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Abstract

For a graph G, let a(G) denote the maximum size of a subset of vertices that induces

a forest. Suppose that G is connected with n vertices, e edges, and maximum degree

∆. Our results include:

(a) if ∆ ≤ 3, and G 6= K4, then a(G) ≥ n−e/4−1/4 and this is sharp for all permissible

e ≡ 3 (mod 4),

(b) if ∆ ≥ 3, then a(G) ≥ α(G) + (n− α(G))/(∆− 1)2.

Several problems remain open.

1 Introduction

For a (simple, undirected) graph G = (V,E), we say that an S ⊆ V is an acyclic set if the

induced subgraph G[S] is a forest. We let a(G) denote the maximum size of an acyclic set

in G. In [4], the minimum possible value of a(G) is determined, where G ranges over all
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graphs on n vertices and e edges, for every n and e. In particular, the results imply that if

the average degree of G is at most d ≥ 2, then a(G) ≥ 2n
d+1

. This is sharp whenever d + 1

divides n as shown by a disjoint union of cliques of order d + 1. For bipartite graphs, one

can do better, since trivially a(G) ≥ n/2. Recently, using probabilistic techniques, the first

author has shown that this trivial bound can be improved, but only slightly.

Theorem 1.1. [3] There exists an absolute positive constant b such that for every bipartite

graph G with n vertices and average degree at most d, where d ≥ 1,

a(G) ≥
(

1

2
+

1

ebd2

)
n.

Moreover, there exists an absolute constant b′ > 0 such that for every d ≥ 1 and all sufficiently

large n there exists a bipartite graph with n vertices and average degree at most d such that

a(G) ≤
(

1

2
+

1

eb′
√
d

)
n.

Theorem 1.1 was motivated by the following conjecture of Albertson and Haas [2], which

remains open.

Conjecture 1.2. If G is an n vertex planar bipartite graph, then a(G) ≥ 5n/8.

Conjecture 1.2, if true, is sharp as shown by the following example.

Example 1.3. The cube Q3 is the graph with V (Q3) = {v1, v
′
1, . . . , v4, v

′
4}, and edges

vivi+1, v
′
iv
′
i+1, viv

′
i, where 1 ≤ i ≤ 4 and subscripts are taken modulo 4. It is easy to see

that a(Q3) = 5.

In this paper, we prove results that refine Theorem 1.1 for sparse bipartite graphs, and

also apply to the larger class of triangle-free graphs. We also obtain bounds for a(G) in

terms of the independence number α(G) of G.

Given a graph G, let NG(v) or simply N(v) denote the set of neighbors of vertex v. For

sets S,A of vertices, N(S) =
⋃
v∈S N(v) and NA(S) = N(S) ∩ A. Let K̇4 denote the five

vertex graph obtained from K4 by subdividing an edge.

Definition 1.4. Let F(t, k) denote the family of connected graphs with maximum degree 3

consisting of t disjoint triangles and k disjoint copies of K̇4 such that the multigraph obtained

by contracting each triangle and each copy of K̇4 to a single vertex is a tree of order t + k.

Notice that if H1 and H2 are copies of K3 or K̇4, then G has at most one edge between

H1 and H2. Let F =
⋃
t,k F(t, k), where the union is taken over all nonnegative t, k with

t+ k > 0. (See the figure for an example of a graph in F(2, 3).)
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Figure: A graph in F(2, 3)

Theorem 1.5. Let G = (V,E) be a graph with maximum degree 3 and K4 6⊆ G. If exactly

c components of G are from F , then

a(G) ≥ |V | − |E|
4
− c

4
.

A graph G ∈ F(t, k) has n = 3t+5k vertices, e = 3t+7k+(t+k−1) = 4t+8k−1 edges,

and every acyclic set in G has size at most 2t + 3k. Thus a(G) ≤ 2t + 3k = n − e/4 − 1/4

and hence Theorem 1.5 is sharp for every member of F . Since every element in F contains

triangles, Theorem 1.5 and Example 1.3 immediately yield

Corollary 1.6. If G is an n vertex triangle-free graph with maximum degree 3, then a(G) ≥
5n/8 and this is sharp whenever n is divisible by 8.

As mentioned in the introduction, n vertex graphs with maximum degree ∆ always have

an acyclic set of size at least 2n/(∆ + 1). We observe that for triangle-free graphs the factor

2/(∆ + 1) above can be improved to Θ(log ∆/∆).

