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Abstract

It is shown that for every 1 ≤ s ≤ n, the probability that the s-th largest eigenvalue of a random

symmetric n-by-n matrix with independent random entries of absolute value at most 1 deviates from

its median by more than t is at most 4e−t2/32s2 . The main ingredient in the proof is Talagrand’s

Inequality for concentration of measure in product spaces.

1 Introduction

In this short paper we consider the eigenvalues of random symmetric matrices whose diagonal and upper

diagonal entries are independent real random variables. Our goal is to study the concentration of the

largest eigenvalues. For a symmetric real n-by-n matrix A, let λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) be its

eigenvalues.

There are numerous papers dealing with eigenvalues of random symmetric matrices. The most

celebrated result in this field is probably the so called Semicircle Law due to Wigner ([10], [11]) describing

the limiting behavior of the bulk of the spectrum of random symmetric matrices under certain regularity

assumptions.

The semi-circle law. For 1 ≤ i ≤ j ≤ n let aij be real valued independent random variables satisfying:

1. The laws of distributions of {aij} are symmetric;

2. E[a2ij ] = 1
4 , 1 ≤ i < j ≤ n, E[a2ii] ≤ C, 1 ≤ i ≤ n;

3. E[(aij)
2m] ≤ (Cm)m, for all m ≥ 1,
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where C > 0 is an absolute constant. For i < j set aji = aij. Let An denote the random matrix (aij)
n
1 .

Finally, denote by Wn(x) the number of eigenvalues of An not larger than x, divided by n. Then

lim
n→∞

Wn(x
√
n) = W (x) ,

in distribution, where W (x) = 0 if x ≤ −1,W (x) = 1 if x ≥ 1 and W (x) = 2
π

∫ x
−1(1 − x2)1/2dx if

−1 ≤ x ≤ 1.

Many extensions and ramifications of the Semicircle Law have been proven since then. It is important

to observe that the Semicircle Law provides a very limited information about the asymptotic behavior

of any particular (say, the first) eigenvalue. There are, however, quite a few results describing the

asymptotic distribution of the first few eigenvalues of random symmetric matrices. For example, Tracy

and Widom [8], [9] found, for any fixed k ≥ 1, the limiting distribution of the first k eigenvalues of

the so called Gaussian Orthogonal Ensemble (GOE), corresponding to the case when the off-diagonal

entries of the random symmetric matrix A are independent normally distributed random variables

with parameters 0 and 1/2. Very recently, Soshnikov [6] generalized their result for a general Wigner

Ensemble, i.e., for a random symmetric matrix meeting the conditions of the Semicircle Law. Füredi

and Komlós [3] proved that if all off-diagonal entries aij , , i < j of A have the same first moment µ > 0

and the same second moment σ2, while the expectation of all diagonal entries aii is E[aii] = ν, then,

assuming that all entries of A are uniformly bounded by an absolute constant K > 0, the first eigenvalue

of A has asymptotically a normal distribution with expectation (n− 1)µ+ ν + δ2/µ and variance 2δ2.

As we have mentioned already, our main goal here is to obtain concentration results for the eigen-

values of random symmetric matrices. Thus, instead of trying to calculate the limiting distribution of

a particular eigenvalue we will rather be interested in bounding its tails. Of course, knowledge of the

limiting distribution of a random variable (an eigenvalue, in our context) provides certain information

about the decay of its tails. Sometimes, however, concentration results can be derived by applying

powerful general tools dealing with concentration of measure to the particular setting of eigenvalues of

random symmetric matrices. A detailed discussion of the later approach can be found in a recent survey

of Davidson and Szarek [2].

Here we consider the following quite general model of random symmetric matrices. For 1 ≤ i ≤ j ≤ n,

let aij be independent, real random variables with absolute value at most 1. Define aji = aij for all

admissible i, j, and let A be the n by n matrix (aij)n×n. Our main result is as follows.

