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Abstract

We consider the standard semi-direct productAoB
of finite groupsA,B. We show that with certain choices
of generators for these three groups, the Cayley graph of
A o B is (essentially) the zigzag product of the Cayley
graphs ofA andB. Thus, using the results of [RVW00],
the new Cayley graph is an expander if and only if its
two components are. We develop some general ways of
using this construction to obtain largeconstant-degree
expanding Cayley graphs from small ones.

In [LW93], Lubotzky and Weiss asked whether expan-
sion is a group property; namely, is being expander for
(a Cayley graph of) a groupG depend solely onG and
not on the choice of generators. We use the above con-
struction to answer the question in negative, by showing
an infinite family of groupsAioBi which are expanders
with one choice of (constant-size) set of generators and
are not with another such choice. It is interesting to
note that this problem is still open, though, for “natu-
ral” families of groups, like the symmetric groupsSn or
the simple groupsPSL(2, p).
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1 Introduction

This paper reveals yet another bridge that expanders
form between Theoretical Computer Science and Graph
Theory on one side, and Algebra and Group Theory on
the other. This follows from a simple connection that we
discover and begin to explore here, between two basic
operations: the zigzag product of graphs and the semi-
direct product of groups.

The semi-direct product of groups is one of the old-
est and most basic constructions of group theory. When
a groupB acts on another groupA in a certain way1, a
larger groupAoB can be constructed, whose elements
are all pairs{(a, b) : a ∈ A, b ∈ B}, and group multi-
plication uses the action above in a nontrivial way. One
way to see the power of this operation is that the semi-
direct product can have much fewer generators than the
groupA does. Another is that the semi-direct product of
Abelian groups can be non-Abelian.

In contrast, the zigzag product of graphs is very new
– it was introduced only last year in the paper [RVW00].
When the vertices of a (small) graphH label the edges
around each vertex of a (big) graphG, a larger graph
G©z H can be constructed, whose vertices are pairs
{(g, h) : g ∈ V (G), h ∈ V (H)}, and adjacency is de-
fined using the above labeling in a nontrivial way. The
power of this operation can be seen from two simultane-
ous properties it has. The degree of the new graph can be
much smaller than the degree of the big graphG. Nev-
ertheless, if the two building blocksG andH are good
expanders, so is their zigzag product2.

The link between the two is another step in a long
chain of works attempting to understand and construct
expander graphs. Expanders are fundamental combi-
natorial objects, with a wide variety of applications in

1Namely, as a subgroup of the automorphisms of A
2It is interesting to note that a related construction was proposed

and analyzed in a special case by Gromov [G83]
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Computer Science (which range from derandomization
to network design and error correction) and Mathemat-
ics (see for example two recent unexpected applications
of expanders: one [G00] for the Baum-Connes Conjec-
ture and one [LP00] for computational group theory).

While random regular graphs are almost always ex-
panders, to give an explicit description of an infinite
family of (bounded degree) expanders is a difficult task.
Until last year, essentially all explicit constructions were
of algebraic nature - they were either Cayley graphs
of certain groups (e.g. [AM84, LPS88, Mar88]), or
graphs whose vertices are identified with some alge-
braic structure on which there is a natural action of a
group preserving adjacency (e.g. [Mar73, GG81]). This
is not surprising, since expansion can be captured by
the 2nd largest eigenvalueλ(G) of the adjacency ma-
trix of the graph, normalized by the degree, as shown in
[Tan84, AM84, A86]. As this is an algebraic parameter
- it can be related (as is done in all the papers above)
to known tools or results from algebra or number theory
when the graph has such a structure.

The novelty in the work of [RVW00] was that it gave
an entirely combinatorial explicit construction of con-
stant degree expander graphs. Starting with a constant
size expander, one can apply successively the zigzag
product (as well as some standard graph operations) to
obtain larger and larger expanders of the same fixed de-
gree. The central property required for proving this,
namely that the zigzag product ”preserves” expansion,
has a straightforward elementary proof that follows a
clear, information theoretic intuition.

