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1 The Erdős-Heilbronn conjecture

The Cauchy-Davenport theorem states that if A and B are nonempty sets of
congruence classes modulo a prime p, and if |A| = k and |B| = l, then the
sumset A + B contains at least min(p, k + l − 1) congruence classes. It follows
that the sumset 2A contains at least min(p, 2k − 1) congruence classes. Erdős
and Heilbronn conjectured 30 years ago that there are at least min(p, 2k − 3)
congruence classes that can be written as the sum of two distinct elements of
A. Erdős has frequently mentioned this problem in his lectures and papers (for
example, Erdős-Graham [4, p. 95]). The conjecture was recently proven by
Dias da Silva and Hamidoune [3], using linear algebra and the representation
theory of the symmetric group. The purpose of this paper is to give a simple
proof of the Erdős-Heilbronn conjecture that uses only the most elementary
properties of polynomials. The method, in fact, yields generalizations of both
the Erdős-Heilbronn conjecture and the Cauchy-Davenport theorem.

2 The polynomial method

Lemma 1 (Alon-Tarsi [2]) Let A and B be nonempty subsets of a field F
with |A| = k and |B| = l. Let f(x, y) be a polynomial with coefficients in F and
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of degree at most k − 1 in x and l − 1 in y. If f(a, b) = 0 for all a ∈ A and
b ∈ B, then f(x, y) is identically zero.

Proof. This follows immediately from the fact that a nonzero polynomial
p(x) ∈ F [x] of degree at most k − 1 cannot have k distinct roots in F . We can
write

f(x, y) =
k−1∑
i=0

l−1∑
j=0

fi,jx
iyj =

k−1∑
i=0

vi(y)xi,

where

vi(y) =
l−1∑
j=0

fi,jy
j

is a polynomial of degree at most l − 1 in y. Fix b ∈ B. Then

u(x) =
k−1∑
i=0

vi(b)xi

is a polynomial of degree at most k−1 in x such that u(a) = 0 for all a ∈ A. Since
u(x) has at least k distinct roots, it follows that u(x) is the zero polynomial,
and so vi(b) = 0 for all b ∈ B. Since deg(vi(y)) ≤ l − 1 and |B| = l, it follows
that vi(y) is the zero polynomial, and so fi,j = 0 for all i and j. This completes
the proof. 2

Lemma 2 Let A be a finite subset of a field F , and let |A| = k. For every
m ≥ k there exists a polynomial gm(x) ∈ F [x] of degree at most k− 1 such that

gm(a) = am

for all a ∈ A.

Proof. Let A = {a0, a1, . . . , ak−1}. We must show that there exists a
polynomial u(x) = u0 + u1x+ · · ·+ uk−1x

k−1 ∈ F [x] such that

u(ai) = u0 + u1ai + u2a
2
i + · · ·+ uk−1a

k−1
i = ami

for i = 0, 1, . . . , k− 1. This is a system of k linear equations in the k unknowns
u0, u1, . . . , uk−1, and it has a solution if the determinant of the coefficients of
the unknowns is nonzero. The Lemma follows immediately from the observation
that this determinant is the Vandermonde determinant∣∣∣∣∣∣∣∣∣

1 a0 a2
0 · · · ak−1

0

1 a1 a2
1 · · · ak−1

1
...
1 ak−1 a2

k−1 · · · ak−1
k−1

∣∣∣∣∣∣∣∣∣ =
∏

0≤i<j≤k−1

(aj − ai) 6= 0.

2
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Theorem 1 Let p be a prime number, and let F = Z/pZ. Let A and B be
nonempty subsets of the field F , and let

A+̂B = {a+ b
∣∣ a ∈ A, b ∈ B, a 6= b}.

Let |A| = k and |B| = l. If k 6= l, then

|A+̂B| ≥ min(p, k + l − 2}.

Proof. Let |A| = k and |B| = l. We can assume that

1 ≤ l < k ≤ p.

If k + l − 2 > p, let l′ = p− k + 2. Then

2 ≤ l′ < l < k

and
k + l′ − 2 = p.

Choose B′ ⊆ B such that |B′| = l′. If the Theorem holds for the sets A and B′,
then

|A+̂B| ≥ |A+̂B′| ≥ k + l′ − 2 = p = min(p, |A|+ |B| − 2).

