Large induced forests in sparse graphs

Noga Alon* Dhruv Mubayi’, Robin Thomas!

February 22, 2002

Abstract

For a graph G, let a(G) denote the maximum size of a subset of vertices that induces
a forest. Suppose that G is connected with n vertices, e edges, and maximum degree
A. Our results include:
(a)if A <3, and G # Ky, then a(G) > n—e/4—1/4 and this is sharp for all permissible
e =3 (mod 4),
(b) if A > 3, then a(G) > a(GQ) + (n — a(Q)) /(A — 1)2.

Several problems remain open.

1 Introduction

For a (simple, undirected) graph G = (V, E), we say that an S C V' is an acyclic set if the
induced subgraph G[S] is a forest. We let a(G) denote the maximum size of an acyclic set

in G. In [4], the minimum possible value of a(G) is determined, where G ranges over all
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graphs on n vertices and e edges, for every n and e. In particular, the results imply that if
the average degree of G is at most d > 2, then a(G) > %. This is sharp whenever d + 1
divides n as shown by a disjoint union of cliques of order d + 1. For bipartite graphs, one
can do better, since trivially a(G) > n/2. Recently, using probabilistic techniques, the first

author has shown that this trivial bound can be improved, but only slightly.

Theorem 1.1. [3] There exists an absolute positive constant b such that for every bipartite

graph G with n vertices and average degree at most d, where d > 1,
1 1

Moreover, there ezists an absolute constant b’ > 0 such that for every d > 1 and all sufficiently

large n there exists a bipartite graph with n vertices and average degree at most d such that

1 1

Theorem 1.1 was motivated by the following conjecture of Albertson and Haas [2], which

remains open.
Conjecture 1.2. If G is an n vertex planar bipartite graph, then a(G) > 5n/8.
Conjecture 1.2, if true, is sharp as shown by the following example.

Example 1.3. The cube Q3 is the graph with V(Q3) = {v1,v],... ,v4,v}}, and edges
ViVip1, Vv, 1, Vv, where 1 < ¢ < 4 and subscripts are taken modulo 4. It is easy to see

that a(Q3) = 5.

In this paper, we prove results that refine Theorem 1.1 for sparse bipartite graphs, and
also apply to the larger class of triangle-free graphs. We also obtain bounds for a(G) in
terms of the independence number o(G) of G.

Given a graph G, let Ng(v) or simply N(v) denote the set of neighbors of vertex v. For
sets S, A of vertices, N(S) = U,cq N(v) and N4(S) = N(S) N A. Let K, denote the five
vertex graph obtained from K, by subdividing an edge.

Definition 1.4. Let F(t, k) denote the family of connected graphs with mazimum degree 3
consisting of t disjoint triangles and k disjoint copies of K, such that the multigraph obtained
by contracting each triangle and each copy of Ky to a single vertex is a tree of order t + k.
Notice that if Hy and H are copies of Ky or Ky, then G has at most one edge between
Hy and Hy. Let F =, , F(t, k), where the union is taken over all nonnegative t,k with
t+k > 0. (See the figure for an example of a graph in F(2,3).)
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Figure: A graph in F(2,3)

Theorem 1.5. Let G = (V, E) be a graph with maximum degree 3 and Ky € G. If exactly
c components of G are from F, then
|E] ¢
4 4
A graph G € F(t, k) has n = 3t+ 5k vertices, e = 3t +7k+ (t+k—1) = 4t +8k — 1 edges,
and every acyclic set in G has size at most 2t + 3k. Thus a(G) <2t +3k=n—e/4—1/4

and hence Theorem 1.5 is sharp for every member of F. Since every element in F contains

a(G) = V] =

triangles, Theorem 1.5 and Example 1.3 immediately yield

Corollary 1.6. If G is an n vertex triangle-free graph with mazimum degree 3, then a(G) >

5n/8 and this is sharp whenever n is divisible by 8.