It is perhaps ironic that despite the attempt to break
from the algebraic mold, the zigzag product can be
viewed as a generalization of the semi-direct product
- a classical algebraic operation. We show that with
appropriate choices of generators for the groupsA, B
andAoB, the Cayley graph of the semi-direct product
AoB turns out to be the zigzag product3 of the Cayley
graphs ofA andB.

Thus the zigzag theorem has implications on the
group theory side: whenever the generators satisfy the
required properties, the semi-direct product now be-
comes a tool for constructing large expandingCayley
graphs from small ones. Moreover, as noted above,
even thoughA may have a large set of (expanding) gen-
erators, the semi-direct product can be expanding with
much fewer generators. The main technical part of the
paper explores this situation, and we elaborate on it in
subsection 1.2 below. But first we motivate (in subsec-
tion 1.1) such constructions, describing a consequence

3This is not strictly precise - we actually need to generalize the
original [RVW00] definition of the zigzag product in a natural way,
that preserves its properties.

of this connection to a basic question in this boundary
area of graph theory and group theory - expanding Cay-
ley graphs. We feel that such constructions will find
more applications, on both sides of this boundary.

1.1 Is expansion a group property?

As mentioned above, major examples of expanders
are Cayley graphs of certain groups with judicious
choice of (constant number of) generators. In some of
these constructions, the (infinite) family of groups is ob-
tained in a uniform way – all groups are finite quotients
of one infinite group, and the generating sets are the pro-
jections of a fixed finite set of generators of the infinite
group. Such a construction gives a family of constant de-
gree expanders when the infinite group has the Kazhdan
”Property T” or even the weaker Lubotzky”Property
τ ” [L94]. In these caseseverychoice of a generating set
for the infinite group would work, namely would render
all finite graphs expanding. On the other hand, if the in-
finite group is”Amenable” thennochoice of generators
for it would yield a sequence of expanders [LW93].

Of course, for finite groups we have many more
choices of (bounded) generating sets, which do not have
to be obtained in such uniform fashion. Nevertheless,
there was some evidence that this ”all or nothing” situ-
ation holds in this more general nonuniform setting, at
least for some nice families of groups. For example, in
the sequence of groupsSLm(p), wherem is fixed and
p ranges over all primes, every sequence of bounded
generating sets for them whose expansion can be ana-
lyzed turns out to be expanding. On the other hand, in
the sequence of permutation groupsSn wheren ranges
over the integers, every sequence of bounded generating
sets whose expansion can be analyzed turns out to be
non-expanding. (See also [LR92] for some experimen-
tal evidence). Note however, that if one is interested in
unbounded sets of generators,Sn can be expanders and
non-expanders — see [R97]. So, the essence of the prob-
lem is with bounded sets of generators as, in fact, every
group of sizen is an expander with respect to most sets
of c log n elements, wherec > 1, as proved in [AR94].

This led Lubotzky and Weiss to ask whether expan-
sion is a property of a group, rather than a particular
choice of generators:

Question 1.1 [LW93] Fix an integerd. LetAi be any
family of finite groups, and for eachi take any two
symmetric setsSi, Ŝi of generators of size at mostd.
Let λi, λ̂i be the 2nd eigenvalues of (the random walk
on) the Cayley graphs ofAi with generatorsSi, Ŝi, re-
spectively. Is it true that the sequenceλi is uniformly
bounded above by a fixed constant< 1 if and only if the
sequencêλi is ?
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We prove that in this generality the answer is no. We
use the connection above to describe an infinite family of
groups which is expanding with one choice of bounded
generating sets and non-expanding with another. In
essence, what the connection with zigzag allows us to do
is to show that if the conjecture has been true, it would
hold even for certain sets of unbounded generators (as
we can later reduce them using semi-direct product to a
bounded set of generators, maintaining expansion). This
leads us to construct appropriate groups which can be
expanding or non-expanding depending on the choice
of unbounded sets of generators of the required struc-
ture, which we explain in the next subsection. Putting
everything together, we exhibit a counterexample to the
question above. This is the content of Theorem 4.2 in
Section 4.