Therefore, we can assume that

k + l − 2 ≤ p.

Let C = A+̂B. We must prove that

|C| ≥ k + l − 2.

Suppose that
|C| ≤ k + l − 3.

Choose m so that
m+ |C| = k + l − 3.

We shall construct three polynomials f0, f1, and f in F [x, y] as follows: Let

f0(x, y) =
∏
c∈C

(x+ y − c).

Then deg(f0) = |C| ≤ k + l − 3 and

f0(a, b) = 0 for all a ∈ A, b ∈ B, a 6= b.

Let
f1(x, y) = (x− y)f0(x, y).
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Then deg(f1) = 1 + |C| ≤ k + l − 2 and

f1(a, b) = 0 for all a ∈ A, b ∈ B.

Multiplying f1 by (x+ y)m, we obtain the polynomial

f(x, y) = (x− y)(x+ y)m
∏
c∈C

(x+ y − c)

of degree exactly k + l − 2 such that

f(a, b) = 0 for all a ∈ A, b ∈ B.

Then

f(x, y) =
∑
i,j≥0

i+j≤k+l−2

fi,jx
iyj

= (x− y)(x+ y)k+l−3 + lower order terms.

Since 1 ≤ l < k ≤ p and 1 ≤ k + l − 3 < p, it follows that the coefficient
fk−1,l−1 of the monomial xk−1yl−1 in f(x, y) is(

k + l − 3
k − 2

)
−
(
k + l − 3
k − 1

)
=

(k − l)(k + l − 3)!
(k − 1)!(l − 1)!

6≡ 0 (mod p).

By Lemma 2, for every m ≥ k there exists a polynomial gm(x) of degree
at most k − 1 such that gm(a) = am for all a ∈ A, and for every n ≥ l there
exists a polynomial hn(y) of degree at most l − 1 such that hn(b) = bn for all
b ∈ B. We use the polynomials gm(x) and hn(y) to construct a new polynomial
f∗(x, y) from f(x, y) as follows: If xmyn is a monomial in f(x, y) with m ≥ k,
then we replace xmyn with gm(x)yn. Since deg(f(x, y)) = k + l − 2, it follows
that if m ≥ k, then n ≤ l− 2, and so gm(x)yn is a sum of monomials xiyj with
i ≤ k − 1 and j ≤ l − 2. Similarly, if xmyn is a monomial in f(x, y) with n ≥ l,
then we replace xmyn with xmhn(y). If n ≥ l, then m ≤ k− 2, and so xmhn(y)
is a sum of monomials xiyj with i ≤ k−2 and j ≤ l−1. This determines a new
polynomial f∗(x, y) of degree at most k − 1 in x and l − 1 in y. The process of
constructing f∗(x, y) from f(x, y) does not alter the coefficient fk−1,l−1 of the
term xk−1yl−1, since this monomial does not occur in any of the polynomials
gm(x)yn or xmhn(y). On the other hand,

f∗(a, b) = f(a, b) = 0

for all a ∈ A and b ∈ B. It follows immediately from Lemma 1 that the poly-
nomial f∗(x, y) is identically zero. This contradicts the fact that the coefficient
fk−1,l−1 of xk−1yl−1 in f∗(x, y) is nonzero, and completes the proof. 2
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Theorem 2 (Dias da Silva-Hamidoune [3]) Let p be a prime number, and
let F = Z/pZ. Let A ⊆ F , and let |A| = k ≥ 2. Let 2∧A denote the set of all
sums of two distinct elements of A. Then

|2∧A| ≥ min(p, 2k − 3).

Proof. Let A ⊆ F , |A| ≥ 2. Choose a ∈ A, and let B = A \ {a}. Then
|B| = |A| − 1 and, by Theorem 1,

|2∧A| ≥ |A+̂B| ≥ min(p, |A|+ |B| − 2) = min(p, 2|A| − 3).

This completes the proof of the Erdős-Heilbronn conjecture.2
Let k + l − 2 ≤ p, 1 ≤ l < k ≤ p. Let A = {0, 1, 2, . . . , k − 1} and B =

{0, 1, 2, . . . , l−1}. Then A+̂B = {1, 2, . . . , k+l−2} and 2∧A = {1, 2, . . . , 2k−3}.
This example shows that the lower bounds in Theorem 1 and Theorem 2 are
sharp.