As mentioned in the introduction, n vertex graphs with maximum degree A always have
an acyclic set of size at least 2n/(A +1). We observe that for triangle-free graphs the factor
2/(A + 1) above can be improved to O(log A/A).

For bipartite graphs, we obtain better bounds through the following result that relates
a(G) to the independence number a(G) of G.

Theorem 1.7. Let G be a connected n vertex graph with maximum degree A > 3. Then
n—a(G
a(G) > a(@) + r(l)ﬁ.

In section 2 we present a preliminary result to Theorem 1.5 that applies to triangle-free
graphs, and also exhibit some examples with no large acyclic sets. In section 3 we present
the proof of Theorem 1.5, in section 4 we prove Theorem 1.7, and in section 5 we summarize
our results.

A cycle of length k or k-cycle is the graph with vertices vy, ... , v, and edges v;v;,1, for

1 <1 < k, where indices are taken modulo k. We simply write vyvs . .. v to denote a k-cycle.
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2 Triangle-free graphs
In this section we prove a special case of Theorem 1.5 that is independently interesting.

Lemma 2.1. If G is a triangle-free graph with n vertices and e edges, then a(G) > n—e/4.

Proof. We suppose that G is a minimal counterexample with respect to the number of
vertices, and will obtain a contradiction. If G is not connected, then by minimality, we can
apply the result to each component. Hence we may assume that G is connected. If G has a
vertex v with deg(v) > 4 or deg(v) = 1, then let G’ = G —v. Now G’ has a large acyclic set
S" C V(G'). In the first case, set S = 5’, and in the second case, set S = S’ U {v}. Then
S is an acyclic set in G of size at least n — e/4, a contradiction. If G is 2-regular, then G is
a cycle and a(G) =n—1>n—e/4. If uv is an edge, and deg(u) = 2,deg(v) = 3, then let
G’ = G — u —v. By minimality, there is a large acyclic set S’ C V(G'); we let S = 5" U {u}.
Then |S| > (n—2) — (e —4)/4+ 1 =n — e/4. Hence we may assume that G is 3-regular.

Claim: For every pair uv,uv’ € E(G), there exists a vertex w such that uwvwv’ is a 4-cycle.
Proof of Claim: Let u' be the other neighbor of u, and let G; = G —u — v/ U {vv'}. If G4
is triangle-free, then by minimality of G we obtain an acyclic set S; C V(Gy) of size at least
n—2—(e—4)/4. Then S = Sy U {u} has size at least n — e/4. Furthermore, S is acyclic,
since any cycle in G[S] containing v must traverse the vertices v, u, v’ in this order, and this
would yield a cycle in G1[51] (with the edges vu, uv’, replaced by vv’). This contradiction

implies that G; contains a triangle of the form vwv’. O

Consider a vertex w in G with neighbors z,y, z. If x,y, 2 have another common neighbor
w', then let Gy = G — {w,w’, z,y, z}. By minimality, G5 has an acyclic set Sy of size at least
n—5—(e—9)/4. The set S = S, U{w,w’,z} in G is acyclic and has size at least n —e/4, a
contradiction. Hence by the claim we may assume that there exist a,b, ¢, with a < {z,y},
b~ {y,z}, and ¢ < {z,z}. Let G5 = G — {w,z,y,z,a,b,c}. By minimality, G3 has an
acyclic set Sz of size at least n — 7 — (e — 12)/4. The set S = S3U{w, z,y, 2} in G is acyclic

and has size at least n — e/4, a contradiction. O]

As mentioned earlier, Lemma 2.1 is sharp for e < 3n/2 and e = 0 (mod 12), as shown
by disjoint copies of Q3. For 4-regular graphs it gives a(G) > n/2, but the best example we
can find has a(G) = 4n/7. A wvertex expansion in a graph G is the replacement of a vertex
v € V(G) by an independent set @) of new vertices, such that the neighborhood of each
vertex of @ is Ng(v).