1.2 Expanding generators with few orbits

Let us start with an example, which is actually related
to the counterexample above, and points to the structure
of generators required to make the semi-direct product
“efficient” in reducing the number of generators.

Example 1.2 Consider the graph of the Boolean cube.
It is the Cayley graph of the Abelian groupFn2 with the
generators being then unit vectors. Note that this gen-
erating set is the orbit ofoneunit vector, under the ac-
tion of the cyclic groupZn on the coordinates. It is well
known that this graph is not an expander, namely the 2nd
eigenvalue of the random walk on it tends to 1 asn tends
to infinity. Similarly any choice ofn vectors will not give
expanders, since if the graph is connected, it is isomor-
phic to the cube. On the other hand it is not difficult
to show that2n random vectors will almost surely (that
is, with probability tending to1 andn tends to infinity)
makeFn2 into expanders.

Can one find an expanding generating set of2n vec-
tors which are the orbits of onlytwo vectors ? In other
words, the2n generators should be all possible cyclic
shifts of two given vectors. One of the results in this
paper is that (ifn is a prime and2 is a primitive root
modulon) in fact such2n vectors can be taken to be
the orbits of two random vectors. While this result gives
rise to especially elegant linear error correcting codes
which are asymptotically good (i.e., have constant rate
and linear distance), it falls short of providing the coun-
terexample to Question 1.1. The reason is that the acting
groupZn itself cannot be made an expander with a con-
stant number of generators (and thus cannot provide the
required “reduction”).

Back to the general discussion, the main structural re-
quirement for the semi-direct product to reduce the num-
ber of generators, is that the set of generators chosen for

the groupA comprises of a few orbits under the action of
B. We will limit ourselves (via a group representation)
to the case thatB is a matrix group andA is an invari-
ant subspace under this group of linear transformations.
ThusA is an Abelian group, and we seek generating sets
for A which are the orbits of a constant number of vec-
tors fromA under the action of all matrices inB. Our
task is to find such sets which are expanding, and others
which are not.

Our main technical results provide general criteria for
the orbits of a constant number of randomly chosen vec-
tors fromA to form an expanding generating set. These
are given in Theorems 3.1 and 3.4 in Section 3. For ex-
ample, we show that such is the case wheneverA is a
minimal invariant space (i.e. the representation is irre-
ducible). The proofs combine in a simple way a prob-
abilistic argument, linear algebra, and the transitivity of
the group action. It is important to note that we do not
have a single explicit example of such a generating set.

For the application to the Lubotzky-Weiss question
we need to work with a groupB which has a con-
stant number of expanding generators, and we choose
the groupSL2(p). We also need to pickA for which
non-expanding generators can be exhibited. This is done
usingA = FP1

2 , whereP1 = Zp ∪ {∞} is the projec-
tive line, and the action ofB onA is the permutation of
the coordinates according to the Mobius transformations
acting on the projective line, as described in Section 4.

Organization of the paper

In Section 2 we give the relevant definitions and
results concerning the zigzag product, the semi-direct
product, and formulate the connection between them. In
Section 3 we derive general conditions under which it is
possible to find expanding sets consisting of only a few
orbits. In Section 4 we describe the family of groups
with expanding and non-expanding sets of generators.
We conclude in Section 5 with some open problems.

2 Preliminaries

2.1 Graphs and the Zig-zag product

All graphs discussed in this paper are undirected, reg-
ular graphs. We allow multiple edges and self loops, so
graphs are best understood as symmetric nonnegative in-
teger matrices with a fixed row-sum, called thedegree.
For a graphG, we letV (G) denote its set of vertices and
E(G) its (multiset of) edges.

LetG be ad-regular graph, andM its adjacency ma-
trix. We denote byλ(G) the second largest (in absolute
value) eigenvalue ofM/d. Equivalently, sincē1 is the
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eigenvector ofM/d corresponding to the (largest) eigen-
value 1,λ(G) is the largest value|vt(M/d)v| takes, over
all real unit vectorsv whose entries sum to zero.