For bipartite graphs, we obtain better bounds through the following result that relates

a(G) to the independence number α(G) of G.

Theorem 1.7. Let G be a connected n vertex graph with maximum degree ∆ ≥ 3. Then

a(G) ≥ α(G) +
n− α(G)

(∆− 1)2
.

In section 2 we present a preliminary result to Theorem 1.5 that applies to triangle-free

graphs, and also exhibit some examples with no large acyclic sets. In section 3 we present

the proof of Theorem 1.5, in section 4 we prove Theorem 1.7, and in section 5 we summarize

our results.

A cycle of length k or k-cycle is the graph with vertices v1, . . . , vk and edges vivi+1, for

1 ≤ i ≤ k, where indices are taken modulo k. We simply write v1v2 . . . vk to denote a k-cycle.
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2 Triangle-free graphs

In this section we prove a special case of Theorem 1.5 that is independently interesting.

Lemma 2.1. If G is a triangle-free graph with n vertices and e edges, then a(G) ≥ n− e/4.

Proof. We suppose that G is a minimal counterexample with respect to the number of

vertices, and will obtain a contradiction. If G is not connected, then by minimality, we can

apply the result to each component. Hence we may assume that G is connected. If G has a

vertex v with deg(v) ≥ 4 or deg(v) = 1, then let G′ = G− v. Now G′ has a large acyclic set

S ′ ⊆ V (G′). In the first case, set S = S ′, and in the second case, set S = S ′ ∪ {v}. Then

S is an acyclic set in G of size at least n− e/4, a contradiction. If G is 2-regular, then G is

a cycle and a(G) = n− 1 ≥ n− e/4. If uv is an edge, and deg(u) = 2, deg(v) = 3, then let

G′ = G− u− v. By minimality, there is a large acyclic set S ′ ⊆ V (G′); we let S = S ′ ∪ {u}.
Then |S| ≥ (n− 2)− (e− 4)/4 + 1 = n− e/4. Hence we may assume that G is 3-regular.

Claim: For every pair uv, uv′ ∈ E(G), there exists a vertex w such that uvwv′ is a 4-cycle.

Proof of Claim: Let u′ be the other neighbor of u, and let G1 = G− u− u′ ∪ {vv′}. If G1

is triangle-free, then by minimality of G we obtain an acyclic set S1 ⊆ V (G1) of size at least

n − 2− (e− 4)/4. Then S = S1 ∪ {u} has size at least n − e/4. Furthermore, S is acyclic,

since any cycle in G[S] containing u must traverse the vertices v, u, v′ in this order, and this

would yield a cycle in G1[S1] (with the edges vu, uv′, replaced by vv′). This contradiction

implies that G1 contains a triangle of the form vwv′.

Consider a vertex w in G with neighbors x, y, z. If x, y, z have another common neighbor

w′, then let G2 = G−{w,w′, x, y, z}. By minimality, G2 has an acyclic set S2 of size at least

n− 5− (e− 9)/4. The set S = S2 ∪{w,w′, x} in G is acyclic and has size at least n− e/4, a

contradiction. Hence by the claim we may assume that there exist a, b, c, with a ↔ {x, y},
b ↔ {y, z}, and c ↔ {x, z}. Let G3 = G − {w, x, y, z, a, b, c}. By minimality, G3 has an

acyclic set S3 of size at least n− 7− (e− 12)/4. The set S = S3 ∪ {w, x, y, z} in G is acyclic

and has size at least n− e/4, a contradiction.

As mentioned earlier, Lemma 2.1 is sharp for e ≤ 3n/2 and e ≡ 0 (mod 12), as shown

by disjoint copies of Q3. For 4-regular graphs it gives a(G) ≥ n/2, but the best example we

can find has a(G) = 4n/7. A vertex expansion in a graph G is the replacement of a vertex

v ∈ V (G) by an independent set Q of new vertices, such that the neighborhood of each

vertex of Q is NG(v).

4



Example 2.2. Let G = (V,E) be the graph obtained from the 7-cycle v1 . . . v7 by expanding

each vertex to an independent set of size 2. Thus G is 4-regular with |V | = 14 and |E| = 28.