Theorem 1 For every positive integer 1 ≤ s ≤ n, the probability that λs(A) deviates from its median by

more than t is at most 4e−t
2/32s2. The same estimate holds for the probability that λn−s+1(A) deviates

from its median by more than t.

We wish to stress that our setting, though being incomparable with some other previously studied

ensembles, like the Gaussian Orthogonal Ensemble, is very general and can potentially be applied to

many particular cases. The proof is based on the so called Talagrand Inequality ([7], c.f. also [1],

Chapter 7) and thus certainly fits the above mentioned framework of deriving concentration results for

eigenvalues from the general measure concentration considerations.
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The rest of the paper is organized as follows. In the next section we prove our main result, Theorem

1. Section 3 is devoted to a discussion of related results and open problems.

The main result of the paper for the first eigenvalue (i.e., the assertion of Theorem 1 for the special

case s = 1) was first presented in [5], where it was used to design approximation algorithms for coloring

and independent set problems, running in expected polynomial time over the space of random graphs

G(n, p).

2 The proof

Talagrand’s Inequality is the following powerful large deviation result for product spaces.

Theorem 2 ([7]) Let Ω1,Ω2, . . . ,Ωm be probability spaces, and let Ω denote their product space. Let

A and B be two subsets of Ω and suppose that for each B = (B1, . . . , Bm) ∈ B there is a real vector

α = (α1, α2, . . . , αm) such that for every A = (A1, . . . , Am) ∈ A the inequality

∑
i:Ai 6=Bi

αi ≥ t(
m∑
i=1

α2
i )

1/2

holds. Then

Pr[A]Pr[B] ≤ e−t2/4.

Talagrand’s Inequality has already found a large number of applications in diverse areas. In partic-

ular, it has been used by Guionnet and Zeitouni [4] to derive concentration inequalities for the spectral

measure of random matrices. In their paper, Guionnet and Zeitouni mention (without the detailed

proof) the possibility of using similar tools to obtain concentration results for the spectral radius of

random matrices.

We now apply Talagrand’s Inequality to prove Theorem 1. Put m =
(n+1

2

)
and consider the product

space Ω of the entries aij , 1 ≤ i ≤ j ≤ n. Fix a positive integer s, and let M, t be real numbers, where

t > 0. Let A be the set of all matrices A in our space for which λs(A) ≤M and let B denote the set of

all matrices B for which λs(B) ≥ M + t. By slightly abusing the notation we identify each member of

A = (aij) ∈ A ∪ B with the vector of Ω consisting of its entries (aij) for 1 ≤ i ≤ j ≤ n.

Fix a vector B = (bij) ∈ B. Let v(1), v(2), . . . , v(s) be the eigenvectors of the s largest eigenvalues

of (the matrix) B, where the l2-norm of each v(p) is 1 and the vectors are orthogonal. Suppose v(p) =

(v
(p)
1 , v

(p)
2 , . . . , v

(p)
n ) and define a vector α = (αij)1≤i≤j≤n of length m as follows.

αii =
s∑

p=1

(
v
(p)
i

)2
for 1 ≤ i ≤ n

and

αij = 2

√√√√ s∑
p=1

(
v
(p)
i

)2√√√√ s∑
p=1

(
v
(p)
j

)2
for 1 ≤ i < j ≤ n.

Claim 1: ∑
1≤i≤j≤n

α2
ij ≤ 2s2.
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Proof: By definition,

∑
1≤i≤j≤n

α2
ij =

n∑
i=1

 s∑
p=1

(v
(p)
i )2

2 + 4
∑

1≤i<j≤n

 s∑
p=1

(v
(p)
i )2

 s∑
p=1

(v
(p)
j )2



≤ 2

 n∑
i=1

s∑
p=1

(v
(p)
i )2

2

= 2

 s∑
p=1

n∑
i=1

(v
(p)
i )2

2

= 2s2,

where here we used the fact that each v(p) is a unit vector. 2

Claim 2: For every A ∈ A, ∑
1≤i≤j≤n;aij 6=bij

αij ≥ t/2.

