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Abstract

We provide efficient constructions and tight bounds for shared memory systems accessed by n pro-
cesses, up to t of which may exhibit Byzantine failures, in a model previously explored by Malkhi et
al. [MMRT03]. We show that sticky bits are universal in the Byzantine failure model for n ≥ 3t + 1, an
improvement over the previous result requiring n ≥ (2t + 1)(t + 1). Our result follows from a new strong
consensus construction that uses sticky bits and tolerates t Byzantine failures among n processes for any
n ≥ 3t + 1, the best possible bound on n for strong consensus. We also present tight bounds on the
efficiency of implementations of strong consensus objects from sticky bits and similar primitive objects.

1 Introduction

Although Byzantine fault tolerance in message-passing systems has been extensively investigated, it was only
recently that Malkhi et al. initiated the study of Byzantine fault tolerance in asynchronous shared memory
systems [MMRT03]. Their work establishes a formal model and shows how the use of access control lists
(ACLs) can constrain Byzantine behavior and permit reliable distributed computation. They investigate
universal objects, which can be used to implement any shared object. Specifically, they show that sticky
bits, a simple shared memory primitive long known to be universal in the crash failure model [Plo89], are
also universal in the Byzantine failure model, provided that n ≥ (2t + 1)(t + 1), where n is the number
of processes and t bounds the number of processes that may fail (exhibiting unconstrained, or Byzantine,
behavior). One of the main results of this paper is to strengthen their result, showing that sticky bits are
universal in the Byzantine failure model for any n ≥ 3t + 1.

The universality results of [MMRT03] first use constructions from sticky bits to build strong consensus
objects, then use strong consensus objects in an explicit universal construction of an arbitrary shared object.
(Definitions of sticky bits, weak and strong consensus, and other objects mentioned in this introduction are
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provided in Section 2.) The bound n ≥ (2t+1)(t+1) follows from the construction in the first step, building
strong consensus from sticky bits. In this paper, we present a novel construction of strong consensus from
sticky bits for any n ≥ 3t + 1. The consequence for universality is immediate: “Constructions of strong
consensus from sticky bits for larger values of t would imply a more resilient universality result.” [MMRT03].
Malkhi et al. demonstrate that strong consensus objects can only exist if n ≥ 3t+1, so our result is the best
possible unless a different universal construction is used. Beyond strengthening the universality result for
sticky bits, we present tight bounds on the efficiency of implementations of strong consensus objects from
sticky bits and similar “potentially powerful” shared objects. (Potentially powerful objects include sticky
bits that can be set by more than one process, but exclude registers and single-writer sticky bits. Formally,
potentially powerful operations are those other than wait-free reads and writes.)

In Section 2, we review the model and definitions. Section 3 presents a general protocol schema that
can be used to implement strong consensus from sticky bits. Instantiated separately for n = 3t + 1 and
n = (t + 1)2, the schema results in two strong consensus algorithms, which use

(
2t+1

t

)
and t + 1 sticky bits,

correspondingly. The contrast in efficiency of these constructions is striking: exponentially many potentially
powerful objects for n = 3t + 1 and just t + 1 for n = (t + 1)2. We then modify the latter protocol to show
that t sticky bits are sufficient, provided n ≥ t2 + 5t + 1. Surprisingly, this algorithm works despite the fact
that all of the t potentially powerful shared objects could be written by t Byzantine processes.

In Section 4, we demonstrate bounds and tradeoffs among n, t, and the number and type of objects used.
We show that the protocols of Section 3 are essentially optimal in the number of potentially powerful shared
objects used. In Section 4.1, we present a general lower bound that constrains the types of potentially
powerful shared objects and associated access control lists required to implement even weak consensus.
Sections 4.2 and 4.3 investigate the tradeoff on the number of potentially powerful shared objects that are
necessary and sufficient for constructing strong consensus objects as n increases relative to t. The sufficiency
results are constructive, providing explicit instantiations of the protocol schema of Section 3.

1.1 Summary of results

To summarize, the main contributions of this paper are the following:

• We present a strong consensus protocol that can tolerate t Byzantine failures (and therefore a univer-
sality result) from sticky bits, for n ≥ 3t + 1.

• We present a strong consensus protocol that can tolerate t Byzantine failures using only t potentially
powerful shared objects. (Surprising since t Byzantine processes can access all the potentially powerful
shared objects.)

• We show that at least t shared objects (such as sticky bits) must be used in strong consensus protocols
that can tolerate t Byzantine failures.

• We show that any weak consensus protocol that tolerates t crash failures must use at least one object
on which at least t + 1 processes can invoke potentially powerful operations.

• We demonstrate a tight tradeoff characterizing the number—as a function of n and t—of objects
taken from a certain class of potentially powerful shared object that is needed to implement strong
consensus. Specifically, we show that the number of potentially powerful shared objects needed to
implement strong consensus is essentially t · 2Θ(t2/n).

• As a consequence of the tradeoff, we obtain a polynomial-time protocol implementing strong consensus
from sticky bits for n = O(t2/ log t), an improvement over the previous n = Ω(t2) for polynomial-time
strong consensus implementations from sticky bits.
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1.2 Related work

The paper was inspired by the work done in [MMRT03], which includes the first study of the power of objects
shared by Byzantine process. We have already discussed above many of the results that have appeared in
[MMRT03].

An operation is wait-free if it is guaranteed to return within a finite number of steps. The power of
various shared objects has been studied extensively in shared memory environments where processes may
fail benignly and every operation is wait-free. Objects that can be used together with atomic registers to
build wait-free implementations of any other object are called universal objects. Previous work on shared
objects provided methods, called universal constructions, to transform sequential specifications of arbitrary
shared objects into wait-free concurrent implementations that use universal objects [Her91, Plo89, JT92]. In
particular, Herlihy proved that consensus objects are universal [Her91]. Implementing consensus with sticky
bits, Plotkin then showed that sticky bits are universal [Plo89]. Herlihy also classified shared objects by
their consensus number: that is, the maximum number of processes that can reach consensus using multiple
instances of the object and read/write registers [Her91].