We say that a graphG is an[n, d, λ]-graph if it is ad-
regular graph onn vertices, andλ(G) ≤ λ.

An infinite family of graphsGi is called anexpander
family if for someλ < 1 the normalized second largest
eigenvalue of each graphGi does not exceedλ. It is a
non-expanderfamily if there is no such uniform bound
λ. Note that there is no requirement for the degrees to
be bounded in this definition! We shall sometimes abuse
notation and refer to a specific graph as an expander or
a non-expander, when the family it belongs to is clear
from the context. For example, the complete graph is an
expander, while the Boolean cube is a non-expander.

We shall now slightly extend the definition of the zig-
zag product of [RVW00]. LetH be an[m, d, µ]-graph,
and letG be an[n, cm, λ]-graph, which is the (edge)
disjoint union ofc m-regular graphsGi on the same set
of vertices (in the original definition,c was 1). Further
assume that in eachGi the edges around every vertex
are (arbitrarily) labeled by[m] in a 1-1 fashion.

The zigzag product ofG andH, denotedG©z H, has
vertices(v, k) for everyv ∈ V (G) andk ∈ V (H) (so
there is a “cloud” of vertices ofH around every original
vertex ofG). Two vertices(v, k) and(u, l) are adjacent,
intuitively if we can travel between them in a “zig-zag”
path of length 3: one step onH in the v cloud, then
switching to theu cloud according to an edge ofG (and
the labeling), and a final step on in theu cloud. More
formally, they are adjacent if there existk′, l′ ∈ [m] and
i ∈ [c] such that the following conditions hold:

• (k, k′) ∈ E(H) and(l, l′) ∈ E(H).

• An edge(v, u) ∈ E(Gi) is labeledk′ nearv andl′

nearu.

In this slightly more general definition, the middle
step in the “zigzag” is stochastic (withc possibilities),
whereas it was deterministic in the original definition
of [RVW00]. Nevertheless, the basic property that a
uniform distribution on the vertices of a cloud around
some vertex ofG would be dispersed by this step to
adjacent clouds according to the random walk onG is
maintained. Thus, it is easy to see that the basic eigen-
value bound in [RVW00] carries over without change to
this more general definition, to give

Theorem 2.1 The graph G ©z H is an
[nm, cd2, f(λ, µ)]-graph, with the functionf(λ, µ)
satisfying

• For everyλ < 1, µ < 1, we havef(λ, µ) < 1.

• f(λ, µ) ≤ λ+ µ+ µ2.

We will use only the first bound in this paper, to con-
clude that wheneverG andH are expanders, so isG©zH.
We also use the (easy) reverse direction of this implica-
tion, saying that if eitherG orH fails to be an expander,
so doesG©z H. In particular, it is easy to see that under
the notation of the previous theoremλ(G©zH) ≥ λ(G).

2.2 Groups and the semi-direct product

Let A andB be finite groups. Assume thatB acts
onA, namely there is a homomorphism fromB to the
automorphism group ofA. For elementsa ∈ A, b ∈ B
we useab to denote the action ofb on a. We also use
aB to denote the orbit ofa under this action. Here is an
example of such action which will be used in the next
sections.

Example 2.2 Let ρ : B → GL(n, F ) be any represen-
tation of a groupB. LetA be the Abelian groupFn.
Then for everya ∈ A, b ∈ B we haveab = ρ(b) · a with
· representing matrix vector product overF .

We will represent groups multiplicatively, and 1 will
denote the identity of the group (no confusion should
arise between the identity elements of different groups).

Thesemi-direct productof A andB, denoted
AoB, is the group whose elements are the ordered pairs
{(a, b) : a ∈ A, b ∈ B}, with the group operation
defined by

(â, b̂)(a, b) = (âab̂
−1
, b̂b)

It is easy to verify that indeed this operation defines a
group4 whenB acts onA.

When we talk about generators of a group, we shall
always mean a multiset of generators, that is, we allow
repetitions. Letα be a generating (multi)set forA. We
will work only with symmetric generating (multi)sets,
namely the number of occurrences ofa anda−1 in α is
the same for everya ∈ A.