For 1 ≤ i ≤ 7, let Vi = {xi, yi} be the independent set obtained by expanding vi. Suppose

that S is an acyclic set in V , and let Si = S ∩ Vi. The crucial observation is that if |Si| = 2,

then |Si−1| + |Si+1| ≤ 1, where subscripts are taken modulo 7. If exactly three of the Si’s

have size two, then at least two other Sj’s must have size zero, giving |S| ≤ 8. If exactly two

of the Si’s have size two, then at at least one other Sj has size zero, giving |S| ≤ 8 again.

Thus a(G) ≤ (4/7)|V |, and in fact it is easy to see that equality holds.

For 5-regular graphs, Lemma 2.1 gives a(G) ≥ 3n/8, but the best example we can find

has a(G) = n/2.

Example 2.3. Let G = (V,E) be the graph with V = {1, . . . , 14} and all edges ij where

j − i = 1, 4, 7, 10, 13 (mod 14). Thus |V | = 14 and G is triangle-free and 5-regular. It can

be shown through a tedious case analysis (which we omit here) that every acyclic set S in

V has size at most seven, thus giving a(G) ≤ |V |/2. Since {1, 2, 4, 5, 7, 10, 13} is acyclic,

a(G) = |V |/2.

Remark 2.4. It is well-known (see [6, 5]) that there are triangle-free graphs on n vertices

with maximum degree ∆ and independence number at most O(n log ∆/∆). Since every

forest contains an independent set of at least half its size, these graphs also have no acyclic

set of size greater than O(n log ∆/∆). Moreover, this result is asymptotically sharp since in

[1, 7], it is proved that every triangle-free graph on n vertices and maximum degree ∆ has

an independent set of size at least Ω(n log ∆/∆).

3 Proof of Theorem 1.5

In this section we complete the proof of Theorem 1.5.

Proof of Theorem 1.5: We suppose that G is a minimal counterexample with respect

to the number of vertices, and will obtain a contradiction. If G is not connected, then by

minimality, we can apply the result to each component. Hence we may assume that G is

connected. We have already verified the theorem for graphs in F , so we may assume that

G 6∈ F and c = 0. Suppose that G contains a copy H of K̇4, and v is the vertex of degree

two in H. Since G 6∈ F , |NG(v)| = 3. Let G′ = G − H. By minimality of G we obtain a
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large acyclic set S ′ in G′. Note that G′ is connected, and G′ 6∈ F , since otherwise G ∈ F .

Form S by adding to S ′ any three vertices in H that do not create a triangle. Then

a(G) ≥ |S| = |S ′|+ 3 ≥ (n− 5)− e− 8

4
+ 3 = n− e

4
,

a contradiction. Hence we may assume that G is K̇4-free. If G is triangle-free, then Lemma

2.1 gives a contradiction, so we may assume that xyz is a triangle in G. Let T = {x, y, z}
and N = NG(T )− T .

Claim: G[N ] is a clique.

Proof of Claim: Suppose to the contrary that y′, z′ ∈ N with y ↔ y′, z ↔ z′ and y′ 6↔ z′.

Let deg(x) = 2. Then by minimality of G we obtain a large acyclic set S ′ in G′ = G − T .

Let S = S ′ ∪ {x, y}. Then

a(G) ≥ |S| = |S ′|+ 2 ≥ n− 3− e− 5

4
− c′

4
+ 2, (1)

where c′ is the number of components of G′ from F (note that c′ ≤ 2 since G is connected).

This yields the contradiction a(G) ≥ n− e/4 unless c′ = 2, but in this case G ∈ F which we

have already excluded. We may therefore assume that deg(x) = 3.

Form G1 from G − T by adding the edge y′z′ and let c1 be the number of components

in G1 from F . If H is a copy of K4 ⊆ G1, then H consists of y′, z′ and two other vertices

in G1. By minimality of G, the graph G − T − V (H) has an acyclic set of size at least

n − 7 − (e − 11)/4 − 1/4. We form S by adding to this set any five vertices that form an

acyclic set within V (H) ∪ T . It is easy to see that S ≥ n − e/4. This contradiction allows

us to assume that G1 is K4-free.

