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Abstract 1 Introduction

We consider the standard semi-direct produck 5 This paper reveals yet another bridge that expanders

of finite groupsA, 5. We show that with certain choices ¢, ) potveen Theoretical Computer Science and Graph
of generators for these three groups, the Cayley graph ofTheory on one side, and Algebra and Group Theory on

A x B is (essentially) the zigzag product of the Cayley the other. This follows from a sim .
. : ple connection that we
graphs ofd and 5. Thus, using the results of [RVWOO], discover and begin to explore here, between two basic

the new Cayley graph is an expander if and only if its 0 4tins: the zigzag product of graphs and the semi-
two components are. We develop some general ways o irect product of groups

using this construction to obtain largeonstant-degree The semi-direct product of groups is one of the old-

expanding Cayley graphs from small ones. . .
: est and most basic constructions of group theory. When
In [LW93], Lubotzky and Weiss asked whether expan- a groupB acts on another groug in scerfain waill a

sion is a group property; namely, is being expander for larger groupA x B can be constructed, whose elements
(a Cayley graph of) a grougr depend solely o7 and are all pairs{(a,b) : a € A,b € B} ar;d group multi-
not on the choice of generators. We use the above con- Vo ; '

. S . .~ plication uses the action above in a nontrivial way. One

struction to answer the question in negative, by showing . oo .

e ) . way to see the power of this operation is that the semi-
an infinite family of groups!; x B; which are expanders

: . . direct product can have much fewer generators than the
with one choice of (constant-size) set of generators and ; -
. . LS X group A does. Another is that the semi-direct product of
are not with another such choice. It is interesting to Abelian arouns can be non-Abelian
note that this problem is still open, though, for “natu- group :

” iy . ; In contrast, the zigzag product of graphs is very new
[” famil f like th t
:ﬁe s?nn:g)llgsg(r)ogggygz'(; E) @ symmetric groups, or —itwas introduced only last year in the paper [RVWOO].

When the vertices of a (small) gragh label the edges
around each vertex of a (big) graph a larger graph
G @ H can be constructed, whose vertices are pairs
{(g,h) : g € V(G),h € V(H)}, and adjacency is de-
fined using the above labeling in a nontrivial way. The
power of this operation can be seen from two simultane-
ous properties it has. The degree of the new graph can be
much smaller than the degree of the big gréahNev-
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Computer Science (which range from derandomization of this connection to a basic question in this boundary
to network design and error correction) and Mathemat- area of graph theory and group theory - expanding Cay-
ics (see for example two recent unexpected applicationsley graphs. We feel that such constructions will find
of expanders: one [G0O0] for the Baum-Connes Conjec- more applications, on both sides of this boundary.
ture and one [LPOO] for computational group theory).

While random regular graphs are almost always ex- 1.1 Is expansion a group property?
panders, to give an explicit description of an infinite
family of (bounded degree) expanders is a difficult task. ~ As mentioned above, major examples of expanders
Until last year, essentially all explicit constructions were are Cayley graphs of certain groups with judicious
of algebraic nature - they were either Cayley graphs choice of (constant number of) generators. In some of
of certain groups (e.g. [AM84, LPS88, Mar88]), or these constructions, the (infinite) family of groups is ob-
graphs whose vertices are identified with some alge- tained in a uniform way — all groups are finite quotients
braic structure on which there is a natural action of a of one infinite group, and the generating sets are the pro-
group preserving adjacency (e.g. [Mar73, GG81]). This jections of a fixed finite set of generators of the infinite
is not surprising, since expansion can be captured bygroup. Such a construction gives a family of constant de-
the 2nd largest eigenvalugG) of the adjacency ma-  gree expanders when the infinite group has the Kazhdan
trix of the graph, normalized by the degree, as shown in "Property T” or even the weaker LubotzK{Property
[Tan84, AM84, A86]. As this is an algebraic parameter 7" [L94]. In these casesverychoice of a generating set
- it can be related (as is done in all the papers above)for the infinite group would work, namely would render
to known tools or results from algebra or number theory all finite graphs expanding. On the other hand, if the in-