Suppose that at some point in a computation a shared register is set to some unexpected value. There
are two complementary ways to explain how this may happen. One is to assume that the register’s value was
set by a Byzantine process, as may happen in our model. The other is to assume that the processes may be
correct, but that the register itself is faulty. The subject of memory failures (as opposed to process failures)
has been investigated in several papers [AGMT95, JCT98]. These papers assume any number of process
crash failures, but bound the number of faulty objects, whereas we bound the number of (Byzantine) faulty
processes, but each might sabotage all the objects to which it has access.

Attie investigates the power of shared objects accessed by Byzantine processes for achieving wait-free
Byzantine consensus. He proves that strong consensus is impossible to achieve using objects that can be
reset back to their initial setting [Att00].

The new consensus algorithms presented in this paper are based on an idea of Berman and Garay [BG89,
Mis89] for performing consensus in the message passing model. The proof of one of our main impossibility
results (i.e., the ACL Theorem) is inspired by proofs and techniques presented in [FLP85, LA87]; the result
itself is a generalization of a result by Dwork, Herlihy, and Waarts [DHW97].

Many experimental and commercial processors provide direct support for shared memory abstractions,
and increasing attention is being paid to implementing shared memory primitives and concurrent data
structures either in hardware or in software [Boe04, DHLM04, Lea04, Mic04, MS04]. Our result relates
to work on message-passing systems that emulate shared memory abstractions tolerant of Byzantine fail-
ures [PG89, SE+92, Rei96, KMM98, CL99, MR00]; these systems guarantee the correctness of the emulated
shared objects themselves, the question is what power do these objects provide to the correct processes that
use them, in the face of corrupt processes accessing them.

2 Model and definitions

The model of computation we consider was introduced by Malkhi et al., and parts of this section are adapted
from [MMRT03]. This model consists of an asynchronous collection of n processes, denoted p1, . . . , pn, that
communicate via shared objects. Wait-free shared memory fault models assume no bound on the number
of potentially faulty processes—each operation by a process p on a shared object must terminate, regardless
of the concurrent actions of other processes. Following [MMRT03], this model differs in two ways: we
make the more pessimistic assumption that process failures are Byzantine, and we make the more optimistic
assumption that the number of failures is bounded by t, where t is less than the total number n of processes.
In any run any process may be either correct or faulty. Correct processes are constrained to obey their
specifications. A faulty processes can either crash or behave in a Byzantine way. A process that follows its
protocol up to a certain point and then stops sending messages or stops accessing shared objects is called
a crashed process or a crash failure. A process that deviates from its protocol either by crashing or by
performing incorrect operations is called a Byzantine process or a Byzantine failure. We generally use t to
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denote the maximum number of faulty processes. Whenever we discuss faulty processes we identify the type
of failure assumed.

2.1 Shared objects with access control lists

Each shared object presents a set of operations. For example, x.op denotes operation op on object x. For
each such operation x.op on x, there is an associated access control list, denoted ACL(x.op), which is the
set of processes allowed to invoke that operation. Each operation execution begins with an invocation by a
process in the operation’s ACL, and remains pending until a response is received by the invoking process.
The ACLs for two different operations on the same object can differ, as can the ACLs for the same operation
on two different objects. The ACLs for an object do not change. For any operation x.op, we say that x is
k-op if |ACL(x.op)| = k. A process not in the ACL for x.op cannot invoke x.op, regardless of whether the
process is correct or Byzantine (faulty). That is, a (correct or faulty) process cannot access an object in any
way except via the operations for which it appears in the associated ACLs. Byzantine faulty processes can,
for example, write different values than their specifications suggest, or refuse to invoke an operation they
are supposed to invoke, but they remain constrained against invoking operations for which they are not in
the ACL.

Many abstract objects support read operations: operations that return information about the state of
the object, without constraining its future behavior (see [Her91]). In this paper, we assume the primitive
objects (registers and sticky bits) support wait-free read operations by all processes, and focus on the ACLs
for non-read operations. Atomic registers (and some other abstract objects) are historyless [FHS98] in that
they support only operations that do not change the register value, and operations such as wait-free write()
operations, that constrain future object behavior independently of the state in which they are invoked. These
operations have long been known to be weak synchronization primitives [LA87, Her91].

We define an operation to be potentially powerful if it is neither a wait-free read nor a wait-free write()
operation, and for an object (or object type) x, we define ACLpow(x) to be the union of ACL(x.op) for all
potentially powerful operations x.op of x. Moreover, we call an object (or object type) x potentially powerful if
ACLpow(x) ≥ 2. That is, potentially powerful objects are those that support potentially powerful operations
by at least two different processes. Thus, neither registers nor sticky bits (defined below) writable by only one
process are potentially powerful, while sticky bits writable by more than one process are potentially powerful.
(Potentially powerful operations and objects such as snapshot or collect are implementable from registers
yet are too weak to implement consensus. Hence we use the more accurate terminology of “potentially
powerful operations and objects”, instead of the shorter but misleading “powerful operations and objects”
used in [MRTW02].) Our lower bounds indicate the number of potentially powerful objects required to
implement weak and strong consensus. Whether such objects are sufficient will depend on their specific
operation semantics.

2.2 Object definitions

Next, we define some of the types of object used in this paper.

Atomic registers: An atomic register x is an object with two operations: x.read and x.write(v) where
v 6= ⊥. An x.read that occurs before the first x.write() returns ⊥. An x.read that occurs after an
x.write() returns the value written in the last preceding x.write() operation.

Sticky bits: A sticky bit x is an object with two operations: x.read and x.set(v) where v ∈ {0, 1}. An x.read
that occurs before the first x.set() returns ⊥. An x.read that occurs after an x.set() returns the value
written in the first x.set() operation. We will be concerned with wait-free sticky bits. (To highlight
the specific semantics of the x.set() operation and to distinguish it from the write() of atomic registers,
we depart from previous work [Plo89, MMRT03], which uses write() to denote both operations.)