Proof: Fix A ∈ A. Let u =
∑s
p=1 cpv

(p) be a unit vector in the span of the vectors v(p) which is

orthogonal to the eigenvectors of the largest s − 1 eigenvalues of A. Then
∑s
p=1 c

2
p = 1 and utAu ≤

λs(A) ≤ M , whereas utBu ≥ λs(B) ≥ M + t. Recall that all entries of both A and B are bounded in

their absolute values by 1, implying |bij − aij | ≤ 2 for all 1 ≤ i, j ≤ n. It follows that if X is the set of

all (ordered) pairs ij with 1 ≤ i, j ≤ n for which aij 6= bij then

t ≤ ut(B −A)u =
∑
ij∈X

(bij − aij)
s∑

p=1

cpv
(p)
i

s∑
p=1

cpv
(p)
j

≤ 2
∑
ij∈X
|
s∑

p=1

cpv
(p)
i | |

s∑
p=1

cpv
(p)
j |

≤ 2
∑
ij∈X

 √√√√ s∑
p=1

c2p

√√√√ s∑
p=1

(v
(p)
i )2

 √√√√ s∑
p=1

c2p

√√√√ s∑
p=1

(v
(p)
j )2

 (by Cauchy-Schwartz)

= 2
∑

1≤i≤j≤n, aij 6=bij

αij ,

as needed. 2

By the above two claims, and by Theorem 2, for every M and every t > 0

Pr[λs(A) ≤M ]Pr[λs(B) ≥M + t] ≤ e−
t2

32s2 . (1)

If M is the median of λs(A) then, by definition, Pr[λs(A) ≤M ] ≥ 1/2, implying that

Pr[λs(A) ≥M + t)] ≤ 2e−
t2

32s2 .

Similarly, by applying (1) with M + t being the median of λs(A) we conclude that the probability

that λs(A) is smaller than its median minus t is bounded by the same quantity. This completes the

proof of Theorem 1 for λs(A). The proof for λn−s+1(A) is analogous. 2
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3 Concluding remarks

• In many cases concentration results are presented by giving bounds for the deviation of a random

variable from its expectation, rather than its median as in our Theorem 1. Our result however

easily enables us to show that the expectation and the median of eigenvalues are very close. Indeed,

recall that for any non-negative valued random variable X,

E[X] =

∫ ∞
0

Pr[X ≥ t]dt .

Denote by ms the median of the s-th eigenvalue of A. By Theorem 1:

|E[λs(A)]−ms| ≤ E[|λs(A)−ms|] =

∫ ∞
0

Pr[|λs −ms| ≥ t]dt ≤
∫ ∞
0

4e−t
2/32s2dt = 8

√
2πs .

Thus, the expectation of λs(A) and its median are only O(s) apart. Therefore, for all t >> s we

get

Pr[|λs(A)− E[λs(A)]| ≥ t] ≤ e−(1−o(1))t2/32s2 .

• Our estimate from Theorem 1 is sharp, up to an absolute factor in the exponent, for the deviation

of λ1. Consider the following random symmetric matrix A = (aij)
n
1 . For each 1 ≤ i < j, aij takes

value 1 with probability 1/2 and value 0 with probability 1/2; all diagonal entries aii are 0; set

also aji = aij for 1 ≤ i < j ≤ n. (In fact, the obtained random matrix is the adjacency matrix of

the binomial random graph G(n, 1/2).) By a result of Füredi and Komlós [3] the expected value

of λ1 = λ1(A) is n/2 + o(1). By the previous remark, the median of λ1 and its expectation differ

by at most a constant. On the other hand, λ1 is at least the average number of ones in a row

(the average degree of the graph G(n, 1/2)), and as this average degree is 2/n times a binomial

random variable with parameters
(n
2

)
and 1/2, it follows that the probability that λ1 exceeds its

median by t is at least Ω(e−O(t2)).