when the graph has such a structure. finite group is’Amenable” thenno choice of generators
The novelty in the work of [RVW00] was that it gave for it would yield a sequence of expanders [LW93].
an entirely combinatorial explicit construction of con- Of course, for finite groups we have many more

stant degree expander graphs. Starting with a constanghoices of (bounded) generating sets, which do not have
size expander, one can apply successively the zigzad© be obtained in such uniform fashion. Nevertheless,
product (as well as some standard graph operations) tdhere was some evidence that this "all or nothing” situ-
obtain larger and larger expanders of the same fixed de-ation holds in this more general nonuniform setting, at
gree. The central property required for proving this, least for some nice families of groups. For example, in
namely that the zigzag product "preserves” expansion, the sequence of grougsl,,, (p), wherem is fixed and
has a straightforward elementary proof that follows a p ranges over all primes, every sequence of bounded
clear, information theoretic intuition. generating sets for them whose expansion can be ana-
It is perhaps ironic that despite the attempt to break yz€d turns out to be expanding. On the other hand, in
from the algebraic mold, the zigzag product can be the sequence of permutation grougswheren ranges
viewed as a generalization of the semi-direct product Over the integers, every sequence of bounded generating
- a classical algebraic operation. We show that with S€tS whose expansion can be analyzed turns out to be
appropriate choices of generators for the grodps3 non-expanding. (See also [LR92] for some experimen-
andA x B, the Cayley graph of the semi-direct product t@l evidence). Note however, that if one is interested in
A x B turns out to be the zigzag prodaaf the Cayley ~ Unbounded sets of generatofs, can be expanders and
graphs of4 andB. non-.expgnders—see [R97]. So, the essence of the prob-
Thus the zigzag theorem has implications on the lem is with bounded sets of generators as, in fact, every

group theory side: whenever the generators satisfy the970UP Of sizen is an expander with respect to most sets
required properties, the semi-direct product now be- Of ¢log elements, where > 1, as proved in [AR94].
comes a tool for constructing large expandi@gyley _ Th.IS led Lubotzky and Weiss to ask whether expan-
graphs from small ones. Moreover, as noted above, SION i @ property of a group, rather than a particular
even thoughd may have a large set of (expanding) gen- CcN0ice of generators:

erators, the semi-direct product can be expanding with Question 1.1 [LW93] Fix an integerd. Let A; be any
much fewer generators. The main technical part of the family of finite groups, and for each take Zany two
paper explores this situation, and we elaborate on it in symmetric setss;, S; of’ generators of size at most

subsection 1.2 below. But first we motivate (in subsec- | ot . %. be the 2nd eigenvalues of (the random walk
tion 1.1) such constructions, describing a CONSequencey ) tﬁ’e (Z:ayley graphs of; with generatorsS;, $;, re-

3This is not strictly precise - we actually need to generalize the spectlvely. Is it true t_hat the SEque'_wﬁls umfo,rmly
original [RVWOO0] definition of the zigzag product in a natural way, bounded ?bove by a fixed constant if and only if the
that preserves its properties. sequence,; is ?




We prove that in this generality the answer is no. We the groupA comprises of a few orbits under the action of
use the connection above to describe an infinite family of B. We will limit ourselves (via a group representation)
groups which is expanding with one choice of bounded to the case thaB is a matrix group and! is an invari-
generating sets and non-expanding with another. Inant subspace under this group of linear transformations.
essence, what the connection with zigzag allows us to doThus A is an Abelian group, and we seek generating sets
is to show that if the conjecture has been true, it would for A which are the orbits of a constant number of vec-
hold even for certain sets of unbounded generators (astors from A under the action of all matrices iB. Our
we can later reduce them using semi-direct product to atask is to find such sets which are expanding, and others
bounded set of generators, maintaining expansion). Thiswhich are not.
leads us to construct appropriate groups which can be  Our main technical results provide general criteria for
expanding or non-expanding depending on the choicethe orbits of a constant number of randomly chosen vec-
of unbounded sets of generators of the required struc-tors from A to form an expanding generating set. These
ture, which we explain in the next subsection. Putting are given in Theorems 3.1 and 3.4 in Section 3. For ex-
everything together, we exhibit a counterexample to the ample, we show that such is the case wheneVés a
guestion above. This is the content of Theorem 4.2 in minimal invariant space (i.e. the representation is irre-

Section 4. ducible). The proofs combine in a simple way a prob-
_ _ _ abilistic argument, linear algebra, and the transitivity of
1.2 Expanding generators with few orbits the group action. It is important to note that we do not

have a single explicit example of such a generating set.