Weak consensus objects: [MMRT03] A weak (binary) consensus object x is an object with one operation:
x.propose(v), where v ∈ {0, 1}, satisfying: (1) In any run, the x.propose() operation returns the same
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value, called the consensus value, to every correct process that invokes it. (2) In any finite run in which
all participating processes are correct (no Byzantine failures), if the consensus value is v, then some
process invoked x.propose(v).

Strong consensus objects: [MMRT03] A strong (binary) consensus object x strengthens the second condition
above to read: (2) If the consensus value is v, then some correct process invoked x.propose(v).1

In our protocols, we use both multi-writer and single-writer sticky bits. In the Byzantine setting, a single-
writer sticky bit provides stronger properties than a single-writer one-bit register, in that a Byzantine writer
cannot cause different processes to read different non-⊥-values from the same sticky bit. Notice also that a
weak consensus object can be trivially implemented from a single sticky bit, and that in the crash-failure
only case, weak consensus and strong consensus are identical.

2.3 Fault tolerance

It is shown in [MMRT03] that strong consensus objects tolerating t Byzantine failures do not exist when
n ≤ 3t, and do exist when n ≥ (2t + 1)(t + 1). In this paper, we close this gap, showing that strong
consensus objects tolerating t Byzantine failures exist whenever n ≥ 3t + 1. (Technically, this means that a
“strong consensus object” is one that provides the strong consensus property when n and t have the specified
relationship, and has arbitrary behavior otherwise.)

As indicated in [MMRT03], strong consensus objects have inherently nonsequential runs: the additional
condition, using redundancy to mask failures, requires that at least t + 1 processes invoke x.propose() before
any correct process returns from this operation. However, we require that if sufficiently many steps by correct
processes are taken, then operations should complete. Specifically, for any operation x.op, we say that:

• Operation x.op can tolerate t failures if x.op, when executed by a correct process, eventually completes
in any run ρ in which at least n− t correct processes invoke x.op.

• Operation x.op is t-resilient if x.op, when executed by a correct process, eventually completes in any
run in which each of at least n− t correct processes infinitely often has a pending invocation of x.op.

We next define fault-tolerant objects.

• Object o can tolerate t failures if all the operations o supports can tolerate t failures.

• Object o is t-resilient if all the operations o supports are t-resilient.

Notice that an object that can tolerate t failures is t-resilient, but not vice versa. In [MMRT03], an object that
can tolerate t failures is called a t-threshold object. In these definitions, it may seem odd that termination
is guaranteed only when correct processes access the object using the same operation. On the surface, it
seems more natural to require termination in runs where at least n − t correct processes access the object
via any operation. Our definitions are actually more general, since one could encode different operations to
be invocations of a single operation with different operands.

The t-resilience property, is appropriate for constructions in which each process requires the active partic-
ipation of other processes in order to complete its operation—hence, it assures termination only when other
(correct) processes continue to access the implemented object with the same operation. The property of
tolerating t failures (the t-threshold property) is a stronger condition, requiring each operation by a correct
process to terminate once at least n− t correct processes have invoked that operation. This condition makes
the most sense for “one-shot” objects, such as consensus or election.

The main positive result in [MMRT03] shows that there is a t-resilient universal construction out of
wait-free sticky bits, in a Byzantine shared memory environment, when the number of failures t is limited.
This leaves open the question of whether the same is true when t-resilient is replaced with t-threshold.

1Note that in the binary case, this definition of strong consensus coincides with one that only requires the consensus value
to be v when all correct processes have the same input v. In the nonbinary case, this definition is strictly stronger.
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As in [MMRT03], we use wait-free sticky bits to implement strong consensus objects that tolerate t
Byzantine failures. These are in turn used to implement arbitrary t-resilient objects. (Throughout, atomic
registers, sticky bits and any other primitive objects are assumed to be wait-free.)

3 Efficient strong consensus protocols

In this section, we present strong consensus protocols based on an idea of Berman and Garay [BG89, Mis89]
for performing consensus in the message passing model. Their idea was to run a protocol in phases, where
each phase preserves agreement, and if coordinated by a correct process, assures validity. Concatenating
t + 1 phases guarantees at least one is coordinated by a correct process.

We first show in Section 3.1 how to use sticky bits to implement a protocol phase with similar properties
for the shared memory model. In Section 3.2, we show how several strong consensus protocols with different
desirable properties can be constructed from these protocol phases. Our protocols are easily modifiable to
implement nonbinary consensus, as shown in Section 3.3.

3.1 A protocol phase

A protocol phase makes use of two types of shared objects. First, a phase uses n personal sticky bits,
si : pi ∈ P , (where P is the set of all processes, |P | = n). Each si is writable only by the single process pi.
Second, a phase also uses a single sticky bit, S, which is writable by some set of t + 1 processes. We call
the t + 1 processes in ACL(si.set()) active in the phase. Each process pi enters the phase with a proposed
consensus value ini and leaves with the output value outi.

Operation of a protocol phase, for each process pi ∈ P :

1. Perform the wait-free si.set(ini) operation. (That is, assign ini to the personal sticky bit si.)

2. Perform wait-free reads of the personal sticky bits s1 . . . sn until seeing at least t+1 distinct occurrences
of some value v other than ⊥.

3. If pi has write access to S, then perform the wait-free S.set(v) operation. (Of course, the first such
scheduled process succeeds; the value of S does not change after that.)

4. Perform wait-free reads of S until returning a value v other than ⊥. (Note that S could only return ⊥
if pi does not have write access to S.)

5. Perform wait-free reads of the personal sticky bits s1 . . . , sn until at least n− t return with values other
than ⊥. If the value v read in step 4 occurs in at least t + 1 of the values read, return outi = v (and
say that pi supports v in this phase), else return outi = v.

