mj ∩ [Y ]k| ≥ t) ≤ (
lk

k · nk−1
)t . (16)

Proof: The k-matchings Mj above have been chosen at random and the set Y was fixed. In

order to give an upper bound for the probability Prob (|Mj ∩ [Y ]k| ≥ t), view it the other way

around: Let Mj be fixed and let Y be chosen at random. This does not change the corresponding

probabilities. Now, Y can be chosen in
(n
l

)
ways. From Mj we can choose t k-element sets in

(n
k
t

)
8



ways and the remaining elements of Y in at most
(n−kt
l−kt

)
ways. This implies

Prob (|Mj ∩ [Y ]k| ≥ t) ≤
(n
k
t

)
·
(n−kt
l−kt

)(n
l

)
≤

(
n

k

)t
·
(
l

n

)kt
=

(
lk

k · nk−1

)t
.

Let Ei denote the event

|Hi ∩ [Y ]k| ≤ 6c
k
lk =

3
4 · (k!)

· lk . (17)

Notice, that Prob (Ei) ≥ Prob (Ei+1) for every i, 1 ≤ i ≤ m. The following Lemma gives a lower

bound for the probability that Em+1 occurs:

Lemma 2 For n large, Prob (Em+1) ≥ 1− 2−
6c
k
lk .

Proof: For i = 1, 2, . . . ,m define random variables xi by xi = |Mi ∩ [Y ]k|. Thus |Em+1 ∩ [Y ]k| ≤∑m
i=1 xi. As the k-matchings are chosen independently, the xi’s are independent random variables

too. Therefore,

Prob (|Hm+1 ∩ [Y ]k| ≥ t) ≤ Prob (
m∑
i=1

xi ≥ t)

≤
∑

(ti)mi=1,ti≥0,
∑

ti=t

m∏
i=1

Prob (xi ≥ ti) . (18)

The number of sequences (ti)mi=1 with ti ≥ 0 and
∑m
i=1 ti = t is given by the binomial coefficient(t+m−1

t

)
. By Lemma 1 we know

Prob (xi ≥ ti) ≤ (
lk

k · nk−1
)ti ,

hence with (18) we have

Prob (|Hm+1 ∩ [Y ]k| ≥ t) ≤
(
t+m− 1

t

)
· ( lk

k · nk−1
)t

≤ (
e(t+m)

t
)t · ( lk

k · nk−1
)t

≤ (
e(t+m)lk

tknk−1
)t (19)
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For t = 6c
k l
k and l = o(n

k−1
k ) the quotient e(t+m)·lk

tknk−1 occurring in (19) is less than 1/2 for n large.

Hence

Prob (Em+1) ≥ 1− 2−
6c
k
lk .

Next, define another random variable yj by

yj = |[Mj ]2 ∩ [[Y ]k \Hj ]2| . (20)

Clearly, yj counts the number of those pairs of disjoint k-element sets i [Y ]k \ Hj which have

both elements in the k-matching Mj (and hence have the same color). Let E(yj |M) denote the

conditional expected value of yj given M .

Lemma 3 For positive integers n, n large,

E(yj | Ej ,M1,M2, . . . ,Mj−1) >
1

130 · k2
· l2k

n2k−2
. (21)

Proof: As Ej holds, (17) implies for n large that

|[Y ]k \Hj | ≥
(
l

k

)
− 6c
k
lk ≥ c′lk , (22)

where, say, c′ = 1
8·(k!) . For every set S ∈ [Y ] at most k

( l−1
k−1

)
k-element subsets of Y , which are not

disjoint from S, hence the the number of sets {S, T} ∈ [[Y ]k \Hj ]2, where S and T are disjoint, is

for n large at least

1
2
c′lk · (c′lk − k

(
l − 1
k − 1

)
) >

1
130 · (k!)2

· l2k . (23)

Now, for given disjoint k-element sets S, T , the probability that both are in Mj is given by

Prob (S, T ∈Mj) =
n
k · (

n
k − 1)(n

k

)
·
(n−k
k

)
=

1(n−1
k−1

)
·
(n−k−1
k−1

)
≥ 1(n−1

k−1

)2
≥ (

(k − 1)!
nk−1

)2 .
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Therefore,

E(yj | Ej ,M1,M2, . . . ,Mj−1) ≥ 1
130 · k2

· l2k

n2k−2
.

Lemma 4 For every positive integer j, j ≤ m, and n large

Prob (yj = 1 | Ej ,M1,M2, . . . ,Mj−1) >
1

131 · k2
· l2k

n2k−2
. (24)

Proof: First we claim that

Prob (yj ≥ t | Ej ,M1,M2, . . . ,Mj−1) ≤ (
lk

k · nk−1
)d
√

2t+1 e (25)

for every positive integer t.

This follows from the fact that t pairwise different two-element sets imply that the underlying

set has cardinality at least d
√

2t+ 1 e. Hence, yj ≥ t implies |Mj ∩ [Y ]k| ≥ d
√

2t+ 1e. By Lemma

1 this gives

Prob (yj ≥ t | Ej ,M1,M2, . . . ,Mj−1) ≤ Prob (|Mj ∩ [Y ]k| ≥ d
√

2t+ 1 e)

≤ (
lk

k · nk−1
)d
√

2t+1 e ,

proving (25).