By minimality of G, there is a large acyclic set S1 in G1. Set S = S1 ∪ {y, z}. Since

y′z′ is an edge in G1, c1 < 3. The set S is acyclic, since a cycle in S would yield a cycle

in S1 (with y′yzz′ replaced by y′z′). If c1 ≤ 1, then by (1), with S ′ = S1 and c′ = c1, the

set S has size at least n − e/4, a contradiction. We may therefore assume that c1 = 2.

Let G′ = G − T . By minimality of G, there is a large acyclic set S ′ in G′. Let x′ be

the other neighbor of x. Since x′ and {y′, z′} lie in different components of G′, adding x, y

to S ′ yields an acyclic set S in G. Because G 6∈ F , we deduce that c′ ≤ 2, and hence

|S| ≥ |S ′|+ 2 ≥ n− 3− (e− 6)/4− 2/4 + 2 = n− e/4, a contradiction.

Because ∆(G) ≤ 3, we have |N | ≤ 3. If |N | = 1 and T has two vertices, say x and y,

with degree 2 and 3 respectively, then let G′ = G − T . By minimality of G we obtain an

acyclic set S ′ in G′ of size at least n−3−(e−4)/4. The set S = S ′∪{x, y} is acyclic and has
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size at least n − e/4, a contradiction. The remaining case when |N | = 1 is if all vertices of

T have degree 3. In this case, since G is connected, G = K4 which the hypothesis excludes.

If |N | = 2, and all vertices of T have degree three, then the claim implies that the

induced subgraph G[T ∪N ] forms a copy of K̇4 which we have already excluded. Hence we

may assume that deg(x) = 2. Then G′ = G− T has a large acyclic set S ′. Add x, y to S ′ to

form S. Because G′ is connected, c′ ≤ 1 and (1) yields the contradiction a(G) ≥ n− e/4.

If |N | = 3, then the claim implies that G consists of two disjoint triangles with a matching

of size three between them. In this case a(G) = 4 ≥ 6− 9/4, a contradiction.

4 From independent sets to forests

In a graph G with maximum degree ∆, we can obtain an acyclic set of size

α(G) +
n− α(G)

∆(∆− 1) + 1
(2)

by considering a maximum independent set I, and successively adding to it vertices whose

pairwise distance is at least three. The result of this section improves the factor ∆(∆−1)+1

in (2) to (∆− 1)2. For small values of ∆, this improvement is significant. Indeed, the result

applied to bipartite graphs when ∆ = 3 is sharp.

Proof of Theorem 1.7: Let B be an independent set in G = (V,E) with α(G) vertices,

and let A = V −B. We will iteratively construct a sequence a1, . . . , at of vertices in A with

the following properties:

N(ai) ∩ {ai+1, . . . , at} = ∅ and (3)

|N(ai) ∩ (∪tj=i+1N(aj)) ∩B| ≤ 1 for each i. (4)

Set S = {a1, . . . , at} ∪ B. We will show that either S has the required size, or we can

augment it by one to have the required size. By (3) any cycle C in G[S] alternates between

vertices in A and vertices in B. Let l be the smallest integer for which al is on C. By (4),

al has at most one neighbor from B that lies on C. Hence we conclude that S is acyclic.

Let D0 = ∅. We iteratively construct a sequence of sets D1, . . . , Dt, and put Ai =

D1 ∪ D2 ∪ . . . ∪ Di. Let R0 = B, and for i ≥ 1, let Ri = NB(Ai). Assume that we

have already constructed D0, . . . , Di for some i ≥ 0. If Ai = A, then let t = i, and stop.

Otherwise, choose ai+1 ∈ A − Ai such that ai+1 is adjacent to a vertex xi+1 ∈ Ai ∪ Ri

7



(such a vertex exists, since G is connected, and Ai 6= A). If NB(ai+1) ⊆ {xi+1}, then let

Zi+1 = NB(ai+1); otherwise choose zi+1 ∈ NB(ai+1)− {xi+1} so that, if possible, ai+1 is the

only common neighbor of xi+1 and zi+1, and put Zi+1 = NB(ai+1)− {zi+1}. Let

Di+1 = (NA(ai+1) ∪NA(Zi+1) ∪ {ai+1})− Ai.

The definition of Di+1 and ai+1 ensures that conditions (3) and (4) are satisfied.

Claim: For i = 0, |Di+1| ≤ (∆ − 1)2 + 1 and for i ≥ 1, |Di+1| ≤ (∆ − 1)2. Moreover, if

equality holds above for i ≥ 0, then there exists a w ∈ Di+1 − {ai+1} such that the vertices

w, ai+1 are not adjacent and have at most one common neighbor in B.