Lemma 3.1 A protocol phase has the following properties (given n ≥ 3t + 1 and the bound t on the number
of Byzantine processes):

1. If at least n− t correct processes enter a phase, all correct processes eventually exit it.

2. The output value of any correct process is the input value of some correct process.

3. If all the active processes are correct, all correct processes exit the phase with the same value v.

Proof: 1. The first and third steps are wait-free. Once n − t correct processes finish the first step, since
n − t ≥ 2t + 1, some value must occur at least t + 1 times, and the second and fifth steps must eventually
terminate. The fourth step of all processes must terminate once a single correct active process executes the
third step, and this must eventually happen because there are t + 1 active processes, so at least one of the
active processes must be correct and will therefore perform step 3.
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2. This follows because the output value of any correct process appears in at least t + 1 personal sticky
bits, so one must have been set by a correct process.

3. If all the active processes are correct, then the value v that S is set to will be supported by every
correct process, and therefore every correct process with exit the phase with value v.

Now consider a consensus protocol, Schema, constructed by chaining finitely many separate protocol
phases (with different sticky bits) together in a fixed sequence. Each process enters the first phase with its
proposed value, uses the value returned from each phase as the input to the next phase, and returns as the
protocol output the value returned from the last phase.

Lemma 3.2 Given n ≥ 3t + 1 and the bound t on the number of Byzantine processes, if any phase has only
correct active processes, Schema implements strong consensus.

Proof: Part 1 of Lemma 3.1 guarantees the correct processes eventually exit each phase and so Schema.
Part 2 guarantees the correct processes enter each phase with a valid input. The assumption and part 3
guarantee the correct processes eventually agree in a phase, and part 2 guarantees that they value they agree
on is valid and that the correct processes do not change their value thereafter.

3.2 Strong consensus protocols

We present three protocols that use the protocol phases of Section 3.1 to implement strong consensus. The
first two use different techniques for guaranteeing that some phase has only correct active processes, so
Lemma 3.1 applies. The third replaces this requirement with a voting step at the end. The first protocol
(Theorem 3.3) works for any n ≥ 3t + 1, but requires exponentially many potentially powerful objects.
Since Malkhi et al. [MMRT03] show that n ≥ 3t + 1 is necessary for strong consensus in this model, our
protocol is optimal in terms of the ratio between t and n. The second protocol (Theorem 3.5) uses only
t + 1 potentially powerful objects, but requires n ≥ (t + 1)2. The third protocol (Theorem 3.6) is surprising
because it works even if the faulty processes have access to all the potentially powerful objects. It modifies
Schema by replacing the requirement that some phase contains only correct active processes by a voting step
at the end. It uses only t potentially powerful objects and requires n ≥ t2 + 5t + 1.

Theorem 3.3 A strong consensus object tolerating t Byzantine failures can be implemented using (t + 1)-
set(), n-read sticky bits and 1-set(), n-read sticky bits, provided that n ≥ 3t + 1.

Proof: Let P ′ be a subset of P with 2t+1 processes. The protocol consists of
(
2t+1

t

)
phases, each following

the other, where the active processes in each phase consist of a distinct subset of t + 1 processes from P ′.
Since only t processes are faulty, one such phase contains only correct active processes, and the theorem
follows from Lemma 3.2.

One of the main results in [MMRT03] shows that there is a t-resilient universal construction out of wait-
free sticky bits and strong consensus objects tolerating t Byzantine failures. Using this universality result
and Theorem 3.3, we get that:

Corollary 3.4 Any t-resilient object can be implemented using (t + 1)-set(), n-read sticky bits and 1-set(),
n-read sticky bits, provided that n ≥ 3t + 1, where t is the bound on the number of Byzantine failures.

Though optimal in n and t, the protocol of Theorem 3.3 is not efficient in time or the number of potentially
powerful objects, as it uses a number of rounds and of potentially powerful objects exponential in t. We
show in Section 4 that the space bound is inherent: an exponential number of potentially powerful objects
is required when n = 3t + 1.

The following instantiation of Schema uses only t + 1 rounds and t + 1 potentially powerful objects, but
requires n ≥ (t + 1)2. In this instantiation, a completely new set of t + 1 active processes is used for each
protocol phase:
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Theorem 3.5 A strong consensus object that can tolerate t Byzantine failures can be implemented using
t + 1 (t + 1)-set(), n-read sticky bits, together with 1-set(), n-read sticky bits, provided n ≥ (t + 1)2.

Proof: There are t + 1 phases, each with a disjoint set of t + 1 active processes, so for at least one phase all
active processes are correct. The result follows by Lemma 3.2.

Theorems 3.3 and 3.5 are two extreme points in a tradeoff between the number of potentially powerful
objects and the ratio of t to n. We examine this tradeoff more closely in Section 4.2. First, we present a
final protocol that is surprising because there are only t potentially powerful objects, and therefore it works
even if t Byzantine processes can access all the potentially powerful objects.

Theorem 3.6 A strong consensus object tolerating t Byzantine failures can be implemented using t po-
tentially powerful (t + 1)-set(), n-read sticky bits, together with 1-set(), n-read sticky bits, provided that
n ≥ t2 + 5t + 1.

Proof: We modify the protocol of Theorem 3.5 by omitting the last phase. That is, there are t phases, each
involving a disjoint set of t + 1 active processes accessing the (t + 1)-set(), n-read sticky bit for that phase.
We then designate exactly 4t + 1 additional processes (there are at least that many) not active in any phase
as voters. Note that either some phase contains only correct active processes, or all the voters are correct.
Each of the voting processes takes its output from the last phase and writes its resulting value in a personal
sticky bit. After the last phase, all processes read the voters’ personal sticky bits, and decide on the first
value they see occurring 2t + 1 times.

To see that this works, first note that at most one value can occur 2t + 1 or more times among the 4t + 1
voters. We now show one value must occur at least that often, and that the value is valid. By parts 2 and 3
of Lemma 3.1, if there is a phase in which all the active process are correct, then all correct voters will write
the same valid value to their own personal sticky bit. Since in this case at least 3t + 1 voters are correct,
eventually at least 3t + 1 ≥ 2t + 1 votes will be written and will agree on some valid value v. If there is no
phase in which all the active processes are correct, then as argued above, no voter is faulty. In this case, all
voters will write a valid value, so one value will be written at least d(4t + 1)/2e = 2t + 1 times.