Example 2.2. Let G = (V, E) be the graph obtained from the 7-cycle v; ... v; by expanding
each vertex to an independent set of size 2. Thus G is 4-regular with |V| = 14 and |E| = 28.
For 1 <i <7, let V; = {x;,y;} be the independent set obtained by expanding v;. Suppose
that S is an acyclic set in V, and let S; = SNV,. The crucial observation is that if |S;| = 2,
then |S;_1| + |Sit1] < 1, where subscripts are taken modulo 7. If exactly three of the S;’s
have size two, then at least two other S;’s must have size zero, giving |S| < 8. If exactly two
of the S;’s have size two, then at at least one other S; has size zero, giving |S| < 8 again.
Thus a(G) < (4/7)|V], and in fact it is easy to see that equality holds. O

For 5-regular graphs, Lemma 2.1 gives a(G) > 3n/8, but the best example we can find
has a(G) = n/2.

Example 2.3. Let G = (V, E) be the graph with V' = {1,... 14} and all edges ij where
j—1i=1,4,7,10,13 (mod 14). Thus |V| = 14 and G is triangle-free and 5-regular. It can
be shown through a tedious case analysis (which we omit here) that every acyclic set S in
V' has size at most seven, thus giving a(G) < |V|/2. Since {1,2,4,5,7,10,13} is acyclic,
a(G) = |V]/2. O

Remark 2.4. It is well-known (see [6, 5]) that there are triangle-free graphs on n vertices
with maximum degree A and independence number at most O(nlog A/A). Since every
forest contains an independent set of at least half its size, these graphs also have no acyclic
set of size greater than O(nlog A/A). Moreover, this result is asymptotically sharp since in
[1, 7], it is proved that every triangle-free graph on n vertices and maximum degree A has

an independent set of size at least Q(nlog A/A).

3 Proof of Theorem 1.5

In this section we complete the proof of Theorem 1.5.

Proof of Theorem 1.5: We suppose that G is a minimal counterexample with respect
to the number of vertices, and will obtain a contradiction. If G is not connected, then by
minimality, we can apply the result to each component. Hence we may assume that G is
connected. We have already verified the theorem for graphs in F, so we may assume that
G ¢ F and ¢ = 0. Suppose that G contains a copy H of Ky, and v is the vertex of degree
two in H. Since G € F, |Ng(v)| = 3. Let G’ = G — H. By minimality of G we obtain a



large acyclic set S” in G'. Note that G’ is connected, and G' € F, since otherwise G € F.
Form S by adding to S” any three vertices in H that do not create a triangle. Then

W) > |5 =|5+8> (n—5) - 43=n-",

a contradiction. Hence we may assume that G is Ky-free. If G is triangle-free, then Lemma

2.1 gives a contradiction, so we may assume that zyz is a triangle in G. Let T = {x,y, z}
and N = Ng(T) —T.

Claim: G[N] is a clique.

Proof of Claim: Suppose to the contrary that ¢/, 2’ € N with y < ¢/, 2 < 2/ and ¢/ > 2'.
Let deg(x) = 2. Then by minimality of G we obtain a large acyclic set S’ in G’ = G —T.
Let S = 5"U{x,y}. Then

e—5

a(G) > 1S =1|514+2>n—-3-

where ¢ is the number of components of G’ from F (note that ¢ < 2 since G is connected).
This yields the contradiction a(G) > n —e/4 unless ¢ = 2, but in this case G € F which we
have already excluded. We may therefore assume that deg(z) = 3.

Form G, from G — T by adding the edge 'z’ and let ¢; be the number of components
in Gy from F. If H is a copy of Ky C (1, then H consists of ¢/, 2z’ and two other vertices
in G;. By minimality of G, the graph G — T — V(H) has an acyclic set of size at least
n—7—(e—11)/4 —1/4. We form S by adding to this set any five vertices that form an
acyclic set within V(H) U T. It is easy to see that S > n — e/4. This contradiction allows
us to assume that G is Ky-free.