Let us start with an example, which is actually related For the application to the Lubotzky-Weiss question
to the counterexample above, and points to the structurewe need to work with a groug® which has a con-
of generators required to make the semi-direct productstant number of expanding generators, and we choose
“efficient” in reducing the number of generators. the groupSLs(p). We also need to pickl for which
non-expanding generators can be exhibited. This is done
usingA = F;", whereP; = Z, U {oo} is the projec-
tive line, and the action oB on A is the permutation of
the coordinates according to the Mobius transformations
acting on the projective line, as described in Section 4.

Example 1.2 Consider the graph of the Boolean cube.
It is the Cayley graph of the Abelian groufy’ with the
generators being the unit vectors. Note that this gen-
erating set is the orbit obneunit vector, under the ac-
tion of the cyclic group?Z,, on the coordinates. It is well
known that this graph is not an expander, namely the 2nd o
eigenvalue of the random walk on it tends to iaends ~ Organization of the paper
to infinity. Similarly any choice of vectors will not give
expanders, since if the graph is connected, it is isomor-  In Section 2 we give the relevant definitions and
phic to the cube. On the other hand it is not difficult results concerning the zigzag product, the semi-direct
to show thatn random vectors will almost surely (that product, and formulate the connection between them. In
is, with probability tending td andn tends to infinity) Section 3 we derive general conditions under which it is
makeFy into expanders. possible to find expanding sets consisting of only a few
Can one find an expanding generating se2ofvec- orbits. In Section 4 we describe the family of groups
tors which are the orbits of onlgwo vectors ? In other ~ with expanding and non-expanding sets of generators.
words, the2n generators should be all possible cyclic We conclude in Section 5 with some open problems.
shifts of two given vectors. One of the results in this
paper is that (ifn is a prime and2 is a primitive root 2  Preliminaries
modulon) in fact such2n vectors can be taken to be
the orbits of tyvo random vgctors. While this rgsult gives 5 q Graphs and the Zig-zag product
rise to especially elegant linear error correcting codes
which are asymptotically good (i.e., have constant rate
and linear distance), it falls short of providing the coun-
terexample to Question 1.1. The reason is that the acting
group Z,, itself cannot be made an expander with a con-
stant number of generators (and thus cannot provide the
required “reduction”).

All graphs discussed in this paper are undirected, reg-
ular graphs. We allow multiple edges and self loops, so
graphs are best understood as symmetric nonnegative in-
teger matrices with a fixed row-sum, called tiegree
For a graphG, we letV (G) denote its set of vertices and
E(G) its (multiset of) edges.

Back to the general discussion, the main structuralre-  Let G be ad-regular graph, and/ its adjacency ma-
quirement for the semi-direct product to reduce the num- trix. We denote by\(G) the second largest (in absolute
ber of generators, is that the set of generators chosen fowvalue) eigenvalue of//d. Equivalently, sincd is the



eigenvector of\/ /d corresponding to the (largest) eigen-
value 1 \(G) is the largest valup)! (M /d)v| takes, over
all real unit vectors) whose entries sum to zero.

We say that a grapf' is an[n, d, A]-graph if it is ad-
regular graph om vertices, and\(G) < A.

An infinite family of graphs; is called arexpander
family if for some\ < 1 the normalized second largest
eigenvalue of each graph,; does not exceed. Itis a
non-expandefamily if there is no such uniform bound

A. Note that there is no requirement for the degrees to
be bounded in this definition! We shall sometimes abuse
notation and refer to a specific graph as an expander o
a non-expander, when the family it belongs to is clear

r

We will use only the first bound in this paper, to con-
clude that wheneve® andH are expanders, So@&2H .
We also use the (easy) reverse direction of this implica-
tion, saying that if eitheé or H fails to be an expander,
so doesi @ H. In particular, it is easy to see that under
the notation of the previous theorext\G@H) > \(G).

