Adding distinct congruence classes
modulo a prime
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1 The Erdés-Heilbronn conjecture

The Cauchy-Davenport theorem states that if A and B are nonempty sets of
congruence classes modulo a prime p, and if |[A| = k and |B| = [, then the
sumset A 4+ B contains at least min(p, k + [ — 1) congruence classes. It follows
that the sumset 2A contains at least min(p, 2k — 1) congruence classes. Erdés
and Heilbronn conjectured 30 years ago that there are at least min(p, 2k — 3)
congruence classes that can be written as the sum of two distinct elements of
A. Erd6s has frequently mentioned this problem in his lectures and papers (for
example, Erdés-Graham [4, p. 95]). The conjecture was recently proven by
Dias da Silva and Hamidoune [3], using linear algebra and the representation
theory of the symmetric group. The purpose of this paper is to give a simple
proof of the Erdds-Heilbronn conjecture that uses only the most elementary
properties of polynomials. The method, in fact, yields generalizations of both
the Erdds-Heilbronn conjecture and the Cauchy-Davenport theorem.

2 The polynomial method

Lemma 1 (Alon-Tarsi [2]) Let A and B be nonempty subsets of a field F
with |A] =k and |B| = 1. Let f(x,y) be a polynomial with coefficients in F and
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of degree at mostk — 1 inx and 1l — 1 iny. If f(a,b) = 0 for all a € A and
b € B, then f(x,y) is identically zero.

Proof. This follows immediately from the fact that a nonzero polynomial
p(x) € Flx] of degree at most £ — 1 cannot have k distinct roots in F. We can

write
k—11-1
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is a polynomial of degree at most [ — 1 in y. Fix b € B. Then

is a polynomial of degree at most k—1 in 2 such that u(a) = 0 for all a € A. Since
u(z) has at least k distinct roots, it follows that w(z) is the zero polynomial,
and so v;(b) = 0 for all b € B. Since deg(v;(y)) <1 —1 and |B| =, it follows
that v;(y) is the zero polynomial, and so f; ; = 0 for all ¢ and j. This completes
the proof. O

Lemma 2 Let A be a finite subset of a field F, and let |A] = k. For every
m > k there exists a polynomial g, (x) € Flx] of degree at most k — 1 such that

gm(a) =a™
foralla € A.

Proof. Let A = {ag,a1,...,a5-1}. We must show that there exists a
polynomial u(z) = ug + w1z + - - +up_12° " € F[x] such that

u(a;) = ug + ura; +uga? + -+ up_1aF "t =a"
fori=0,1,...,k— 1. This is a system of k linear equations in the & unknowns
Uug, U1, - .., Ug_1, and it has a solution if the determinant of the coefficients of

the unknowns is nonzero. The Lemma follows immediately from the observation
that this determinant is the Vandermonde determinant
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Theorem 1 Let p be a prime number, and let F = Z/pZ. Let A and B be
nonempty subsets of the field F', and let

AtB={a+b|a€c Abe B,a+b}.
Let |A| =k and |B|=1. If k #1, then
|A+B| > min(p, k +1 — 2}.
Proof. Let |A| =k and |B| = 1. We can assume that
1<li<k<np.
Ifk+1—2>p,letl’=p—k+2 Then
2<l <<k

and
k+1U —2=np.

Choose B’ C B such that |B’| = I’. If the Theorem holds for the sets A and B’,
then
|A+B| > |A+B'| > k+1' —2 = p = min(p, |A| + |B| — 2).

Therefore, we can assume that
E+1-2<np.
Let C = A+B. We must prove that
IC|>k+1-—2.

Suppose that
IC| <k+1-3.

Choose m so that
m+|C|=k+1-3.

We shall construct three polynomials fo, f1, and f in F[z,y] as follows: Let

folz,y) = H(m—i—y— c).

ceC
Then deg(fo) = |C| < k+1—3 and
fola,b) =0 for all a € A,b € B,a # b.

Let
fi(z,y) = (x —y) fo(z,y).



Then deg(f1) =1+ |C| <k+1-2and
fi(a,b) =0for alla € A,b € B.

Multiplying f1 by (z + y)™, we obtain the polynomial
flay) =@-y+y" [[@+ty-o
ceC

of degree exactly k + [ — 2 such that
f(a,b)=0foralla € Abe B.

Then

fley) = Z figa'y’

i+j<k+4+l—2

= (z—1y)(z+y)*" 3 + lower order terms.

Since 1 <l <k<pand 1l <k+1—-3 < p, it follows that the coefficient
fx—1.4—1 of the monomial x*~1y!~1 in f(z,y) is

k+1—-3 k+1—-3 _(k‘—l)(k:—i—l—g)!
( o2 )_( k-1 )_ Gon— 70 (wodp).

