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Abstract

We prove that for every odd prime p, every k ≤ p and every two subsets A = {a1, . . . , ak} and
B = {b1, . . . , bk} of cardinality k each of Zp, there is a permutation π ∈ Sk such that the sums
ai + bπ(i) (in Zp) are pairwise distinct. This partially settles a question of Snevily. The proof is
algebraic, and implies several related results as well.

1 Introduction

In this note we prove several results in Additive Number Theory, using the algebraic approach called
Combinatorial Nullstellensatz in [1]. Other results in Additive Number Theory proved using this
approach appear in [1] and in its many references, including, for example, [2], [3], [4].

Our first result here is the following theorem.

Theorem 1.1 Let p be an odd prime, and let A and B be two subsets of cardinality k each of
the finite field Zp. Then there is a numbering {a1, . . . , ak} of the elements of A and a numbering
{b1, . . . , bk} of those in B such that the sums ai + bi (in Zp) are pairwise distinct.

This partially settles a question of Snevily, who conjectured that the above is in fact true even when
the field Zp is replaced by any Abelian group of odd order.

Since the above theorem is trivial for k = p (as in this case we can simply take ai = bi), its
assertion follows from the following more general result.

Theorem 1.2 Let p be a prime, suppose k < p, let (a1, . . . , ak) be a sequence of not necessarily
distinct members of the finite field Zp and let B be a subset of cardinality k of Zp. Then there is a
numbering {b1, . . . , bk} of the elements of B such that the sums ai + bi (in Zp) are pairwise distinct.

Note that this stronger theorem is not true if we replace Zp by the ring of integers modulo a
non-prime n. Indeed, if n = ks, a1 = a2 = . . . = ak−1 = 0, ak = s and B = {0, s, 2s, . . . , (k − 1)s}
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then it is easy to check that there is no numbering of the elements of B such that the sums ai + bi,
(1 ≤ i ≤ k) are pairwise distinct in Zn. Similarly, the assertion of the theorem fails for k = p as
shown by taking a1 = a2 = . . . = ap−1 = 0, ap = 1 and B = {0, 1, . . . , p− 1}.

The rest of this note is organized as follows. In Section 2 we prove Theorem 1.2 (which implies
Theorem 1.1). Section 3 contains some extensions, and Section 4 contains some related comments
about Latin Transversals.

2 The proof

Our main tool is the following result proved in [1], where it is called Combinatorial Nullstellensatz.

Theorem 2.1 ([1]) Let F be an arbitrary field, and let f = f(z1, . . . , zk) be a polynomial in
F [z1, . . . , zk]. Suppose the degree deg(f) of f is

∑k
i=1 ti, where each ti is a nonnegative integer,

and suppose the coefficient of
∏k
i=1 z

ti
i in f is nonzero. Then, if S1, . . . , Sk are subsets of F with

|Si| > ti, there are s1 ∈ S1, s2 ∈ S2, . . . , sk ∈ Sk so that

f(s1, . . . , sk) 6= 0.

Proof of Theorem 1.2: Consider the following polynomial in k variables over Zp:

f(x1, . . . , xk) =
∏

1≤i<j≤k
(xi − xj)

∏
1≤i<j≤k

(ai + xi − aj − xj).

Consider the coefficient of the monomial
∏k
i=1 x

k−1
i in f . Since the total degree of f is k(k − 1),

which is equal to the degree of this monomial, it is obvious that this is precisely the coefficient of
this monomial in the polynomial∏

1≤i<j≤k
(xi − xj)

∏
1≤i<j≤k

(xi − xj) =
∏

1≤i<j≤k
(xi − xj)2.

However, this coefficient is (−1)(
k
2)k!, as can be easily seen directly from the Vandermonde iden-

tity,

∏
1≤i<j≤k

(xi − xj) = ± det


1 1 . . . 1
x1 x2 . . . xk

. . . . . . . . . . . .

xk−1
1 xk−1

2 . . . xk−1
k

 =
∑
π∈Sk

(−1)σ(π)
k∏
i=1

xk−iπ(i),

or by a (very) special case of the Dyson Conjecture (proved in [6], [7], see also [8]). Since k < p, this
coefficient is nonzero modulo p, and therefore, by Theorem 2.1 with t1 = t2 = . . . = tk = k − 1, and
S1 = S2 = · · · = Sk = B, it follows that there are bi ∈ Si = B such that

f(b1, . . . , bk) =
∏

1≤i<j≤k
(bi − bj)

∏
1≤i<j≤k

(ai + bi − aj − bj) 6= 0.

Thus, the elements bi ∈ B are pairwise distinct, and the sums ai + bi are pairwise distinct as well,
completing the proof. 2
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3 Extensions

The following result extends Theorem 1.2.

Theorem 3.1 Let p be a prime and let R be an arbitrary subset of 2r nonzero elements of the finite
field Zp, where R = −R. Suppose k(r + 1) < p, let (a1, . . . , ak) be a sequence of not necessarily
distinct members of Zp and let B be a subset of cardinality |B| > (k − 1)(r + 1) of Zp. Then there
are k pairwise distinct elements {b1, . . . , bk} of B such that the sums ai+ bi are pairwise distinct and
the difference between any two of these sums is not a member of R.