The Cayley graph of a groupA with a (multi)set of
generatorsα, denotedC(A,α), has verticesA and for
every vertexx ∈ A and generatora ∈ α there is an
edge(x, xa). Moreover, the edges are naturally labeled
as follows: the label of(x, xa) nearx is a (and its label
nearxa is a−1). Note that the graph is|α|-regular.

Now we are ready to describe our main construc-
tion. Assume thatB acts onA as above. Letα, β be
sets of generators forA,B respectively, and further as-
sume thatα is a (disjoint) union ofB-orbits, namely

4In factA o B is the smallest groupG generated by copies ofA
andB s.t. A is normal inG and the action ofB onA within G by
conjugation is the original given action.
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α =
⋃c
i=1 a

B
i . Define the following set of generators

for AoB:

γ = {(1, b)(ai, 1)(1, b′) : b, b′ ∈ β, i ∈ [c]}

Note that|γ| = c|β|2, and thatG = C(A,α) is the
edge-disjoint union of thec graphsGi = C(A, aBi ),
where the edges ofGi around every vertex are labeled
by the elements ofB in the obvious way. This enables
us to define the zigzag productC(A,α)©z C(B, β) and
notice (syntactically using the definitions of semi-direct
product and zig-zag product) that following a generator
of γ from an element ofAoB leads us to its “zig-zag”
neighbour in that group. This gives our main conceptual
connection:

Theorem 2.3 C(AoB, γ) = C(A,α)©z C(B, β)

Thus, if C(A,α) andC(B, β) are expanders, and
|β|, c are constants, then regardless of the size ofα,
the graphC(A o B, γ) is a constant degree expander.
This suggests a method for constructing large constant-
degree expanders from small ones, that we follow in the
next section.

3 Abelian expanders generated by few or-
bits

It is easy and well known that in order that Cayley
graphs of Abelian groups be expanding, the generating
set cannot have constant size; indeed, it has to grow log-
arithmically in the size of the group- [Kl84], see also
[AR94]. In this section we show that under very general
situations, the orbit (under a natural group action) of a
constantnumber of group elements in an Abelian group
is an expanding generating set.

Let q be a prime,B a group,Fq the finite field of
q elements, andρ : B → GL(r, Fq) an irreducible5

representation overFq of dimensionr. TakingA = F rq ,
we have a natural action ofB onA, namelyab = ρ(b)·a.

As formally stated in the main theorem of this section
below, in this very general situation, the orbits of almost
all pairs of vectors inA are expanding!

Theorem 3.1 For everyq there existsλq < 1 such that
the following holds.

For everyB andA as above, there exist two elements
a1, a2 ∈ A, so that

λ(C(A, {aB1 , aB2 })) ≤ λq

Moreover, ifa1, a2 are chosen independently at random
fromA, the probability that they fail to satisfy the bound
above is2−Ω(r).

5All this means is that there is no nontrivial invariant subspace of
F rq

Proof: We present the proof forq = 2. The argu-
ment for generalq is similar, but the calculations are a
bit more tedious. So from here onA = F r2 , and here we
write it additively.

First, sinceA is Abelian, the eigenvalues ofC(A,α)
can be expressed in terms of the characters ofA. If χ
is any character, then the corresponding eigenvalue is
λχ = 1

|α|
∑
a∈α χ(a). Each characterχ of A corre-

sponds to a vectorx ∈ A such thatχ(a) = (−1)x·a

where · denotes the inner product overF2. Therefore
we have an elegant bound onλ(C(A,α)): some nota-
tions are needed first; define a binary vector of length
m to beδ-balanced if at leastδm of its coordinates are
0 and at leastδm coordinates are1. Also, for a vector
x ∈ A and a sequenceY ⊆ A let x ·Y denote the vector
of inner products ofx with the members ofY .

Claim 3.2 If for everyx ∈ A, x 6= 0 the vectorx · α is
δ/2-balanced, thenλ(C(A,α)) ≤ 1− δ.