2.2 Groups and the semi-direct product

Let A and B be finite groups. Assume that acts
on A, namely there is a homomorphism frakhto the
automorphism group ofl. For elements € A;b € B
we usea’ to denote the action df on a. We also use

from the context. For example, the complete graphisan g

expander, while the Boolean cube is a non-expander.

We shall now slightly extend the definition of the zig-
zag product of [RVWO0O]. Lefd be an[m, d, ]-graph,
and letG be an|n,cm, A]-graph, which is the (edge)
disjoint union ofc m-regular graph&-; on the same set
of vertices (in the original definition; was 1). Further
assume that in eaofi; the edges around every vertex
are (arbitrarily) labeled bym] in a 1-1 fashion.

The zigzag product off andH, denoted7@ H, has
vertices(v, k) for everyv € V(G) andk € V(H) (so
there is a “cloud” of vertices off around every original
vertex ofG). Two vertices(v, k) and(u, [) are adjacent,
intuitively if we can travel between them in a “zig-zag”
path of length 3: one step oH in the v cloud, then
switching to theu cloud according to an edge 6f (and
the labeling), and a final step on in thecloud. More
formally, they are adjacent if there exist I’ € [m] and
i € [c] such that the following conditions hold:

o (k,k')e E(H)and(l,l') € E(H).

e Anedge(v,u) € E(G;) is labeledk’ nearv andl’
nearu.

In this slightly more general definition, the middle
step in the “zigzag” is stochastic (withpossibilities),
whereas it was deterministic in the original definition
of [RVWO0O0]. Nevertheless, the basic property that a
uniform distribution on the vertices of a cloud around
some vertex ofG would be dispersed by this step to
adjacent clouds according to the random walk(®is

a” to denote the orbit of under this action. Here is an
example of such action which will be used in the next
sections.

Example 2.2 Letp : B — GL(n, F) be any represen-
tation of a groupB. Let A be the Abelian groug™.
Then for every: € A,b € B we haver® = p(b) - a with

- representing matrix vector product over.

We will represent groups multiplicatively, and 1 will
denote the identity of the group (no confusion should
arise between the identity elements of different groups).

Thesemi-direct producof A and B, denoted
Ax B, is the group whose elements are the ordered pairs
{(a,b) : a € A,b € B}, with the group operation
defined by

(a,b)(a,b) = (aa®"", bb)

It is easy to verify that indeed this operation defines a
groug whenB acts onA.

When we talk about generators of a group, we shall
always mean a multiset of generators, that is, we allow
repetitions. Letx be a generating (multi)set fof. We
will work only with symmetric generating (multi)sets,
namely the number of occurrencescofinda ! in « is
the same for every € A.

The Cayley graph of a groug with a (multi)set of
generatorsy, denotedC'(4, «), has verticesA and for
every vertexx € A and generaton € « there is an

maintained. Thus, it is easy to see that the basic eigen-edge(z, za). Moreover, the edges are naturally labeled

value bound in [RVWOO] carries over without change to
this more general definition, to give

Theorem2.1The graph G @ H is an
[nm, cd?, f(\, u)]-graph, with the functionf(\, u)
satisfying

e Foreveryl < 1,u < 1, we havef (A, u) < 1.

o f(Ap) SN+ p+p

as follows: the label ofz, za) nearz is a (and its label
nearza is a~'). Note that the graph is|-regular.

Now we are ready to describe our main construc-
tion. Assume thaf3 acts onA as above. Lety, 5 be
sets of generators fof, B respectively, and further as-
sume thatx is a (disjoint) union ofB-orbits, namely

4In fact A x B is the smallest groupy generated by copies of
and B s.t. A is normal inG and the action oB on A within G by
conjugation is the original given action.



a = |J;_, a?. Define the following set of generators
for A x B:

v ={1,0)(a;, (L) : b,V € B, i € [c]}

Note that|y| = ¢|3|%, and thatG = C(4,a) is the
edge-disjoint union of the graphsG; = C(A4,aP),
where the edges af/; around every vertex are labeled
by the elements of3 in the obvious way. This enables
us to define the zigzag product A, o) @ C(B, 8) and
notice (syntactically using the definitions of semi-direct

Proof: We present the proof foj = 2. The argu-
ment for generaf; is similar, but the calculations are a
bit more tedious. So from here oh= FJ, and here we
write it additively.