Remark: The assumption that |B| > (k − 1)(r + 1) is tight. Indeed, if R = {1, 2, . . . , r} ∪
{−1,−2, . . . ,−r}, a1 = a2 = . . . = ak = 0 and B is a set of only (k − 1)(r + 1) consecutive elements
of Zp, then the assertion of the theorem does not hold. The same example shows that the assumption
that k(r + 1) < p is tight as well.

The proof of the last theorem is almost identical to the previous one, but here we use a more
sophisticated case of the Dyson Conjecture, proved in [6], [7].

Theorem 3.2 ([6], [7]) The coefficient of the monomial
∏k
i=1 x

(k−1)ci
i in the polynomial∏

1≤i<j≤k
(xi − xj)ci+cj

is
(−1)c2+2c3+...+(k−1)ck

(c1 + c2 + . . .+ ck)!
c1!c2! . . . ck!

.

Proof of Theorem 3.1: Consider the following polynomial in k variables over Zp:

f(x1, . . . , xk) =
∏

1≤i<j≤k
(xi − xj)

∏
1≤i<j≤k

(ai + xi − aj − xj)
∏
s∈R

∏
1≤i<j≤k

(ai + xi − aj − xj − s).

Consider the coefficient of the monomial
∏k
i=1 x

(k−1)(r+1)
i in f . Since the total degree of f is

k(k− 1)(r+ 1), which is equal to the degree of this monomial, it is obvious that this is precisely the
coefficient of this monomial in the polynomial∏

1≤i<j≤k
(xi − xj)2r+2.

However, this coefficient is

(−1)(r+1)(k2) ((r + 1)k)!
((r + 1)!)k

,

by Theorem 3.2 with ci = r+ 1 for all i. Since (r+ 1)k < p, this coefficient is nonzero modulo p, and
therefore, by Theorem 2.1 with t1 = t2 = . . . = tk = (k − 1)(r + 1), and S1 = S2 = · · · = Sk = B, it
follows that there are bi ∈ Si = B such that

f(b1, . . . , bk) =
∏

1≤i<j≤k
(bi − bj)

∏
1≤i<j≤k

(ai + bi − aj − bj)
∏
s∈R

∏
1≤i<j≤k

(ai + bi − aj − bj − s) 6= 0.
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Thus, the elements bi ∈ B are pairwise distinct, so are the sums ai + bi and no two of them differ by
an element of R. This completes the proof. 2

The above result can be generalized further, by applying the assertion of Theorem 3.2 in its full
generality. This gives the following (somewhat artificial) result.

Theorem 3.3 Let p be a prime, and let R1, . . . , Rk be k arbitrary subsets of nonzero elements of Zp,
where |Ri| = ri. Suppose

∑k
i=1(ri + 1) < p, let (a1, . . . , ak) be a sequence of not necessarily distinct

members of Zp and let B1, . . . , Bk be k subsets of Zp satisfying |Bi| > (ri + 1)(k − 1). Then there
are k pairwise distinct elements {b1, . . . , bk}, where bi ∈ Bi, such that the sums ai + bi are pairwise
distinct and for every i 6= j, ai + bi − aj − bj 6∈ Ri.

Proof: Define

f(x1, . . . , xk) =
∏

1≤i<j≤k
(xi − xj)

∏
1≤i<j≤k

(ai + xi − aj − xj)
∏

1≤i6=j≤k

∏
r∈Ri

(ai + xi − aj − xj − r).

Note that as before, Theorem 3.2 implies that the coefficient of
∏k
i=1 x

(k−1)(ri+1)
i in f is, up to a sign,

(
∑k
i=1(ri + 1))!∏k
i=1(ri + 1)!

,

which is non-zero in Zp, as
∑k
i=1(ri + 1) < p. Therefore, Theorem 2.1 with ti = (k − 1)(ri + 1) and

Si = Bi for 1 ≤ i ≤ k implies the desired result. 2

4 Latin transversals

A transversal in an m by n matrix, with m ≤ n, is a set of m cells of the matrix, no two in the same
row or in the same column. It is called a Latin transversal if no two cells contain the same symbol.
There are lots of conjectures about the existence of Latin transversals in matrices, see, for example,
[5] and its references. In particular, it is conjectured that every m by n matrix with m < n in which
each symbol appears at most n times contains a Latin transversal.

Some of our results can be formulated in terms of Latin transversals. Theorem 1.1 shows that
for any odd prime p, every square submatrix of the addition table of Zp contains a Latin transversal.
Theorem 1.2 shows that for k < p, and every k by k submatrix M of the addition table of Zp,
every k by k matrix each row of which is a row of M (and repetitions are allowed) contains a Latin
transversal. It seems, however, that the algebraic structure of the matrices considered is crucial here,
and the study of the related questions for more general matrices requires other techniques.
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