We will fix δ = .01, and aim to prove the theorem
with λ2 = .99 = 1 − δ. As α in our case is the union
of two orbits, it would clearly suffice to finda1, a2 such
that for every0 6= x ∈ A at least one of the vectors
x·aB1 , x·aB2 is δ-balanced. This will be done by choosing
a1, a2 independently at random fromA, and using the
following bound.

Claim 3.3 Fix 0 6= x ∈ A, and choosea uniformly at
random fromA. Then

Pr[x · aB is not δ − balanced] ≤ 2−3r/4

We now prove this claim. It is more convenient to
consider the vectorxB · a (by doing this we actually re-
placeρ by its adjoint representation acting on the func-
tionals ofA, but this is also an irreducible representa-
tion). Sinceρ is irreducible andx 6= 0, we know that
there must be a subsetR ⊆ B of size|R| = r such that
the set of vectorsxR are linearly independent. There-
fore, also the (shifted) setsxbR are linearly independent
for everyb ∈ B. Setε = 2−3r/4/2, and letE(b) denote
the event thatxbR · a is not2δ-balanced. Now the proof
follows from three easy observations.

• For everyb, Pr[Eb] ≤ ε. This follows (with room
to spare) from the Chernoff bound since the vector
xbR·a is uniformly distributed inA. This is so since
a is chosen uniformly at random, andxbR defines a
nonsingular transformation ofA.

• The probability thatEb holds for at least half the
elementsb ∈ B is at most2ε. This follows by
Markov’s inequality from the bound above.
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• If Eb fails for at least half ofb ∈ B, thenxB ·a is δ-
balanced, as required. This is so since the translates
bR cover every element ofB exactlyr times.

One can extend the theorem above to situations in
which the representation is not irreducible. Note that the
only way irreducibility was used above was to argue that
for everyx ∈ A, x 6= 0 we haverk(xB) = r (whererk
is the rank of this set of vectors, or more precisely, the
dimension of the linear space they span).

The probabilistic argument in the proof works just
as well when we have sufficiently good bounds on the
number of vectorsx for which rk(xB) is small.

Theorem 3.4 LetA = F rq be any invariant space ofany
representation ofB. Let ks be the number of elements
x ∈ A for whichrk(xB) = s. Letd be an integer such
that

∑r
s=0 ksq

−ds ≤ 1/2. Then there arec elements
ai ∈ A, with c ≤ O(d), such that

λ(C(A, {aBi : i ∈ [c]})) ≤ 1/2

Proof: (Sketch)
The idea is to use Claim 3.3 (extended naturally for gen-
eral q, not necessarilyq = 2) separately for different
values ofr. The condition of the theorem guarantees
that with positive probability, the orbits ofc randomly
chosen elementsai will form a balanced set.

Two interesting special cases of the above (with a
suitable tuned computation) are the following:

Theorem 3.5 Let B = SL2(p) for some primep,
and consider the permutational representation onA =
F p+1

2 induced by the Mobius action ofB on the projec-
tive lineP1 = Zp ∪ {∞} (defined in Section 4). Then
there exist two elementsa1, a2 ∈ A, so that

λ(C(A, {aB1 , aB2 })) ≤ .99.

Proof: (Sketch)
While this representation is not irreducible, it decom-
poses into one representation of dimension 1 and an-
other irreducible representation, so for all vectorsx ∈ A
which are not constant in all coordinates,rk(xB) = p,
which suffices for the probabilistic argument.

A similar argument gives the following.

Theorem 3.6 For everyq there isλq < 1 so that the
following holds. LetB = Zp for any primep, such that
q is a generator of the multiplicative groupZ∗p , and letB
act onA = F pq by cyclic permutation of the coordinates.
Then there exist two vectorsa1, a2 ∈ A = F pq , so that

λ(C(A, {aB1 , aB2 })) ≤ λq.