First, sinceA is Abelian, the eigenvalues 61(A, o)
can be expressed in terms of the characterd.off y
is any character, then the corresponding eigenvalue is
Ay = Wl‘ > eca X(a). Each characteg of A corre-
sponds to a vectar € A such thaty(a) = (—1)**
where- denotes the inner product ovéb. Therefore

product and zig-zag product) that following a generator we have an elegant bound ofC (A, «)): some nota-

of v from an element oA x B leads us to its “zig-zag”

tions are needed first; define a binary vector of length

neighbour in that group. This gives our main conceptual m to bed-balanced if at leastm of its coordinates are

connection:
Theorem 2.3 C(A x B,vy) = C(A4,a)@C(B, B)

Thus, if C(A,a) and C(B, 3) are expanders, and
|8|, ¢ are constants, then regardless of the sizevof
the graphC'(A x B,~) is a constant degree expander.

0 and at leastm coordinates aré. Also, for a vector
x € Aand asequence C Aletx-Y denote the vector
of inner products of with the members of".

Claim 3.2 If for everyx € A, z # 0 the vectorz - « is
d/2-balanced, the\(C(4,«)) < 1—34.

This suggests a method for constructing large constant-

degree expanders from small ones, that we follow in the

next section.

3 Abelian expanders generated by few or-
bits

It is easy and well known that in order that Cayley

We will fix § = .01, and aim to prove the theorem
with Ao = .99 = 1 — 4. As « in our case is the union
of two orbits, it would clearly suffice to find;, a5 such
that for every0 # x € A at least one of the vectors
z-a®, z-af is d-balanced. This will be done by choosing
a1, a2 independently at random from, and using the
following bound.

graphs of Abelian groups be expanding, the generatingClaim 3.3 Fix0 # € A, and choose: uniformly at
set cannot have constant size; indeed, it has to grow Iog—random fromA. Then '

arithmically in the size of the group- [KI84], see also
[AR94]. In this section we show that under very general

situations, the orbit (under a natural group action) of a

constantnumber of group elements in an Abelian group
is an expanding generating set.

Let ¢ be a prime,B a group, F, the finite field of
q elements, angp : B — GL(r, F,) an irreduciblé
representation over, of dimension-. TakingA = F7,
we have a natural action & on A, namelya® = p(b)-a.

As formally stated in the main theorem of this section
below, in this very general situation, the orbits of almost
all pairs of vectors i are expanding!

Theorem 3.1 For everygq there exists\, < 1 such that
the following holds.

For everyB and A as above, there exist two elements
ai,as € A, so that

MC(A{a,a'})) < Aq

Moreover, ifay, as are chosen independently at random
from A, the probability that they fail to satisfy the bound
above i2 ("),

5All this means is that there is no nontrivial invariant subspace of

kg

Prlz - a® isnot § — balanced] < 2737/

We now prove this claim. It is more convenient to
consider the vectar? - a (by doing this we actually re-
placep by its adjoint representation acting on the func-
tionals of A, but this is also an irreducible representa-
tion). Sincep is irreducible andr # 0, we know that
there must be a subsBtC B of size|R| = r such that
the set of vectors:? are linearly independent. There-
fore, also the (shifted) set$” are linearly independent
for everyb € B. Sete = 27%7/4/2, and letE(b) denote
the event thai:*” - a is not2s-balanced. Now the proof
follows from three easy observations.

e For everyb, Pr|Ep] < e. This follows (with room
to spare) from the Chernoff bound since the vector
xPf.q is uniformly distributed inA. This is so since
a is chosen uniformly at random, and” defines a
nonsingular transformation of.

