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Abstract

We present a simple explicit construction of a probability distribution supported on (p − 1)2

vectors in Znp , where p ≥ n/ε is a prime, for which the absolute value of each nontrivial Fourier
coefficients is bounded by ε. This construction is used to derandomize the algorithm of [Man92]
that interpolates a sparse polynomial in polynomial time in the bit complexity model.

1 Introduction

Given a set A ⊂ Znp , for each α ∈ Znp define

DISCA(α) =
1
|A|

∣∣∣∣∣∑
z∈A

ω<α,z>
∣∣∣∣∣ ,

where ω is the pth root of unity over the complex numbers, i.e. ω = e2πi/p.

Definition 1 A set A ⊂ Znp is an ε discrepancy set if for any α 6= ~0, DISCA(α) ≤ ε.

In this note we present a simple explicit construction as follows.

Theorem 1.1 For any prime p and any n > 1 there exists an explicit set Anp ⊂ Znp , such that
|Anp | = (p− 1)2 and Anp is an n−1

p−1 discrepancy set.

The construction is a mod p variant of one of the binary constructions presented in [AGHP90].
Another construction with related properties appears in [AMN90]. The main advantage of the present
construction is its simplicity and the elementary proof of its properties.
∗Department of Mathematics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv,

Israel. Research supported in part by a USA-Israeli BSF grant and by the Fund for Basic Research administered by the
Israel Academy of Sciences.
†Department of Computer Science, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University,

Tel-Aviv, Israel. Research supported in part by a grant of the Israeli Ministry of Science and Technology and by The
Israel Science Foundation administered by The Israel Academy of Science and Humanities.

1



Our main application for ε discrepancy sets is the derandomization of the interpolation algorithm of
[Man92]. Using an ε discrepancy set we can test whether a sparse multivariate polynomial is identically
zero, which is a major task in any multivariate interpolation algorithm. Other possible applications
are mentioned as well.

Other previous works on sparse multi-variate polynomial interpolation include the work of Zippel
[Zip79], which gives a probabilistic algorithm, that of Grigoriev and Karpinski [GK87], for interpolation
of a sparse permanent, and the work of Ben-Or and Tiwari [BOT88].

Our construction of ε-discrepancy sets can be viewed as a real-value analog of the “ε-bias” distribu-
tion [NN90, AGHP90], which is defined over boolean variables and guarantees that the absolute value
of each of its nontrivial Fourier coefficients is bounded by ε.

2 Construction of an ε discrepancy set

Let p be a prime and let Z∗p denote the multiplicative group of the finite field Zp. For x, y ∈ Z∗p put
vx,y = (y, yx, yx2, . . . , yxn−1). Define Anp = {vx,y | x, y ∈ Z∗p}. Note that the size of the set Anp is
(p− 1)2.

For a ∈ Zp and α ∈ Znp define na,α by

na,α = |{vx,y | x, y ∈ Z∗p , < vx,y, α >= a}|

Claim 2.1 Let α 6= ~0. If a, b 6= 0 then na,α = nb,α. In addition, n0,α ≤ (n− 1)(p− 1)

Proof: Consider the inner product,

< vx,y, α >=
n−1∑
i=0

yxiαi = yPα(x)

where Pα(x) is the polynomial with ~α as the vector of its coefficients, i.e. Pα(x) =
∑
i αix

i. We are
interested in the number of solutions x, y of the equation

yPα(x) = a.

Fix x ∈ Z∗p . Clearly, if Pα(x) 6= 0 then for each y ∈ Z∗p there is a different nonzero value to yPα(x).
Hence, each value in Z∗p is generated by a unique y (in this case). On the other hand if Pα(x) = 0,
then < vx,y, α >= 0 for every y ∈ Z∗p . Since Pα(x) = 0 for at most n− 1 different x ∈ Z∗p , we conclude
that n0,α ≤ (n− 1)(p− 1). 2

Theorem 2.2 Anp is an n−1
p−1 discrepancy set.