For every positive integer i put pi = Prob (yj = i | Ej ,M1,M2, . . . ,Mj−1). Clearly, we have

E(yj | Ej ,M1,M2, . . . ,Mj−1) =
∑
i<ω i · pi and by (25) this implies

E(yj | Ej ,M1,M2, . . . ,Mj−1) ≤ p1 +
∑
i≥2

i · ( lk

k · nk−1
)d
√

2i+1e

≤ p1 +O((
lk

nk−1
)3)

≤ p1 + o

(
l2k

n2k−2

)
. (26)

The last inequality (26) follows from the fact that l = o(n
k−1
k ). By Lemma 3 this implies that, say,

p1 >
1

131·k2 · l2k

n2k−2 for n large.

Let Fj denote the event (yj = 0 and Ej+1). Then F1 ∧F2 ∧ . . .∧Fj−1 is the event that Ej and

yi = 0 for i = 1, 2, . . . , j − 1.

11



Let M be the set of all mutually exclusive events (Ej ,M1,M2, . . . ,Mj−1) for which yi = 0,

i = 1, 2, . . . , j − 1, holds. Then clearly

F1 ∧ F2 ∧ . . . ∧ Fj−1 =
∨
M

(Ej ,M1,M2, . . . ,Mj−1)

and thus

Prob (yj = 1 | F1 ∧ F2 ∧ . . . ∧ Fj−1)

=
∑
M Prob (yj = 1 ∧ (Ej ,M1 ∧M2 ∧ . . . ∧Mj−1))∑

M Prob (Ej ,M1,M2, . . . ,Mj−1)

≥ minM
Prob (yj = 1 ∧ (Ej ,M1,M2, . . . ,Mj−1))

Prob (Ej ,M1,M2, . . . ,Mj−1)
= minM Prob (yj = 1 | Ej ,M1,M2, . . . ,Mj−1) .

Hence, by Lemma 4 we infer that

Prob (yj = 1 | F1 ∧ F2 ∧ . . . ∧ Fj−1) >
1

131 · k2
· l2k

n2k−2
. (27)

Now we are ready to prove

Lemma 5 For every positive integer n, n large,

Prob (F1 ∧ F2 ∧ . . . ∧ Fm) < exp(− 1
1048 · k · (k!)

· l
2k

nk−1
) . (28)

Proof: As

Prob (F1 ∧ F2 ∧ . . . ∧ Fm) = Prob (F1) ·
m∏
j=2

Prob (Fj | F1 ∧ F2 ∧ . . . ∧ Fj−1) , (29)

we infer that

Prob (Fj |F1 ∧ F2 ∧ . . . ∧ Fj−1)) ≤ Prob (yj = 0 | F1 ∧ F2 ∧ . . . ∧ Fj−1)

≤ Prob (yj 6= 1 | F1 ∧ F2 ∧ . . . ∧ Fj−1)

= 1− Prob (yj = 1 | F1 ∧ F2 ∧ . . . ∧ Fj−1)

< 1− 1
131 · k2

· l2k

n2k−2
by (27).

With (29) it follows that

Prob (F1 ∧ F2 ∧ . . . ∧ Fm) < (1− 1
131 · k2

· l2k

n2k−2
)m

≤ exp(− 1
131 · k2

·m · l2k

n2k−2
)

≤ exp(− 1
1048 · k · (k!)

· l
2k

nk−1
) as m =

⌈
1

8 · ((k − 1)!)
· nk−1

⌉
.
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We finish the proof of Theorem 2 by bounding the probability that there exists a totally mul-

ticolored subset Y ⊆ X with |Y | = l. If a fixed subset Y ⊆ X is totally multicolored, then either

F1 ∧ F2 ∧ . . . ∧ Fm is true or for some j, 1 ≤ j ≤ m, the event Ej+1 does not occur and therefore

by (17) also not the event Em+1. With Lemma 2 and Lemma 5 we infer that

Prob (Y is totally multicolored ) < 2−
6c
k
lk + exp(− 1

1048 · k · (k!)
· l

2k

nk−1
) ,

and doing this for all
(n
l

)
l-element subsets Y ⊆ X implies

Prob (there exists Y ⊆ X with |Y | = l and Y is totally multicolored )

<

(
n

l

)
· (exp(− 1

1048 · k · (k!)
· l

2k

nk−1
) + 2−

6c
k
lk) . (30)

For l ≥ (1049 ·k ·(k!))
1

2k−1 ·n
k−1
2k−1 ·(ln n)

1
2k−1 (where the constant can be easily improved) expression

(30) goes to 0 with n going to infinity. Thus for |X| = n and n large there exists a coloring

∆: [X]k −→ ω such that every totally multicolored subset Y ⊆ X has size |Y | ≤ (1049 ·k · (k!))
1

2k−1 ·

n
k−1
2k−1 · (ln n)

1
2k−1 .
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