e The probability thatr, holds for at least half the
elementsh € B is at most2e. This follows by
Markov’s inequality from the bound above.



o If E, fails for at least half ob € B, thenz? -a is - It is a good question if the last theorem provides an
balanced, as required. This is so since the translatednfinite family of expanders for a given fixed g. The fa-
bR cover every element dB exactlyr times. mous Artin Conjecture states that the theorem’s hypoth-

| esis, namely thaf is a generator o, holds forevery
primeg. It was proven by Heath-Brown [HB86] that the

One can extend the theorem above to situations in artin Conjecture fails forat mosttwo primes, thus e.g.
which the representation is not irreducible. Note that the 4 |east one of the primese {2, 3,5} gives an infinite

only way irreducibility was used above was to argue that family.

foreveryz € A, z # 0 we haverk(z”) = r (whererk This last family of expanders is particularly interest-

is the rgnk of thls_set of vectors, or more precisely, the ing, since it yields asymptotically good (constant rate

dimension of the linear space they span). ~ and linear distance) family of linear codes, whose gen-
The probabilistic argument in the proof works just  grator matrix is the concatenation of two circulant matri-

as well when we have sgfﬁmentlé good bounds on the ceg |t is an interesting problem to construct such codes
number of vectors: for whichrk(z*) is small. explicitly.

Theorem 3.4 Let A = F be any invariant space ainy
representation oB. Letk, be the number of elements 4 Expansion is not a group property
x € Afor whichrk(zP) = s. Letd be an integer such

that 320, ksq~® < 1/2. Then there are: elements Consider the group, = SL2(F,), the group of all
a; € A, with¢ < O(d), such that 2 x 2 invertible matrices over, with determinantl.
MNC(A {a? < i€ [d)) < 1/2 It is well known thgt it has a bounded set of expanding
generators. In particular, let
Proof: (Sketch) M, = ( L1 ) My = ( Lo )
The idea is to use Claim 3.3 (extended naturally for gen- 0o 1) 11

eral ¢, not necessarilyy = 2) separately for different ]
values ofr. The condition of the theorem guarantees 1heorem 4.1[L94] There is a constant < 1 such that
that with positive probability, the orbits af randomly ~ for every primep,
chosen elements; will form a balanced set. |
)‘(C(SLQ(FP)7 {Mla M2})) <A

Two interesting special cases of the above (with a

suitable tuned computation) are the following: Let P, = F, U {oo} be the projective line, and con-
) sider the Mobius action o' L, (F,,) on P; given by
Theorem 3.5Let B = SLa(p) for some primep,

and consider the permutational representation An= ( a b >( ) ar +b

F2”+1 induced by the Mobius action & on the projec- c d T+ d

tive line P, = Z, U {oo} (defined in Section 4). Then

there exist two elements, a; € A, so that Let A, = F/*, and consider the action @, on A,
MC(A, {a?,aB})) < 99. induced by the Mobius permutation of the coordinates

as above.

Proof: (Sketch) Now leta; (p), az2(p) € A, satisfy Theorem 3.5. Fur-

While this representation is not irreducible, it decom- ther lete(p) be a fixed unit vector ind,,.

poses into one representation of dimension 1 and an- Now we are ready to describe a counterexample to

other irreducible representation, so for all vectors A the Lubotzky-Weiss question. The proof follows di-
which are not constant in all coordinates,(z”) = p, rectly from the discussion in the previous sections and
which suffices for the probabilistic argument. Il the fact that for the Boolean culié onp + 1 vertices,
the normalized second largest eigenvalubis%.
A similar argument gives the following.
Theorem 4.2 e There is a constanf < 1 such that

Theorem 3.6 For everyq there is)\, < 1 so that the for every primep
following holds. LetB = Z,, for any primep, such that
q is a generator of the multiplicative groug;, and letB MC(A, % By, S1)) < 6,
actonA = F? by cyclic permutation of the coordinates.
Then there exist two vectodis, a; € A = FP, so that where
MNC(A,{at',a3})) < Ag. S1=A{(1, Mi)(a;(p), 1)(a, My) : 1 <i,j,k <2}
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