It is a good question if the last theorem provides an
infinite family of expanders for a given fixed q. The fa-
mous Artin Conjecture states that the theorem’s hypoth-
esis, namely thatq is a generator ofZ∗p , holds forevery
primeq. It was proven by Heath-Brown [HB86] that the
Artin Conjecture fails forat mosttwo primes, thus e.g.
at least one of the primesq ∈ {2, 3, 5} gives an infinite
family.

This last family of expanders is particularly interest-
ing, since it yields asymptotically good (constant rate
and linear distance) family of linear codes, whose gen-
erator matrix is the concatenation of two circulant matri-
ces. It is an interesting problem to construct such codes
explicitly.

4 Expansion is not a group property

Consider the groupBp = SL2(Fp), the group of all
2 × 2 invertible matrices overFp with determinant1.
It is well known that it has a bounded set of expanding
generators. In particular, let

M1 =
(

1 1
0 1

)
,M2 =

(
1 0
1 1

)
Theorem 4.1 [L94] There is a constantλ < 1 such that
for every primep,

λ(C(SL2(Fp), {M1,M2})) ≤ λ

Let P1 = Fp ∪ {∞} be the projective line, and con-
sider the Mobius action ofSL2(Fp) onP1 given by(

a b
c d

)
(x) =

ax+ b

cx+ d
.

LetAp = FP1
2 , and consider the action ofBp onAp

induced by the Mobius permutation of the coordinates
as above.

Now leta1(p), a2(p) ∈ Ap satisfy Theorem 3.5. Fur-
ther lete(p) be a fixed unit vector inAp.

Now we are ready to describe a counterexample to
the Lubotzky-Weiss question. The proof follows di-
rectly from the discussion in the previous sections and
the fact that for the Boolean cubeC on p + 1 vertices,
the normalized second largest eigenvalue is1− 2

p+1 .

Theorem 4.2 • There is a constantδ < 1 such that
for every primep

λ(C(Ap oBp, S1)) ≤ δ,

where

S1 = {(1,Mi)(aj(p), 1)(a,Mk) : 1 ≤ i, j, k ≤ 2}.
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• For every primep, the (normalized) second largest
eigenvalue ofC(Ap oBp, S2), where

S2 = {(1,Mi)(e(p), 1)(1,Mk) : 1 ≤ i, k ≤ 2}.

is at least1− 2/(p+ 1).

5 Conclusions and Further Directions

The main conceptual contribution of this paper is the
connection between zigzag products of graphs and semi-
direct products of groups. This connection raises a va-
riety of questions for further study, some of which we
have started to look at here, and others that are wide
open. We mention a few below.

One interesting possibility this connection raises is
that one might be able to construct infinite families of
expanding Cayley graphsfrom scratch. Perhaps there
is an iterative construction similar to [RVW00] in the
group theoretic setting. A step in this direction was
recently taken by Meshulam and Wigderson [MW01].
They give an iterative construction of groupsGn and
generating sets for themSn such thatλ(C(Gn;Sn)) ≤
1/2, and|Sn| = O(log(n/2) |Gn|) (wherelog(k) denotes
k iterations of the logarithm function). In words, these
are expanding groups of nearly constant number of gen-
erators. Moreover, they are quite different than other
expanding groups – these groups are solvable, and con-
tain huge Abelian subgroups. The analysis extends ideas
from this paper, combining it with estimates on the dis-
tribution of dimensions of irreducible representations of
the groups involved. This is needed to guarantee a dis-
tribution of ranks of the type assumed in Theorem 3.4.

There is still much to do in this direction. For one, it
would be nice to get the generating sets down to constant
size. But a more serious problem is the probabilistic na-
ture of the argument. It would be nice to find explicit
balanced sets which are the union of few orbits even for
special cases. Doing so e.g. for the cubeFn2 under the
action of the cyclic groupCn would give an extremely
concisely described, asymptotically good, linear error
correcting code obverGF (2).

Finally, while we have exhibited groups whose ex-
pansion in (constant degree) Cayley graphs depends on
the choice of generators, these groups are somewhat
”nonstandard”. It would be interesting to decide whether
the groupsSL2(p) are expanding witheverychoice of
generators, and whether the groupsSn are expanding
with none.
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