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Abstract

We present a simple explicit construction of a probability distribution supported on (p — 1)2
vectors in Zj, where p > n/e is a prime, for which the absolute value of each nontrivial Fourier
coefficients is bounded by e. This construction is used to derandomize the algorithm of [Man92]

that interpolates a sparse polynomial in polynomial time in the bit complexity model.

1 Introduction

Given a set A C Z,, for each a € Z} define

1

DISCx(a) = ]

2 : w<oz,z>

z€A

9

where w is the pth root of unity over the complex numbers, i.e. w = €27/,
Definition 1 A set A C Z}} is an ¢ discrepancy set if for any a # 0, DISCa(c) < €.

In this note we present a simple explicit construction as follows.

Theorem 1.1 For any prime p and any n > 1 there exists an explicit set A) C Z7, such that
|A7| = (p—1)? and A} is an ZT_% discrepancy set.

The construction is a mod p variant of one of the binary constructions presented in [AGHP90].
Another construction with related properties appears in [AMN90]. The main advantage of the present
construction is its simplicity and the elementary proof of its properties.
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Our main application for € discrepancy sets is the derandomization of the interpolation algorithm of
[Man92]. Using an ¢ discrepancy set we can test whether a sparse multivariate polynomial is identically
zero, which is a major task in any multivariate interpolation algorithm. Other possible applications
are mentioned as well.

Other previous works on sparse multi-variate polynomial interpolation include the work of Zippel
[Zip79], which gives a probabilistic algorithm, that of Grigoriev and Karpinski [GK87], for interpolation
of a sparse permanent, and the work of Ben-Or and Tiwari [BOTS8S|.

Our construction of e-discrepancy sets can be viewed as a real-value analog of the “e-bias” distribu-
tion [NN90, AGHP90], which is defined over boolean variables and guarantees that the absolute value
of each of its nontrivial Fourier coefficients is bounded by ¢.

2 Construction of an ¢ discrepancy set

Let p be a prime and let Z7 denote the multiplicative group of the finite field Z,. For z,y € Z; put
Vey = (y,yz,y22, ..., y2" ). Define Ay = {vey | ,y € Z;}. Note that the size of the set A} is

(p—1)%
For a € Z, and « € Z)) define ng o by

Naa = {2y | T,y € Z;, < Uy, >=al}
Claim 2.1 Let a #0. If a,b# 0 then nao = npo. In addition, ng o < (n—1)(p — 1)

Proof: Consider the inner product,

n—1

< Uy, 00 >= Z yr'o; = yPy(z)
i=0

where P, (z) is the polynomial with @ as the vector of its coefficients, i.e. P,(z) = 3, a;z’. We are
interested in the number of solutions x,y of the equation

yPo(z) = a.

Fix z € Z;. Clearly, if P,(z) # 0 then for each y € Z; there is a different nonzero value to yP,(z).
Hence, each value in Z is generated by a unique y (in this case). On the other hand if P, (z) = 0,
then < vy, >=0 for every y € Z;. Since P,(x) = 0 for at most n — 1 different € Z, we conclude
that ngo < (n—1)(p —1). O

Theorem 2.2 A} is an % discrepancy set.

Proof: By the construction of A7,

DI " — <Q,Ug,y > i
0a(@) (p—1)2 yEG:Z ?
T, P



We can rewrite this as,

1 a
DISCA; (a) == (p——]_)2 ZZ Ng,aW | -
acZp

Recall that Zﬁ:& w® = 0. Since for a # 0, ng o = k is the same, the only non-zero contribution is from
a = 0, showing that Zaezp Na,aw® = Ngo — k. Since ngo < (n —1)(p—1) and 0 < k < p — 1, we have
that,

n—1

p—1

completing the proof of the theorem. O

DISCAg (Oé) é

3 Applications

3.1 Interpolation of Multivariate Polynomials

Let P(z1,...,2n) = Yt_gciz]”' --- o™ be a multivariate polynomial with ¢ integer coefficients. Let
L1(P) denote the sum of the absolute values of the coefficients of P, i.e. Li(P) = Yt_q|cil.

Lemma 3.1 Let A be an € discrepancy set, and P(x1,...,x,) = ¢o + Zle Cixii’l co-xp™. Then,
‘E(zl,...,zn)eA[P(w21? <o awzn)] - Co’ < €L1(P)

where E is the expectation over the uniform distribution of vectors from A.

Proof: Let €; = (e;1,...,€in). By the linearity of expectation,
t - —
Bz omyeal P, w™)] = cg + Y G E[w<47].
i=1

Since A is an ¢ discrepancy set and €; # 0,
|Elw<597)| <,

and the assertion of the lemma follows. O

By the same argument one can show the following.

Claim 3.2 Let A be an ¢ discrepancy set, and P(z1,...,T5) = >.i_g ciazii’l cexn™. Then,

t

‘E(zl,...,zn)eA {Hp(wm? s 7wzn>H2] - ZC?
=0

< eL3(P)

where E is the expectation over the uniform distribution of vectors from A.