• Note that for the adjacency matrix of a random graph the entries of our matrix are in the range

[0, 1]. In this case the estimate in Theorem 1 can be improved to 4e−t
2/8s2 , as each of the quantities

|bij − aij | in the proof of Claim 2 can be bounded by 1 (instead of bounding it by 2, as done in

the present proof.)

• In certain cases, our concentration result can be combined with additional considerations to pro-

vide bounds for the expectations of eigenvalues of random symmetric matrices. Here is one

example.

Proposition 3 Let aij, 1 ≤ i ≤ j ≤ n be independent random variable bounded by 1 in absolute

values. Assume that for all i < i, the aij have a common expectation 0 and a common variance

σ2. Then

E[λ1(A)] ≥ 2σn1/2 −O(σ log1/2 n) .

Consequently, with probability tending to 1,

λ1(A) ≥ 2σn1/2 −O(σ log1/2 n) .
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Proof: Since λ1(cA) = cλ1(A) for every scalar c, we may and will assume that σ = 1/2.

Furthermore, set µ = n1/2, k = dµ log1/2 ne and x = a log1/2 n, where a is a positive constant

chosen so that the following two inequalities hold:

µk/k5/2 ≥ 2(µ− x/2)k (2)

∞∑
t=a

2
log1/2 n

e2t log
1/2 n−t2/40 = o(1), (3)

Without loss of generality, we assume that k is an even integer and let X be the trace of Ak. It is

trivial that E[X] ≤ nE[λk1]. On the other hand, a simple counting argument (see [3]) shows that

E[X] ≥ 1

(k/2) + 1

(
k

k/2

)
σkn(n− 1) . . . (n− (k/2))

≥ 2k

k3/2
(
1

2
)kn(µ2 − µ log1/2 n)k/2 ≥ nµk/k5/2.

It follows that

E[λk1] ≥ µk/k5/2 . (4)

Assume, for contradiction, that E(λ1) ≤ µ− x. It follows from this assumption that

E[λk1] ≤ (µ− x/2)k +
∞∑

t=x/2

(µ− x+ (t+ 1))kPr[λ1 ≥ µ− x+ t] . (5)

By Theorem 1, Pr(λ1 ≥ µ− x+ t) ≤ e−t2/40 for all t ≥ x/2. Thus (2),(4) and (5) imply

∞∑
t=x/2

(µ− x+ (t+ 1))ke−t
2/40 ≥ µk/k5/2 − (µ− x/2)k ≥ (µ− x/2)k. (6)

Since (µ− x+ (t+ 1))k/(µ− x/2)k ≤ e(1+o(1))tk/µ = e(1+o(1))t log
1/2 n, (3) and (6) imply a contra-

diction, and this completes the proof. 2

This improves the error term in the bound λ1(A) ≥ 2σn1/2 −O(n1/3 log n), stated by Füredi and

Komlós in [3].

• The concentration provided by Theorem 1 for λs(A) for larger values of s is weaker than that

provided for s = 1. It seems this is only a feature of the proof, as it seems plausible to suspect

that in fact each λs is as concentrated around its median as is λ1, and in certain situations (like

symmetric matrices with independent, identically distributed entries) λ2(A) might be even more

concentrated around its median than λ1.
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• Theorem 1 is obtained under very general assumptions on the distribution of the entries of a

symmetric matrix A. Still, it would be very desirable to generalize its assertion even further, in

particular, dropping or weakening the restrictive assumption about the uniform boundness of the

entries of A. This task, however, may require the application of other tools, as the Talagrand

inequality appears to be suited for the case of bounded random variables.

• Finally, it would be interesting to find further applications of our concentration results in algo-

rithmic problems on graphs. The ability to compute the eigenvalues of a graph in polynomial

time combined with an understanding of the potentially rich structural information encoded by

the eigenvalues is likely to provide a basis for new algorithmic results exploiting the eigenvalues

of graphs and their concentration.
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