By minimality of G, there is a large acyclic set Sy in G;. Set S = S; U {y, z}. Since
y'Z is an edge in G1, ¢; < 3. The set S is acyclic, since a cycle in S would yield a cycle
in Sy (with y'yzz’ replaced by y'2’). If ¢; < 1, then by (1), with S’ = S; and ¢ = ¢4, the
set S has size at least n — e/4, a contradiction. We may therefore assume that ¢; = 2.
Let G = G — T. By minimality of G, there is a large acyclic set S” in G'. Let 2’ be
the other neighbor of x. Since 2’ and {y/, 2’} lie in different components of G’, adding z,y
to S’ yields an acyclic set S in G. Because G ¢ F, we deduce that ¢ < 2, and hence
S| > |9|+2>n—-3—(e—6)/4—2/4+2=mn—e/4, a contradiction. O

Because A(G) < 3, we have |[N| < 3. If |[N| =1 and T has two vertices, say = and v,
with degree 2 and 3 respectively, then let G’ = G — T. By minimality of G we obtain an
acyclic set S" in G’ of size at least n —3—(e—4)/4. The set S = S’U{x,y} is acyclic and has
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size at least n — e/4, a contradiction. The remaining case when |N| = 1 is if all vertices of
T have degree 3. In this case, since G is connected, G = K4 which the hypothesis excludes.

If [N| = 2, and all vertices of T" have degree three, then the claim implies that the
induced subgraph G[T"U N] forms a copy of K, which we have already excluded. Hence we
may assume that deg(x) = 2. Then G’ = G — T has a large acyclic set S’. Add z,y to S’ to
form S. Because G’ is connected, ¢ < 1 and (1) yields the contradiction a(G) > n — e/4.

If IN| = 3, then the claim implies that G consists of two disjoint triangles with a matching
of size three between them. In this case a(G) =4 > 6 — 9/4, a contradiction. O

4 From independent sets to forests

In a graph G with maximum degree A, we can obtain an acyclic set of size

n — a(G)

a(G) + m (2)

by considering a maximum independent set I, and successively adding to it vertices whose
pairwise distance is at least three. The result of this section improves the factor A(A—1)+1
in (2) to (A —1)2. For small values of A, this improvement is significant. Indeed, the result

applied to bipartite graphs when A = 3 is sharp.

Proof of Theorem 1.7: Let B be an independent set in G = (V, E) with «(G) vertices,
and let A =V — B. We will iteratively construct a sequence ay, ... ,a; of vertices in A with

the following properties:

N(a;) N{ais1, .. aiy =10 and (3)
|N(a;) N (Ui N(a;)) N Bl < 1 for each 1. (4)
Set S = {ay,...,a;} UB. We will show that either S has the required size, or we can

augment it by one to have the required size. By (3) any cycle C' in G[S] alternates between
vertices in A and vertices in B. Let [ be the smallest integer for which a; is on C. By (4),
a; has at most one neighbor from B that lies on C. Hence we conclude that S is acyclic.
Let Dy = (0. We iteratively construct a sequence of sets Dy,...,D;, and put A; =
DiUDyU...UD;. Let Ry = B, and for i > 1, let R; = Np(A;). Assume that we
have already constructed Dy, ..., D; for some ¢ > 0. If A; = A, then let ¢ = i, and stop.

Otherwise, choose a;,; € A — A; such that a;;, is adjacent to a vertex x;1; € A; U R;
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(such a vertex exists, since G is connected, and A; # A). If Ng(ai11) € {41}, then let
Zit1 = Np(a;y1); otherwise choose z;11 € Np(a;11) — {41} so that, if possible, a;,; is the

only common neighbor of ;1 and 2,41, and put Z; 11 = Ng(a;1) — {zi11}. Let
Dip1 = (Na(aiz1) U Na(Zig1) U{aip1}) — As

The definition of D,y and a;;1 ensures that conditions (3) and (4) are satisfied.