Proof of Claim: We only prove the case i ≥ 1, noting that the analysis for |D1| follows

similarly. Set k = |NB(ai+1)|. If k = 0, then |Di+1| ≤ ∆ − 1 + 1 < (∆ − 1)2, because

ai+1 is adjacent to xi+1 ∈ Ai. Thus we may assume that k ≥ 1. If Zi+1 = NB(ai+1), then

Zi+1 = NB(ai+1) = {xi+1}, k = 1, and

|Di+1| ≤ |NA(ai+1)− Ai|+ |NA(xi+1)− Ai| ≤ (∆− 1) + (∆− 1) ≤ (∆− 1)2,

since xi+1 is adjacent to ai+1 and also to a vertex in Ai. If equality holds, then pick w ∈
NA(xi+1)− Ai − {ai+1}; w has the required properties, since k = 1, and w 6↔ ai+1.

We may therefore assume that Zi+1 ( NB(ai+1). In this case,

|Di+1| ≤ |NA(ai+1)−Ai|+ |NB(Zi+1)−Ai|+1 ≤ (∆−k)+(k−1)(∆−1)−1+1 ≤ (∆−1)2,

because |Zi+1| ≤ k−1 and each vertex in Zi+1 is adjacent to at most ∆−1 vertices of A−Ai
other than ai+1. The term −1 arises because either xi+1 ∈ Ai, or xi+1 ∈ Zi+1 is adjacent to

a vertex in Ai. If equality holds, then k = ∆. This implies that NA(ai+1) = ∅ and xi+1 ∈ B.

Pick w ∈ NA(xi+1) − {ai+1}. By the conditions for equality, w and ai+1 have no common

neighbor in Zi+1. The choice of zi+1 implies that xi+1 is the only common neighbor of w and

ai+1 in all of B.

As indicated above by the choice of t, we continue this procedure till we have accounted

for all of G. By the claim, this yields

n− α(G) = |A| = At =
t∑
i=1

|Di| ≤ (∆− 1)2 + 1 + (t− 1)(∆− 1)2. (5)

Solving for t gives t ≥ |A|/(∆−1)2 unless equality holds everywhere in (5). But in this case,

consider the vertex w from the claim obtained when i = t − 1. We add w = at+1 to our
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acyclic set to augment it by one. The conditions for equality stated in the claim yield (3)

and (4) with t replaced by t+ 1. Hence {a1, . . . , at, at+1} ∪B is acyclic and of the required

size.

Corollary 4.1. Suppose that G is an n vertex bipartite graph with maximum degree ∆ ≥ 3.

Then

a(G) ≥
(

1

2
+

1

2(∆− 1)2

)
n (6)

and this is sharp for ∆ = 3, n ≡ 0 (mod 8).

Proof. Since α(G) ≥ n/2 when G is bipartite, (6) follows immediately from Theorem 1.7.

The cube Q3 shows that this is sharp for ∆ = 3.

We end this section by constructing n vertex ∆-regular bipartite graphs with a(G) ≤
n/2 +O(n/∆2).

Definition 4.2. For integers a, b ≥ 1, let Ga,b be the bipartite graph with parts X, Y each

of size ab, with X = {xi,j : 1 ≤ i ≤ a, 1 ≤ j ≤ b} and Y = {yi,j : 1 ≤ i ≤ a, 1 ≤ j ≤ b}.
Vertices xi,j and yi′,j′ are adjacent if and only if either i = i′ or j = j′. For 1 ≤ i ≤ a and

1 ≤ j ≤ b, let Ri = {xi,1, yi,1, . . . , xi,b, yi,b} and Cj = {x1,j, y1,j, . . . , xa,j, ya,j}. These are the

rows and columns of Ga,b.

Theorem 4.3. a(Ga,b) ≤ ab+ 1.