Since there are only t potentially powerful objects, this algorithm works even in the case that no single
potentially powerful object is accessible exclusively by correct processes. In this case, the size, t + 1, of
the ACLs is needed to ensure that each potentially powerful object will eventually be written (and so other
processes can wait for it to be set), rather than ensuring that some potentially powerful object will be written
by a correct process. Other protocols derived from the protocol Schema, such as the algorithm in the proof
of Theorem 3.3, can be similarly modified, removing one protocol phase and replacing it with a set of 4t + 1
voters.

One might expect that such tricks could be used to reduce the number of potentially powerful objects
even further. For example, can strong consensus be implemented with even fewer than t potentially powerful
sticky bits? Do t sticky bits suffice for n = 3t+1? (The t-bit algorithm of Theorem 3.6 requires n ≥ t2+5t+1.)
We explore these questions in Section 4.

3.3 Implementing Strong k-consensus

In this section, we describe how our protocols can extend to k-valued strong consensus.

Strong k-consensus objects: A strong k-consensus object x is an object with one operation: x.propose(v),
where v ∈ {0, . . . , k − 1}, satisfying: (1) In any run, the x.propose() operation returns the same value,
called the consensus value, to every correct process that invokes it. (2) If the consensus value is v, then
some correct process invoked x.propose(v).

To implement k-consensus, we modify the last step of a protocol phase from Section 3.1 to return
outi = ini in the case that the value v read in step 4 is not supported by pi in this phase. (This ensures that
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the output value of any correct process is always the input value of some correct process.) In order to ensure
that step 3 always terminates, it becomes necessary to have n ≥ (k + 1)t + 1. This modification yields the
corresponding results; the straightforward modifications to the proofs are omitted.

Lemma 3.7 A modified protocol phase has the following properties (given n ≥ (k + 1)t + 1 and the bound t
on the number of Byzantine processes):

1. If at least n− t correct processes enter a phase, all correct processes eventually exit it.

2. The output value of any correct process is the input value of some correct process.

3. If all the active processes are correct, all correct processes exit the phase with the same value v.

Theorem 3.8 A strong k-consensus object tolerating t Byzantine failures can be implemented using (t+1)-
set(), n-read sticky bits and 1-set(), n-read sticky bits, provided that n ≥ (k + 1)t + 1.

Theorem 3.9 A strong k-consensus object that can tolerate t Byzantine failures can be implemented using
t+1 (t+1)-set(), n-read sticky bits, together with 1-set(), n-read sticky bits, provided n ≥ max((t+1)2, (k +
1)t + 1).

4 Lower Bounds and Tradeoffs

The protocols of Theorem 3.3 and Theorem 3.5 represent different points on a tradeoff between efficiency and
usefulness for more values of n. The protocol of Theorem 3.3 achieves strong consensus whenever n ≥ 3t+1,
but requires an exponential number (in t) of potentially powerful sticky bits. In contrast, the protocol of
Theorem 3.5 uses only a polynomial number of potentially powerful sticky bits, but is only guaranteed to
achieve strong consensus when n ≥ (t + 1)2.

This raises the question of whether these results are the best possible. For example, can we do with much
fewer (e.g., polynomially many) potentially powerful objects and still achieve strong consensus whenever
n ≥ 3t + 1?

In this section, we show that the answer to this question is no. More generally, we show tight asymptotic
tradeoff between the number, k, of potentially powerful sticky bits or a more general class of potentially
powerful objects that must be used and the number of processes, n (as a function of the number of possible
failures t) in order to achieve strong consensus. This tradeoff is essentially given by k = t · 2Θ(t2/n). In
particular, when n = 3t + 1, an exponential number of such objects is indeed necessary. Interestingly, we
also obtain a protocol for n = O(t2/ log t) that uses a polynomial number of sticky bits. Such a protocol was
only previously known for n = Ω(t2) [MMRT03].

We begin by showing in Theorem 4.1 that the upper bound t on the number of faulty processes is in
fact a lower bound, regardless of the number n of processes, on the number of potentially powerful sticky
bits needed for strong consensus. In the ensuing subsections, we examine the general tradeoff between the
number of sticky bits or related objects and the size of n as a function of t for implementing strong consensus.
The reader may wish to review the definitions in Section 2 before proceeding.

Theorem 4.1 No t-resilient strong consensus object can be implemented from fewer than t potentially pow-
erful sticky bits (using no other potentially powerful objects), where t is the bound on the number of Byzantine
failures.

Proof: Suppose such a protocol exists. Since it uses at most t − 1 potentially powerful sticky bits, the
protocol must remain 1-resilient even in the case that t−1 Byzantine processes first set these bits to 0 before
any correct process takes a step, and subsequently take no action. These sticky bits are clearly useless:
omitting them and the t−1 Byzantine processes results in a 1-resilient protocol with no potentially powerful
objects that uses registers and single-writer sticky bits. Obviously, this protocol is also correct in the crash-
fault model (against the failure of a single process). But in the crash model, single-writer sticky bits can be
implemented by registers, and the resulting protocol contradicts the well-known results of Fischer, Lynch
and Paterson [FLP85] and Loui and Abu-Amara [LA87].
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4.1 The ACL Theorem

We next prove a general theorem establishing a necessary condition for implementing weak consensus even in
the presence of only crash failures. Dwork, Herlihy, and Waarts [DHW97] show that any implementation of
wait-free n-process consensus algorithm includes an object, say o, that can be accessed by n processes. Our
result generalizes theirs in two ways: it shows that the object o, must be potentially powerful; and it covers
also implementations that tolerate t < n failures (not just wait-free implementations). We show that when
at most t out of n processors may crash, the weak consensus problem is only solvable in shared memory
systems containing a potentially powerful object o such that ACLpow(o) ≥ t + 1; our proof is similar to
proofs of [FLP85, LA87]. Note that it is possible to implement weak consensus tolerating up to t Byzantine
failures using a single potentially powerful object o with ACLpow(o) ≥ t+1, such as a weak consensus object
o defined with |ACL(o.propose())| = t + 1 or a sticky bit o with |ACL(o.set())| = t + 1. Hence, Theorem 4.2
is tight in some sense.