Claim: For i = 0, |Dj1] < (A =12+ 1 and for i > 1, |D;14| < (A —1)% Moreover, if
equality holds above for i > 0, then there exists a w € D;1 — {a;41} such that the vertices
w, a;+q are not adjacent and have at most one common neighbor in B.

Proof of Claim: We only prove the case ¢ > 1, noting that the analysis for |D;| follows
similarly. Set k& = |Np(a;y1)]. If & = 0, then |D;y1| < A =141 < (A — 1)2, because
a;+1 is adjacent to x;41 € A;. Thus we may assume that k& > 1. If Z;.; = Np(a;11), then
Zit1 = Np(ajp1) = {zi1}, k=1, and

D] < INa(@is1) = Ail + [Na(@ivn) — Al < (A=1)+ (A =1) < (A-1)%,

since x;,1 is adjacent to a;y; and also to a vertex in A;. If equality holds, then pick w €
Na(zis1) — A; — {a;11}; w has the required properties, since k = 1, and w + a;41.

We may therefore assume that Z; 11 C Np(a;51). In this case,
1Disa| < [Na(aipr) = Ail +[Np(Zig1) = Al +1 < (A=k)+(k=1)(A=1) = 1+1 < (A=1)%,

because |Z; 11| < k—1 and each vertex in Z;,; is adjacent to at most A —1 vertices of A— A;
other than a;;;. The term —1 arises because either x;,, € A;, or x;,1 € Z;; is adjacent to
a vertex in A;. If equality holds, then k = A. This implies that N4(a;y1) = 0 and ;.1 € B.
Pick w € Ny(ziy1) — {ai+1}. By the conditions for equality, w and a;;; have no common
neighbor in Z;, ;. The choice of z;,; implies that x;,; is the only common neighbor of w and
a;y1 in all of B. 0

As indicated above by the choice of ¢, we continue this procedure till we have accounted
for all of G. By the claim, this yields

n—a(G) = |A| _At_iw <S(A—1)2+1+(t—1)(A—1)2 (5)

Solving for ¢ gives t > |A|/(A —1)? unless equality holds everywhere in (5). But in this case,

consider the vertex w from the claim obtained when i = ¢t — 1. We add w = a;41 to our
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acyclic set to augment it by one. The conditions for equality stated in the claim yield (3)
and (4) with ¢ replaced by t + 1. Hence {aq, ... ,as, a;41} U B is acyclic and of the required

size. ]

Corollary 4.1. Suppose that G is an n vertex bipartite graph with maximum degree A > 3.
Then

1 1
>4 — =
a(G) > <2+2<A_1>2>n (6)
and this is sharp for A =3,n =0 (mod 8).

Proof. Since o(G) > n/2 when G is bipartite, (6) follows immediately from Theorem 1.7.
The cube )3 shows that this is sharp for A = 3. O]

We end this section by constructing n vertex A-regular bipartite graphs with a(G) <
n/2 + O(n/A?%).

Definition 4.2. For integers a,b > 1, let G, be the bipartite graph with parts X,Y each
of size ab, with X = {x;; : 1 <1 <a,1<j<blandy ={y;; :1<i<al<j<b}
Vertices x;; and yy j are adjacent if and only if either i =i’ or j = j'. For 1 <i < a and
1<j<b, let Ry ={xi1,Yin, - Tin,Yin} and C; ={x1;, Y14, sTaj Ya;}- These are the

rows and columns of Ggp.

Theorem 4.3. a(G,;) < ab+ 1.