Proof: By the construction of Anp ,

DISCAnp (α) =
1

(p− 1)2

∣∣∣∣∣∣
∑

x,y∈Zp
ω<α,vx,y>

∣∣∣∣∣∣ .
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We can rewrite this as,

DISCAnp (α) =
1

(p− 1)2

∣∣∣∣∣∣
∑
a∈Zp

na,αω
a

∣∣∣∣∣∣ .
Recall that

∑p−1
i=0 ω

i = 0. Since for a 6= 0, na,α = k is the same, the only non-zero contribution is from
a = 0, showing that

∑
a∈Zp na,αω

a = n0,α − k. Since n0,α ≤ (n− 1)(p− 1) and 0 ≤ k ≤ p− 1, we have
that,

DISCAnp (α) ≤ n− 1
p− 1

,

completing the proof of the theorem. 2

3 Applications

3.1 Interpolation of Multivariate Polynomials

Let P (x1, . . . , xn) =
∑t
i=0 cix

ei,1
1 · · ·xei,nn be a multivariate polynomial with t integer coefficients. Let

L1(P ) denote the sum of the absolute values of the coefficients of P , i.e. L1(P ) =
∑t
i=0 |ci|.

Lemma 3.1 Let A be an ε discrepancy set, and P (x1, . . . , xn) = c0 +
∑t
i=1 cix

ei,1
1 · · ·xei,nn . Then,

|E(z1,...,zn)∈A[P (ωz1 , . . . , ωzn)]− c0| ≤ εL1(P )

where E is the expectation over the uniform distribution of vectors from A.

Proof: Let ~ei = (ei,1, . . . , ei,n). By the linearity of expectation,

E~z=(z1,...,zn)∈A[P (ωz1 , . . . , ωzn)] = c0 +
t∑
i=1

ciE[ω<~z,~ei>].

Since A is an ε discrepancy set and ~ei 6= ~0,

|E[ω<~z,~ei>]| ≤ ε,

and the assertion of the lemma follows. 2

By the same argument one can show the following.

Claim 3.2 Let A be an ε discrepancy set, and P (x1, . . . , xn) =
∑t
i=0 cix

ei,1
1 · · ·xei,nn . Then,∣∣∣∣∣E(z1,...,zn)∈A

[
‖P (ωz1 , . . . , ωzn)‖2

]
−

t∑
i=0

c2
i

∣∣∣∣∣ ≤ εL2
1(P )

where E is the expectation over the uniform distribution of vectors from A.
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The above claim gives an immediate tool to test if a sparse multivariate polynomial is zero (assuming
that its coefficients are integers and bounded). Since the coefficients are integers, then either

∑t
i=0 c

2
i

is at least one or it is zero. By choosing p > 2nL2
1(P ) we guarantee that the error is less than 1/2, and

therefore, by the above claim, we can distinguish between the two cases.

We next demonstrate the derandomization on the algorithm of [Man92]. The idea, as in [Zip79],
is to interpolate the variables one by one. Since we have an upper bound, say t, on the number of
non-zero coefficients, there would be at most t terms to consider. The assumption here is that we have
a black box that outputs the value of P (x1, . . . , xn) for any desired (x1, . . . , xn), and our objective is
to determine the coefficients of P . From the analysis it follows that this is possible even if our black
box only outputs (sufficiently accurate) approximations of the values of P .

Initially, we can rewrite P as,

P (x1, . . . , xn) =
d∑
j=0

xj1Pj(x2, . . . , xn).

We are interested in determining which of the Pj ’s are not the zero polynomial. To perform this we
note that, for a prime p > d,

Pj(x2, . . . , xn) =
1
p

p−1∑
k=0

P (ωk, x2, . . . , xn)ω−kj .

For each ~z = (z2, . . . , zn) ∈ An−1
p we can compute Pj(z2, . . . , zn) by using the above identity, and then

compute Ez[‖Pj(z)‖2].

In general we define Pe1,...,ek as follows,

P (x1, . . . , xn) =
d∑

e1=0

· · ·
d∑

ek=0

xe11 · · ·x
ek
k Pe1,...,ek(xk+1, . . . , xn),

i.e. Pe1,...,ek(xk+1, . . . , xn) has all the terms that include xe11 · · ·x
ek
k . By the properties of the discrete

Fourier transform we have that,

Pe1,...,ek(xk+1, . . . , xn) =
1
pk

p−1∑
j1=0

· · ·
p−1∑
jk=0

P (ωj1 , . . . , ωjk , xk+1, . . . , xn)ω−e1j1 · · ·ω−ekjk .