Theorem 4.2 Any weak consensus protocol that tolerates t ≥ 1 crash failures must use at least one object,
o, such that |ACLpow(o)| ≥ t + 1.

Proof: We denote a run of a protocol by the sequence in which processes invoke operations. A finite run
x is v-valent if in all extensions of x where a decision is made, the decision value is v (v ∈ {0, 1}). A run
is univalent if it is either 0-valent or 1-valent, otherwise it is bivalent. In the following, P denotes a set of
processes, x and x′ denote runs and x′p is an extension of the run x′ by one step of process p.

Assume π is a consensus protocol that can tolerate t crash failures. By familiar arguments, π has
an empty bivalent run x0. We begin with x0 and pursue the following round-robin bivalence-preserving
scheduling discipline:

x := x0; P := ∅; i := 0;
repeat

j := i + 1
if x has a bivalent extension x′pj

then x := x′pj

else P := P ∪ {pj}
i := (i + 1) mod n

until |P | = t + 1.

If this procedure does not terminate, then there is an infinite run with only bivalent finite prefixes in which
n − t processes are correct. However, the existence of such a run contradicts the definition of consensus
protocols that can tolerate t crash failures. Hence, the procedure will terminate with some bivalent finite
run x, and a set P of t + 1 processes such that any extension x′p of x, for any process p in P , is univalent.

Pick any p ∈ P , and let v be such that the run xp is v-valent. Since x is bivalent, there is a shortest
extension z of x which is v-valent. (See Figure 1(a).)

Let z′ be the longest prefix of z that does not contain any step of p, and note that either z = z′ or
z = z′p. From the assumption about z′, it follows that z′p is v-valent, and z′ 6= x. (See Figure 1(b).)

Consider the extensions of x that are also prefixes of z′. Since xp and z′p have opposite valence, there
must exist an extension y of x and a process q 6= p, x ≤ y < yq ≤ z′, such that yp and yqp are univalent
but with opposite valence. Hence y is bivalent, and it further follows that y is a P -free extension of x. (See
Figure 1(c).)

Familiar case analyses [FLP85, LA87] preclude p from invoking wait-free read or write() operations at y:
If p’s next step is a read operation, then ypq and yqp are indistinguishable to processes other than p, yet their
p-free extensions must have opposite valence, a contradiction. If p’s next step is a write() operation, then
yp and yqp are indistinguishable to processes other than q, yet their q-free extensions must have opposite
valence, a contradiction. Thus we conclude that the next operation of p at y is potentially powerful, and as
y is a p-free extension of x, it follows that the next operation of p at x is also potentially powerful (since
they are the same operation). Since we chose p arbitrarily from P , the identical argument for each member

10



(a)

xp

x, bivalent

v-valent

xp

v

v-valent

p-free

z′, prefix of z

(b)

xp

v

x x

P -free

yp

v

yq

y, bivalent prefix
of z

yqp

(c)

z′p
z

v
v

Figure 1: Illustration of runs in proof of Theorem 4.2

of P implies that the the next operation of any member of P at x is potentially powerful, and hence the
next operation of any member of P at the P -free extension y of x is potentially powerful.

It remains to show that the next operations of all the members of P at y access the same object. Let
o be the object accessed by p in the last step of yp. If q does not access o in the last step of yq, then ypq
and yqp are indistinguishable, a contradiction. Now consider any p′ ∈ P , and the single-step extension yp′

of y. If p′ accesses an object other than o in the last step of yp′, then note first that p′ is neither p nor q.
Then either yp′ is v-valent, and the indistinguishability of yp′qp and yqpp′ leads to a contradiction, or yp′ is
v-valent, and similarly the indistinguishability of ypp′ and yp′p leads to a contradiction. It follows that all
t + 1 processes in P invoke potentially powerful operations on o. We conclude that |ACLpow(o)| ≥ t + 1.

The famous impossibility result from [FLP85, LA87] follows immediately from Theorem 4.2.

Corollary 4.3 There is no weak consensus protocol tolerating even one crash failure that uses only atomic
read/write registers.

Proof: By Theorem 4.2, any weak consensus protocol that tolerates one crash failures must use at least one
object, o, such that |ACLpow(o)| ≥ 2. However, for any atomic register r, |ACLpow(r)| = 0.

As we will see, Theorem 4.2, in combination with the protocols of the previous section, is a powerful tool
in establishing an asymptotic tradeoff on the number of sticky bits (or other potentially powerful objects)
necessary to implement strong consensus, as n varies relative to t.

4.2 Subvertible Objects and Immunity

In this and the following subsections, we investigate a tradeoff between the number of potentially powerful
sticky bits and the number n of processes (as a function of the number t of possible failures) that must
be used in order to achieve strong consensus. Since a strong consensus object s would of course trivially
implement itself (with ACLpow(s.propose()) = n), some care is needed to generalize the question from the
specific case of how many sticky bits are necessary to how many objects are necessary in order to implement
strong consensus. Noting that the relevant property of sticky bits is that a single Byzantine process with
access to a sticky bit can render it useless to the correct processes, we generalize from the notion of sticky
bits to “subvertible” objects.
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Accordingly, we define an object o to be subvertible if it is potentially powerful and any Byzantine process
in ACL(o) can cause operations by correct processes to be useless—that is, if there are runs in which the
return values of correct processes are dependent only on the operations of the Byzantine process.2 Sticky
bits are subvertible, since a Byzantine process can invoke set(0) before any correct process takes a step.
Obviously, if the object supports write() operations it is subvertible, and of course, strong consensus itself is
not subvertible.