Proof. We proceed by induction on a+b. We may assume by symmetry that b > a. If a = 1,
then G, = Ky for which the result trivially holds. This completes the cases a + b < 3,
and we may therefore assume that ¢ > 2 and a + b > 4. Consider a subgraph H of G,
with ab + 2 vertices. If |V(H) N R;| < b for some ¢, then let H' be the restriction of H to
Gap — R;. Since |[V(H')| > ab+2—b= (a—1)b+ 2, and G, — R; = G4_1,, we obtain a
cycle in H' by induction. Hence we conclude that |V(H)N R;| > b+ 1 for all ¢, and similarly
that [V(H) N Cj| > a+1 for all j.

Let r; be the number of edges of H induced by V(H) N R; and ¢; be the number of edges
of H induced by V(H) N C;. It is easy to see that |V (H) N R;| > b+ 1 implies r; > b, and
similarly that [V (H) N C;| > a + 1 implies ¢; > a. Call an edge vertical if it has the form

TumYim for some [, m; if an edge is not vertical, call it diagonal. Let e = |E(H)| and let ¢ be



the number of vertical edges in H. If ¢ > a + 1, then two vertical edges from H lie in the
same row, and this results in a 4-cycle in H. Hence we may assume that ¢t < a.

Each vertical edge of H is in the induced subgraph of one row and of one column. Each
diagonal edge of H is in the induced subgraph of one row or one column, but not both.

These observations yield

ab+ba§ZTi+ch:(e—t)—l—2t.
i J

Solving for e gives e > 2ab —t > 2ab — a > ab+ 2 = |V(H)|, which implies that H is not
acyclic. u

Taking disjoint copies of G'|(a41)/2),/(a+1)/2] and disjoint copies of Ka A immediately yields

Corollary 4.4. For integers A,n, where | (A + 1)?/2| divides n, there erists an n vertex
A-regular bipartite graph with o(G) = n/2 +n/([(A + 1)?/2]). If 2A divides n, then there
exists an n vertex A-reqular bipartite graph with a(G) = n/2 4+ n/(2A).

Remark 4.5. The graphs G, also provide our best constructions for 4-reqular and 5-reqular

bipartite graphs with no large acyclic sets. In particular, Theorem 4.3 immediately yields

G(G273) =7 and CL(G373) = 10.

5 Summary of Results

In this section, we summarize our results. To do this accurately, we first define some classes
of n vertex graphs. Let G, denote the family of d-regular graphs, G, , denote the family
of graphs with maximum degree d. Let 7, , denote the family of triangle-free d-regular
graphs, 7., denote the family of triangle-free graphs with maximum degree d. Let B, 4
denote the family of bipartite d-regular graphs, B, ,; denote the family of bipartite graphs
with maximum degree d.

Given a finite family of graphs F, let a(F) denote the minimum of a(G) over all G € F.

Considering vertex disjoint copies of graphs, one can easily see that

a(gnhd) + a(gm,d) > a(gn1+n2,d)'

This, and the obvious lower bound a(G) > n/d? imply that the limit

Yo := lim a(G,q)/n

n—oo
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exists and is not equal to zero (Fekete’s Lemma, see, e.g., [8]). The same is true for

dei = lim CL(g;d)/n?

n—oo

7q = lim a(Zp4)/n, 7, = lim (7 ,)/n,
Bq = lim a(B,.q)/n, By = lim a(B;d)/TL-

Table of Results

d= 2 3 4 )
_ 2
Yds Vg d—-}-l [4]
1 3 logd
> — > — >Q 1
et o)
_ 5
Td> Tg 3 Lem. 2.1 | Lem. 2.1
3 4 1 _ logd
Ex. 1.3 Ex. 2.2 Ex. 2.3 Rem. 2.4
S ) S 17 < 1 n 1
-9 - 32 — 2 2(d-1)
Ba, By Cor. 4.1 | Cor. 4.1 Cor. 4.1
< 7 < 5 < 1 . 1
12 -9 — 2 [(d+1)%/2]
Rem. 4.5 | Rem. 4.5 Cor. 4.4
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