By Lemma 2, for every m > k there exists a polynomial g,,(z) of degree
at most k — 1 such that g,,(a) = a™ for all a € A, and for every n > [ there
exists a polynomial h,(y) of degree at most [ — 1 such that h,(b) = b™ for all
b € B. We use the polynomials g,,(z) and h,(y) to construct a new polynomial
f*(z,y) from f(x,y) as follows: If 2™y™ is a monomial in f(x,y) with m > k,
then we replace z™y™ with g,,(z)y™. Since deg(f(z,y)) =k + 1 — 2, it follows
that if m > k, then n <[ — 2, and so g,,(x)y" is a sum of monomials z'y? with
i <k—1and j<I[l—2. Similarly, if z™y" is a monomial in f(z,y) with n > [,
then we replace ™y™ with ™ h,(y). If n > [, then m < k — 2, and so 2™h,,(y)
is a sum of monomials x%y? with i < k —2 and j < [ — 1. This determines a new
polynomial f*(x,y) of degree at most k — 1 in « and [ — 1 in y. The process of
constructing f*(z,y) from f(x,y) does not alter the coefficient fr_1,;-1 of the
term zF~19'~1, since this monomial does not occur in any of the polynomials
gm(2)y™ or 2™hy,(y). On the other hand,

[ (a,b) = f(a,b) =0

for all a € A and b € B. It follows immediately from Lemma 1 that the poly-
nomial f*(z,y) is identically zero. This contradicts the fact that the coefficient
fr—11-1 of 8=y~ in f*(x,y) is nonzero, and completes the proof. O



Theorem 2 (Dias da Silva-Hamidoune [3]) Let p be a prime number, and
let F =2Z/pZ. Let ACF, and let |A| = k > 2. Let 2" A denote the set of all
sums of two distinct elements of A. Then

|2 A| > min(p, 2k — 3).

Proof. Let A C F, |A] > 2. Choose a € A, and let B = A\ {a}. Then
|B| = |A|] = 1 and, by Theorem 1,

[2°4] > [ATB| > min(p, |4] + |B| - 2) = min(p, 24| - 3).

This completes the proof of the Erdds-Heilbronn conjecture.O

Let k+1—-2<p 1 <l<k<p Let A={0,1,2,....,k—1} and B =
{0,1,2,...,1—1}. Then A+B = {1,2,... . k+(—2}and 2" A = {1,2,...,2k—3}.
This example shows that the lower bounds in Theorem 1 and Theorem 2 are
sharp.

3 Further applications of the method

The polynomial method is a powerful new technique to obtain results in additive
number theory. For example, it gives the following simple proof of the Cauchy-
Davenport theorem. Let A and B be subsets of Z/pZ, and let C = A+ B. Let
|A] = k and |B| = 1. We can assume that k+1—1<p. If |C] <k+1—2, let
m =k +1—2—|C|, and consider the polynomial

fay)=@+y)™ [[@+y—o.
ceC

Then f(a,b) =0 for all a € A and b € B. The polynomial has degree k +1 — 2,

and the coefficient of the monomial ¥~ 1¢'~! is exactly

<k+l—2
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The proof proceeds exactly as the proof of Theorem 1.
As a final example of the method, we state and prove the following new
result.

Theorem 3 Let A and B be nonempty subsets of F = Z/pZ, and let
C={a+b|lacAbe B,ab#1}.
Let |A| =k and |B| = 1. Then

|C| > min(p, k + 1 — 3}.



Proof. If k+1—-3>p,let ' =p—k+3. Then 3 <!’ <l. Choose B'C B
such that |B’| =1’ and let

C'={a+V |acAbe B ab #1}.

Since C’ C C, it suffices to prove that |C'| > k + I’ — 3. Equivalently, we can
assume that k 4+ — 3 < p, and we must prove that |C| > k +1 — 3.

Suppose that |C| < k + 1 —4. Choose m so that |C| +m =k +1 — 4, and
consider the polynomial

fla,y) =@y —D@+y)™ [[@+y—o.

ceC
Then f(a,b) =0 for all a € A and b € B. The polynomial has degree k + [ — 2,
and the coefficient of the monomial 2* =1y~ is
k+1—-4
( k9 ) Z0 (mod p).

The proof continues exactly as the proof of Theorem 1. O
Let k+1—3<p, k,l > 2, and choose d € Z/pZ, d # 0, such that

(1+ (k= D)1+ (1 —1)d) = 1.

Let A= {1,1+d,14+2d,...,1+(k—1)d} and B = {1,1+d,1+2d, ..., 1+(I—1)d}.
Define C as in Theorem 3. Then C' = {2+id | i =1,...,k+1—3}. This example
shows that the lower bound in Theorem 3 is sharp for all k,] > 2. If £ = 1, the
correct lower bound is |B| —1=k+1—2.

4 Remarks

The results in this paper hold for addition in any field F, where p is equal
to the characteristic of F' if the characteristic is a prime, and p = oo if the
characteristic is zero.

Dias da Silva and Hamidoune [3] proved the generalization of the Erdds-
Heilbronn conjecture for h-fold sums: Let A > 2, and let b A denote the set of
all sums of h distinct elements of A. If A C Z/pZ and |A| = k, then

|h" A| > min(p, hk — h? +1).

This result can also be proved by the polynomial method, and we shall present
this and other results in a subsequent paper [1].

Nathanson [7] contains proofs of the Cauchy-Davenport theorem and some
of its generalizations, as well as a full exposition of the original Dias da Silva-
Hamidoune proof of the Erdés-Heilbronn conjecture for h-fold sums. Partial
results on the Erdés-Heilbronn conjecture had previously been obtained by Rick-
ert [9], Mansfield [6], Rodseth [10], Pyber [8], and Freiman, Low, and Pitman [5].
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