This section uses a combinatorial analysis to provide a tight asymptotic tradeoff between the number, k,
of subvertible objects that must be used and the number n of processes (as a function of the number t of
possible failures), in the case that only subvertible objects are used.

Correctness of the first two protocols in Section 3 depends on there being enough such objects that
at least one is accessed only by correct processes. This property is a combinatorial property of the sticky
bit access control lists, which we call being “t-immune”: no set of t (faulty) processes can subvert all the
potentially powerful sticky bits. This is formalized in the following definition. We denote the set {1, 2, . . . , n}
by [n]. A collection of subsets S = {S1, S2, . . . , Sk} of the domain [n] is m-immune if for every set T ⊆ [n]
of m elements there exists Sj ∈ S such that T ∩ Sj = ∅. We note that related objects have been studied
extensively in the past [Fur91, GGL95].

Theorem 3.6 shows that strong consensus protocols can exist even when the access lists of the potentially
powerful objects are not t-immune. However, we now argue that m-immunity (for some m that depends on
t) is a necessary condition. As a simple corollary of Theorem 4.2 (and generalizing Theorem 4.1) we have
the following:

Corollary 4.4 Let π be any strong consensus protocol that tolerates t1 ≥ 1 crash failures and t2 ≥ 1
Byzantine failures and uses only subvertible objects. Let S be the collection of ACLpow(o) for all potentially
powerful objects o used by π that are of size at least t1 + 1. Then S is t2-immune.

Proof: Assume to the contrary that T2 = {i1, . . . , it2} is a set of t2 processes that cover S (i.e., for all
Sj ∈ S, T2 ∩ Sj 6= ∅). Then π contains runs in which all the processes in T2 are Byzantine. These processes
can subvert all the objects with large (size t1 + 1) access lists, making these objects useless in fighting the
remaining t1 crash failures. More formally, it is easy to modify π so that it still tolerates t1 crash failures but
uses no object o with ACLpow(o) bigger than t1. Since this is a contradiction to Theorem 4.2, the corollary
follows.

Noting that Byzantine failures can choose to simply crash, the next corollary follows trivially from
Corollary 4.4 by taking t1 = b(1− α)tc and t2 = dαte.

Corollary 4.5 Let π be any strong consensus protocol that tolerates t Byzantine failures and uses only
subvertible objects. Let 0 < α < 1 be some constant such that (1 − α)t ≥ 1, and let S be the collection of
ACLpow(o) for all potentially powerful objects o used by π that are of size at least b(1− α)tc+ 1. Then S is
dαte-immune.

4.3 Bounds on the Size of m-Immune Collections

In light of Corollary 4.5 and the proof of Theorem 3.3, both upper and lower bounds on the number of
subvertible objects needed by Byzantine consensus protocols (Theorems 4.8 and 4.9) can be derived from
corresponding bounds on the number of sets in m-immune collections. Such bounds are given in this section.
The minimum possible number of subsets in an m-immune collection of subsets of cardinality at least t + 1
each in the domain [n] is precisely the minimum number of edges in a t + 1-uniform hypergraph on n
vertices that contains no independent set of size n − m. This number is the hypergraph Turán number
T (n, n − m, t + 1), in the notation of [Fur91]. Although these numbers have been investigated extensively,
the existing results focus on the cases of fixed values of t+1 (the size of each edge) and n−m (the forbidden

2A formal definition of subvertible objects would require considerable machinery and is beyond the scope of this paper. A
concerned reader may substitute “potentially powerful sticky bits” in place of “subvertible objects” in the remainder of the
paper.
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size of a maximum independent set), and large n, whereas in our case the parameters are different. We
were therefore unable to deduce our results from previous work, but apply techniques similar to some of the
existing ones to derive our bounds (cf. [Fur91, GGL95]). For simplicity, we concentrate in the next theorem
on the case n ≥ 3t + 1 which is the interesting one for our application.

Theorem 4.6 Let S = {S1, S2, . . . , Sk} be an m-immune collection of subsets of the domain [n]. If each set
Sj ∈ S contains at least t + 1 elements, where n ≥ 3t + 1, then n ≥ t + m + 1, and

k ≥ max{m + 1,m · 2Ω(t·m/n)}.

Proof: That k ≥ m + 1 is trivial (any collection of less than m + 1 subsets can be covered by m elements).
Similarly, n must be at least t + m + 1 as otherwise any subset of [n] of cardinality m intersects all subsets
of cardinality at least t + 1 (which includes all of the sets in S). It remains to prove that k ≥ m · 2Ω(t·m/n),
for which we apply the probabilistic method (see [AS00]). We can assume without loss of generality that
t ·m/n = Ω(1) (as otherwise this inequality follows from k ≥ m + 1). Also assume without loss of generality
that m is even. Consider a subset T ′ ⊂ [n] obtained by choosing m/2 elements randomly with replacement
from [n]. Then |T ′| ≤ m/2, and for any j ∈ [k],

Pr[T ′ ∩ Sj = ∅] ≤
(

1− t + 1
n

)m/2

.

Therefore, the expected number of j ∈ [k] such that T ′∩Sj = ∅ is at most k
(
1− t+1

n

)m/2. If k
(
1− t+1

n

)m/2 ≤
m/2 then there exists an assignment to the set T ′ that covers all but m/2 of the subsets Sj . The remaining
subsets can be covered by additional m/2 elements in [n], which contradicts the assumption that S is m-
immune. We can therefore conclude that k ≥ m/2 ·

(
1− t+1

n

)−m/2. Since n ≥ 3t + 1 and we also have
n ≥ t + m + 1, and m > 0 (otherwise this part of the proof is trivial), we get that t+1

n ≤ 1/2. Therefore,(
1− t+1

n

)−1 = eΩ((t+1)/n) (by the Taylor expansion of e−x). Since we assumed t · m/n = Ω(1) we can

conclude that m/2 ·
(
1− t+1

n

)−m/2 = m · 2Ω(t·m/n), completing the proof.