3 Further applications of the method

The polynomial method is a powerful new technique to obtain results in additive
number theory. For example, it gives the following simple proof of the Cauchy-
Davenport theorem. Let A and B be subsets of Z/pZ, and let C = A+B. Let
|A| = k and |B| = l. We can assume that k + l − 1 ≤ p. If |C| ≤ k + l − 2, let
m = k + l − 2− |C|, and consider the polynomial

f(x, y) = (x+ y)m
∏
c∈C

(x+ y − c).

Then f(a, b) = 0 for all a ∈ A and b ∈ B. The polynomial has degree k + l− 2,
and the coefficient of the monomial xk−1yl−1 is exactly(

k + l − 2
k − 1

)
6≡ 0 (mod p).

The proof proceeds exactly as the proof of Theorem 1.
As a final example of the method, we state and prove the following new

result.

Theorem 3 Let A and B be nonempty subsets of F = Z/pZ, and let

C = {a+ b
∣∣ a ∈ A, b ∈ B, ab 6= 1}.

Let |A| = k and |B| = l. Then

|C| ≥ min(p, k + l − 3}.
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Proof. If k + l − 3 > p, let l′ = p− k + 3. Then 3 ≤ l′ < l. Choose B′ ⊆ B
such that |B′| = l′ and let

C ′ = {a+ b′
∣∣ a ∈ A, b ∈ B′, ab′ 6= 1}.

Since C ′ ⊆ C, it suffices to prove that |C ′| ≥ k + l′ − 3. Equivalently, we can
assume that k + l − 3 ≤ p, and we must prove that |C| ≥ k + l − 3.

Suppose that |C| ≤ k + l − 4. Choose m so that |C| + m = k + l − 4, and
consider the polynomial

f(x, y) = (xy − 1)(x+ y)m
∏
c∈C

(x+ y − c).

Then f(a, b) = 0 for all a ∈ A and b ∈ B. The polynomial has degree k + l− 2,
and the coefficient of the monomial xk−1yl−1 is(

k + l − 4
k − 2

)
6≡ 0 (mod p).

The proof continues exactly as the proof of Theorem 1. 2

Let k + l − 3 ≤ p, k, l ≥ 2, and choose d ∈ Z/pZ, d 6= 0, such that

(1 + (k − 1)d)(1 + (l − 1)d) = 1.

Let A = {1, 1+d, 1+2d, . . . , 1+(k−1)d} and B = {1, 1+d, 1+2d, . . . , 1+(l−1)d}.
Define C as in Theorem 3. Then C = {2+id

∣∣ i = 1, . . . , k+l−3}. This example
shows that the lower bound in Theorem 3 is sharp for all k, l ≥ 2. If k = 1, the
correct lower bound is |B| − 1 = k + l − 2.

4 Remarks

The results in this paper hold for addition in any field F , where p is equal
to the characteristic of F if the characteristic is a prime, and p = ∞ if the
characteristic is zero.

Dias da Silva and Hamidoune [3] proved the generalization of the Erdős-
Heilbronn conjecture for h-fold sums: Let h ≥ 2, and let h∧A denote the set of
all sums of h distinct elements of A. If A ⊆ Z/pZ and |A| = k, then

|h∧A| ≥ min(p, hk − h2 + 1).

This result can also be proved by the polynomial method, and we shall present
this and other results in a subsequent paper [1].

Nathanson [7] contains proofs of the Cauchy-Davenport theorem and some
of its generalizations, as well as a full exposition of the original Dias da Silva-
Hamidoune proof of the Erdős-Heilbronn conjecture for h-fold sums. Partial
results on the Erdős-Heilbronn conjecture had previously been obtained by Rick-
ert [9], Mansfield [6], Rödseth [10], Pyber [8], and Freiman, Low, and Pitman [5].

6



References

[1] N. Alon, M. B. Nathanson, and I. Z. Ruzsa. The polynomial method and
sums of congruence classes. in preparation.

[2] N. Alon and M. Tarsi. Colorings and orientations of graphs. Combinatorica,
12:125–134, 1992.

[3] J. A. Dias da Silva and Y. O. Hamidoune. Cyclic spaces for Grassmann
derivatives and additive theory. Bull. London Math. Soc., 26:to appear,
1994.
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