The above claim gives an immediate tool to test if a sparse multivariate polynomial is zero (assuming
that its coefficients are integers and bounded). Since the coefficients are integers, then either 3%, c?
is at least one or it is zero. By choosing p > 2nL3(P) we guarantee that the error is less than 1/2, and
therefore, by the above claim, we can distinguish between the two cases.

We next demonstrate the derandomization on the algorithm of [Man92]. The idea, as in [Zip79],
is to interpolate the variables one by one. Since we have an upper bound, say t, on the number of
non-zero coefficients, there would be at most ¢ terms to consider. The assumption here is that we have
a black box that outputs the value of P(xy,...,x,) for any desired (z1,...,z,), and our objective is
to determine the coefficients of P. From the analysis it follows that this is possible even if our black
box only outputs (sufficiently accurate) approximations of the values of P.

Initially, we can rewrite P as,

P(xy,...,xy) = Zx{Pj(QTQ, ceey Tp).

We are interested in determining which of the P;’s are not the zero polynomial. To perform this we
note that, for a prime p > d,

-1
15 .
Pj(xg,...,xn) = — P(wk,xg,...,xn)w_k].
P =0
For each 2'= (22,...,2,) € Agfl we can compute Pj(22,...,2,) by using the above identity, and then

compute E.[|[P;(2)||].

In general we define P, ., as follows,

d d
P(xl,...,xn): Z Zfl?il"'mzkpel7...,ek(xk+17"'71.71)7
e1=0 er=0

ie. Pe .. e(Tkt1,--.,xpn) has all the terms that include z{' xzk By the properties of the discrete
Fourier transform we have that,

S

1
1 p . 4 . ,
—e —e
P ep(Tht1s--sTpn) = ]? . E P, o w Ty, )w T T ORR
Jr=0

—1
j1=0
In order to test whether P, ., # 0, we estimate its norm by computing,

k
B
E(zk_H,...,zn)eAzqC [“E(zl,...,zk)eAg [P(w21a s awzn)w ijl ! ]]

2]
The interpolation works in phases. At the kth phase we determine all the vectors (e1,...ex), such
that P, ¢, # 0, given all the the vectors (e1,...ex_1), such that P, ., , # 0. Since the polynomial

P has only t non-zero coeflicients, at any phase we need to maintain at most ¢t vectors. At the end we
have all the terms, i.e. €;, and need only to determine the coefficients.



3.2 Univariate polynomials

In [Kat89, ATKT90] and, more explicitly, in [RSW93] it is shown how to construct explicitly a set
B C Z,, such that |B| = O((logp/¢)°), for some constant ¢, and such that for any o # 0,a € Z,,

E wOéZ

z€B

1
| Bl

We can use the set B to interpolate any sparse univariate polynomial of (high) degree d (< p). Recall
that if P(z) = 3¢ a2’ then ar = (1/p) o P(w/)w™" . Hence, averaging over B would add an
additive error of at most eL;(P) to any coefficient.

<e.

Using such constructions we can reduce the size of A} when & >> 1/pY/¢ to O(%(logp/e)°). To do
so, simply modify the construction above by letting = vary over an arbitrary subset of cardinality n/e
of Z, and by letting y vary over a subset B C Z,, that has the above properties. It is easy to check that
the discussion in Section 2 implies that the modified set is a 2e-discrepancy set in Z;. By Proposition

7’ in [AR94], for € > p~"/? the size of any e discrepancy set for Zy is at least Q(%) showing

that the last construction is not far from the optimum.

3.3 Axis Parallel boxes

The sets A} can be used to approximate the expectation of any function P with a small value of Ly (P).
As an illustration, consider the function fo(x) =1if 2 < a and f,(x) = 0 otherwise, where z € Z,. For
the intersection of k such functions, i.e. F(Z) = ]_[?:1 fa;,i; (%), one can show that Ly (F) = O(log" p),
and hence the set A} can be used to approximate the expectation of F (which is the fraction of the

volume of the corresponding box in Z) within an additive error of O(”IOTgkp). In fact, by replacing
nlog(p/n)
(sl e/

F by a smooth function that approximates it this error term can be improved to O . Since

for this example this is a weaker estimate than those obtained by the constructions in [EGL192] and
[CRS94] we omit the details.

4 Conclusion and Open questions

We showed that the set A7 is an Z—f discrepancy set, and |A?| = O(p?). The modified construction

described in Subsection 3.2 provides an e-discrepancy set of size polynomial in logp/e and linear in n.

For the interpolation problem we need that p is larger than the degree of the polynomial in each
variable. Therefore, the modified set can be useful here. It is not difficult to check (see Proposition 6’
in [AR94]) that a random set of ©(Z; logp) vectors from Z would almost surely be an ¢ discrepancy
set, and as mentioned above this is nearly best possible. However the problem of finding an explicit
construction of such a small e-discrepancy set remains open.
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