In order to test whether Pe1,...ek 6≡ 0, we estimate its norm by computing,

E(zk+1,...,zn)∈An−kp

[∥∥∥∥E(z1,...,zk)∈Akp [P (ωz1 , . . . , ωzn)ω−
∑k

j=1
ejzj ]

∥∥∥∥2
]
.

The interpolation works in phases. At the kth phase we determine all the vectors (e1, . . . ek), such
that Pe1,...ek 6≡ 0, given all the the vectors (e1, . . . ek−1), such that Pe1,...ek−1

6≡ 0. Since the polynomial
P has only t non-zero coefficients, at any phase we need to maintain at most t vectors. At the end we
have all the terms, i.e. ~ei, and need only to determine the coefficients.
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3.2 Univariate polynomials

In [Kat89, AIK+90] and, more explicitly, in [RSW93] it is shown how to construct explicitly a set
B ⊂ Zp, such that |B| = O((log p/ε)c), for some constant c, and such that for any α 6= 0,α ∈ Zp,

1
|B|

∣∣∣∣∣∑
z∈B

ωαz
∣∣∣∣∣ ≤ ε.

We can use the set B to interpolate any sparse univariate polynomial of (high) degree d (≤ p). Recall
that if P (x) =

∑p
i=0 aix

i then ak = (1/p)
∑p
j=0 P (ωj)ω−kj . Hence, averaging over B would add an

additive error of at most εL1(P ) to any coefficient.

Using such constructions we can reduce the size of Anp when ε >> 1/p1/c to O(nε (log p/ε)c). To do
so, simply modify the construction above by letting x vary over an arbitrary subset of cardinality n/ε
of Zp and by letting y vary over a subset B ⊂ Zp, that has the above properties. It is easy to check that
the discussion in Section 2 implies that the modified set is a 2ε-discrepancy set in Znp . By Proposition
7’ in [AR94], for ε > p−n/2 the size of any ε discrepancy set for Znp is at least Ω( n log p

ε2 log(n log p/ε2)
) showing

that the last construction is not far from the optimum.

3.3 Axis Parallel boxes

The sets Anp can be used to approximate the expectation of any function P with a small value of L1(P ).
As an illustration, consider the function fa(x) = 1 if x < a and fa(x) = 0 otherwise, where x ∈ Zp. For
the intersection of k such functions, i.e. F (~x) =

∏k
j=1 faj ,ij (~x), one can show that L1(F ) = O(logk p),

and hence the set Anp can be used to approximate the expectation of F (which is the fraction of the

volume of the corresponding box in Znp ) within an additive error of O(n logk p
p ). In fact, by replacing

F by a smooth function that approximates it this error term can be improved to O(n logk(p/n)
p ). Since

for this example this is a weaker estimate than those obtained by the constructions in [EGL+92] and
[CRS94] we omit the details.

4 Conclusion and Open questions

We showed that the set Anp is an n−1
p−1 discrepancy set, and |Anp | = O(p2). The modified construction

described in Subsection 3.2 provides an ε-discrepancy set of size polynomial in log p/ε and linear in n.

For the interpolation problem we need that p is larger than the degree of the polynomial in each
variable. Therefore, the modified set can be useful here. It is not difficult to check (see Proposition 6’
in [AR94]) that a random set of Θ( n

ε2
log p) vectors from Znp would almost surely be an ε discrepancy

set, and as mentioned above this is nearly best possible. However the problem of finding an explicit
construction of such a small ε-discrepancy set remains open.
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[RSW93] A. Razborov, E. Szemerédi, and A. Wigderson. Constructing small sets that are uniform
in arithmetic progressions. Combinatorics, Probability and Computing 2:513–518, 1993.

[Zip79] R. E. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages 216–
226. Springer Lecture notes in computer science, vol. 72, 1979.

6