Proof. We proceed by induction on a+b. We may assume by symmetry that b ≥ a. If a = 1,

then Ga,b
∼= Kb,b for which the result trivially holds. This completes the cases a + b ≤ 3,

and we may therefore assume that a ≥ 2 and a + b ≥ 4. Consider a subgraph H of Ga,b

with ab + 2 vertices. If |V (H) ∩ Ri| ≤ b for some i, then let H ′ be the restriction of H to

Ga,b − Ri. Since |V (H ′)| ≥ ab + 2 − b = (a − 1)b + 2, and Ga,b − Ri
∼= Ga−1,b, we obtain a

cycle in H ′ by induction. Hence we conclude that |V (H)∩Ri| ≥ b+ 1 for all i, and similarly

that |V (H) ∩ Cj| ≥ a+ 1 for all j.

Let ri be the number of edges of H induced by V (H)∩Ri and cj be the number of edges

of H induced by V (H) ∩ Cj. It is easy to see that |V (H) ∩ Ri| ≥ b + 1 implies ri ≥ b, and

similarly that |V (H) ∩ Cj| ≥ a + 1 implies cj ≥ a. Call an edge vertical if it has the form

xl,myl,m for some l,m; if an edge is not vertical, call it diagonal. Let e = |E(H)| and let t be
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the number of vertical edges in H. If t ≥ a + 1, then two vertical edges from H lie in the

same row, and this results in a 4-cycle in H. Hence we may assume that t ≤ a.

Each vertical edge of H is in the induced subgraph of one row and of one column. Each

diagonal edge of H is in the induced subgraph of one row or one column, but not both.

These observations yield

ab+ ba ≤
∑
i

ri +
∑
j

cj = (e− t) + 2t.

Solving for e gives e ≥ 2ab − t ≥ 2ab − a ≥ ab + 2 = |V (H)|, which implies that H is not

acyclic.

Taking disjoint copies ofGb(∆+1)/2c,d(∆+1)/2e and disjoint copies ofK∆,∆ immediately yields

Corollary 4.4. For integers ∆, n, where b(∆ + 1)2/2c divides n, there exists an n vertex

∆-regular bipartite graph with a(G) = n/2 + n/(b(∆ + 1)2/2c). If 2∆ divides n, then there

exists an n vertex ∆-regular bipartite graph with a(G) = n/2 + n/(2∆).

Remark 4.5. The graphs Ga,b also provide our best constructions for 4-regular and 5-regular

bipartite graphs with no large acyclic sets. In particular, Theorem 4.3 immediately yields

a(G2,3) = 7 and a(G3,3) = 10.

5 Summary of Results

In this section, we summarize our results. To do this accurately, we first define some classes

of n vertex graphs. Let Gn,d denote the family of d-regular graphs, G−n,d denote the family

of graphs with maximum degree d. Let Tn,d denote the family of triangle-free d-regular

graphs, T −n,d denote the family of triangle-free graphs with maximum degree d. Let Bn,d
denote the family of bipartite d-regular graphs, B−n,d denote the family of bipartite graphs

with maximum degree d.

Given a finite family of graphs F , let a(F) denote the minimum of a(G) over all G ∈ F .

Considering vertex disjoint copies of graphs, one can easily see that

a(Gn1,d) + a(Gn2,d) ≥ a(Gn1+n2,d).

This, and the obvious lower bound a(G) ≥ n/d2 imply that the limit

γd := lim
n→∞

a(Gn,d)/n

10



exists and is not equal to zero (Fekete’s Lemma, see, e.g., [8]). The same is true for

γ−d := lim
n→∞

a(G−n,d)/n,

τd := lim
n→∞

a(Tn,d)/n, τ−d := lim
n→∞

a(T −n,d)/n,

βd := lim
n→∞

a(Bn,d)/n, β−d := lim
n→∞

a(B−n,d)/n.

Table of Results

d = 2 3 4 5 . . .

γd, γ
−
d

2
d+ 1

[4]

≥ 1
2

≥ 3
8

≥ Ω
(

log d
d

)
[1]

τd, τ−d
5
8

Lem. 2.1 Lem. 2.1

3
4

Lem. 2.1 ≤ 4
7

≤ 1
2

τ−d = Θ
(

log d
d

)
Ex. 1.3 Ex. 2.2 Ex. 2.3 Rem. 2.4

≥ 5
9

≥ 17
32

≥ 1
2

+
1

2(d− 1)2

βd, β−d Cor. 4.1 Cor. 4.1 Cor. 4.1

≤ 7
12

≤ 5
9

≤ 1
2

+
1

b(d+ 1)2/2c

Rem. 4.5 Rem. 4.5 Cor. 4.4
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