An upper bound on the number of sets in m-immune collections can also be obtained by an application
of the probabilistic method. Nevertheless, we are interested in an explicit construction of the m-immune
collection (so that the resulting consensus protocol is explicit as well). The proof of the following theorem
provides such a construction.

Theorem 4.7 For any n, t and m with n ≥ t+m+1, there exists an m-immune collection S = {S1, S2, . . . , Sk}
of subsets of the domain [n], such that (1) all the sets Sj ∈ S contain at least t + 1 elements and (2)

k ≤ max{m + 1,m · 2O(t·m/n)}.

Proof: First we consider two values of n for which a simple construction of the desired collection S exists:
(a) If n ≥ (m+1)(t+1) we can simply define S to be a collection of m+1 disjoint subsets of size t+1. (b) If
n < 8(t+m)+1, we can define S to contain all the subsets of size t+1 of the first t+m+1 elements. When
n < 8(t + m) + 1 this construction gives k =

(
t+m+1

m

)
< 2t+m+1 = 2O(t·m/n) as claimed. We can therefore

assume without loss of generality that n < (m+1)(t+1). We can also assume without loss of generality that
n, t + 1 and m are all (positive) powers of 2 and n ≥ 2(m + t) + 1. To justify this assumption, we note that
it is sufficient to construct our collection for n′ ≤ n, t′ ≥ t, and m′ ≥ m that are the closest values such that
n′, t′ + 1 and m′ are all powers of 2. As long as n ≥ 8(t + m) + 1, we have that n′ ≥ 2(t′ + m′) + 1, (which
in particular guarantees that n′ ≥ t′ + m′ + 1). As argued above, it is safe to assume that n ≥ 8(t + m) + 1.

We can now define the desired m-immune collection. Set ` = 2(t + 1)m/n. By our assumptions ` is a
positive integer (as both 2(t + 1)m and n are powers of 2 and n ≤ 2(t + 1)m). Set r = n/2(t + 1). By our
assumptions this also is an integer and furthermore r < m. Now, let us divide the set [n] into 2`r = 2m
disjoint subsets of equal size: A1,1, . . . A1,2`, A2,1, . . . , A2,2` . . . , Ar,2` (this is again possible since n and m are
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powers of 2 and n > 2m). We can now define the collection S. For any i ∈ [r] and any ` distinct indices
j1, j2, . . . , j` in [2`], the collection contains the set

Si,j1,j2,...,j`
= Ai,j1 ∪Ai,j2 ∪ . . . ∪Ai,j`

.

By definition, the number of sets in the collection is r ·
(
2`
`

)
< r · 22` = m · 2O(t·m/n). Furthermore, each

set contains n/2r = t + 1 elements. It remains to show that S is m-immune. Let T be any subset of [n] of
size m. By averaging, there exists at least one i ∈ [r] such that T contains at most m/r = ` elements in
∪2`

j=1Ai,j . Therefore, T contains elements in at most ` sets {Ai,j}2`
j=1. Therefore, there exist distinct indices

j1, j2, . . . , j` in [2`], such that T ∩ Si,j1,j2,...,j`
= ∅.

4.4 The Tradeoff Results

Putting it all together, we have the following complementary theorems.

Theorem 4.8 For any n ≥ 3t+1, there exists a strong consensus protocol that tolerates t Byzantine failures
and the only potentially powerful objects it uses are max{t+1, t · 2O(t2/n)} sticky bits with access lists of size
t + 1.

Proof: If t = 0, then strong consensus can be trivially achieved using one single-writer sticky bit. Otherwise,
t ≥ 1. Applying Theorem 4.7 with m = t yields a t-immune collection of max{t + 1, t · 2O(t2/n)} subsets of
[n], each of size t + 1. Taking those subsets as the access control lists of max{t + 1, t · 2O(t2/n)} sticky bits
yields the desired protocol.

Theorem 4.9 For any n ≥ 3t + 1 and any constant 0 < α < 1, any strong consensus protocol that toler-
ates t Byzantine failures using only subvertible objects must use at least t · 2Ω(t2/n) subvertible objects with
|ACLpow(o)| ≥ (1− α)t for each such object o.

Proof: If (1−α)t ≥ 1, then applying Corollary 4.5 we have that the collection of ACLpow(o) for all potentially
powerful objects o used by the strong consensus protocol that are of size at least b(1 − α)tc + 1 ≥ (1 − α)t
is dαte-immune. The theorem now follows from Theorem 4.6. In case (1 − α)t < 1, then in particular t is
also a constant, and the theorem follows as above by applying Corollary 4.5 (and then Theorem 4.6) with
α′ = 1− 1/t.

As a corollary of Theorem 4.8, we get the promised protocol for n = O(t2/ log t) that only uses a
polynomial number of sticky bits.

Corollary 4.10 For any n ≥ 3t + 1 such that n = O(t2/ log t), there exists a strong consensus protocol that
tolerates t Byzantine failures and the only potentially powerful objects it uses are a polynomial number (in
t) of sticky bits with access lists of size t + 1.

5 Conclusions

We presented a strong consensus protocol that can tolerate t Byzantine failures (and therefore a universality
result for linearizable t-resilient objects) from wait-free sticky bits for n ≥ 3t + 1. We demonstrated a tight
tradeoff between the fault tolerance and the efficiency of any strong consensus protocol using subvertible
objects such as sticky bits, in particular showing that any strong consensus protocol that works for all n ≥ 3t
and uses only subvertible objects must use an exponential number of objects. The tradeoff also implies a
polynomial time strong consensus protocol that can tolerate t Byzantine failures for n = O(t2/ log t).

It remains open whether sticky bits are universal for n ≤ 3t. Since strong consensus is not possible for
n ≤ 3t, a different universality construction not going through strong consensus would be needed. (The
impossibility of strong consensus for n ≤ 3t rests on the logical inconsistency of the object specification, and
does not reflect the implementability of other, especially linearizable, object types.)
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