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Abstract

For a graph H and an integer n, the Turdn number ex(n, H) is the maximum possible number
of edges in a simple graph on n vertices that contains no copy of H. H is r-degenerate if every
subgraph of it contains a vertex of degree at most r. We prove that for any fixed bipartite graph
H in which all degrees in one color class are at most 7, ex(n, H) < O(n?>~1/7). This is tight
for all values of r and can also be derived from an earlier result of Fiiredi. We also show that
there is an absolute positive constant ¢ so that for every fixed bipartite r-degenerate graph H,
ex(n, H) < O(n'~¢/7). This is motivated by a conjecture of Erd3s that asserts that for every such
H, ex(n,H) < O(n*~1/7).

For two graphs G and H, the Ramsey number r(G, H) is the minimum number n so that
in any coloring of the edges of the complete graph on n vertices by red and blue there is either
a red copy of G or a blue copy of H. Erd&s conjectured that there is an absolute constant ¢
such that for any graph G with m edges, (G, G) < 2°V™. Here we prove this conjecture for
bipartite graphs G, and prove that for general graphs G with m edges, r(G,G) < 2¢V™logm for
some absolute positive constant c.

These results and some related ones are derived from a simple and yet surprisingly powerful
lemma, proved, using probabilistic techniques, at the beginning of the paper. This lemma is
a refined version of earlier results proved and applied by various researchers including Rodl,
Kostochka, Gowers and Sudakov.
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1 Introduction

All graphs considered here are finite, undirected and simple. For a graph H and an integer n, the
Turdn number ez(n, H) is the maximum possible number of edges in a simple graph on n vertices that
contains no copy of H. The asymptotic behavior of these numbers for graphs of chromatic number
at least 3 is well known, see, e.g., [4]. For bipartite graphs H, however, the situation is considerably
more complicated, and there are relatively few nontrivial bipartite graphs H for which the order of
magnitude of ex(n, H) is known. Our first result here asserts that for every fixed bipartite graph
H in which the degrees of all vertices in one color class are at most 7, ex(n, H) < O(n?~/"). This
result, which can also be derived from an earlier result of Fiiredi [14], is tight for every fixed 7, as
shown by the constructions in [18] and in [2]. Our proof is different from that in [14], and provides
somewhat stronger estimates.

A graph is r-degenerate if every subgraph of it contains a vertex of degree at most . An old
conjecture of Erdds ([9], see also [7], [12]) asserts that for every fixed r-degenerate bipartite graph
H, ex(n,H) < O(n* /7). Here we prove that there is an absolute constant ¢ > 0, such that for
every such H, ex(n, H) < n?~¢/".

Our technique here provides several Ramsey-type results as well. For two graphs G and H,
the Ramsey number 7(G, H) is the minimum number n so that in any coloring of the edges of the
complete graph on n vertices by red and blue there is a red copy of G or a blue copy of H. If G = H
we sometimes denote (G, G) by r(G).

Our first Ramsey-type result is that for every graph H with h vertices, maximum degree r and

(2r—k42) (k—1)/2
chromatic number k > 2, and for every integer m, r(H, K,,) < (100m) (logm)h". This

— \ logm

is nearly tight for £ = 2, but is probably far from being tight for large values of k.

One of the basic results in Ramsey Theory is the fact that for the complete graph G with m
edges, r(G) = 2°V™)_ A conjecture of Erdés (see [7]) asserts that there is an absolute constant ¢
such that for any graph G with m edges, r(G) < 2¢V™ Here we prove this conjecture for bipartite
graphs G, and prove that for general graphs G with m edges, r(G) < gcvmlogm o1 some absolute
positive constant c.

The basic tool in the proof of most of the results here is a simple and yet surprisingly powerful
lemma, whose proof is probabilistic. An early variant of this lemma has first been proven in [8] and
[17], and versions that are closer to the one we prove and apply here have been proved and applied in
[15], [23], [20] and [3]. There is no doubt that variants of the lemma will find additional applications
as well.

Our notation is mostly standard. Here are a few less conventional notations. Given a graph
G = (V,E), forv eV and U C V let Ng(v,U) be the set of all neighbors of v in U; dg(v,U) =
|INg(v,U)l; let also Ng(v) = Ng(v,V); for a subset U C V denote N&(U) = {v € V : (v,u) €
E(G) for every u € U} — the common neighborhood of U in G.

The rest of the paper is organized as follows. In the next section we prove our basic lemma and

apply it for bounding the Turdn numbers of bipartite graphs with bounded degrees on one side. In



Section 3 we bound the Turdn numbers of degenerate bipartite graphs. In Sections 4 and 5 we prove
the Ramsey-type results mentioned above, and in Section 6 we improve the estimate of Furedi for
the Turdn numbers of certain generic bipartite graphs. The final section contains some concluding
remarks and open problems.

Throughout the paper we make no attempts to optimize various absolute constants. To simplify
the presentation, we often omit floor and ceiling signs whenever these are not crucial. All logarithms

are in the natural base e, unless otherwise specified.

2 Turan numbers of bipartite graphs of given maximum degree
We start with the following basic lemma, whose proof is probabilistic.

Lemma 2.1 Let a,b,n,r be positive integers. Let G = (V,E) be a graph on |V| = n vertices with
average degree d = 2|E(G)|/n. If
d" n\ (b—1\"
£ e

then G contains a subset Ay of at least a vertices so that every r vertices of Ag have at least b

common neighbors.
Proof. Let T be a subset of r random vertices of V', chosen uniformly with repetitions. Set
A=Ni(T)={veV:TCN®w)}.

Denote by X the cardinality of A. By linearity of expectation:

= R - g o (B

veEV veEV
1 2E(Q)\" _ d
nr—1 n - pr—17

where the inequality follows from the convexity of f(z) = z".
Let Y denote the random variable counting the number of r-tuples in A with fewer than b common
neighbors. For a given r-tuple R C V, the probability that R will be a subset of A is precisely

(M)T. As there are at most () subsets R of cardinality |R| = r for which [N (R)| < b—1, it

w=() (%)

follows that:
Applying linearity of expectation once again and recalling condition (1) of the lemma, we conclude

that - b1\
E[X — Y] > 1—(”) (L) >a—1.
nr— T n




Hence there exists a choice for T" so that for the corresponding set A we get X —Y > a. Pick such
a set, and for every r-tuple from A with fewer than b common neighbors delete one vertex from A.
Denote the obtained set by Ag. Then |Ag| > a, and every r-tuple of vertices of Ay has at least b

common neighbors. This completes the proof. O

Theorem 2.2 Let H = (AU B, F) be a bipartite graph with sides A and B of sizes |A| = a and
|B| = b, respectively. Suppose that the degrees of all vertices b € B in H do not exceed r. Let
G = (V,E) be a graph on |V| = n vertices with average degree d = 2|E(G)|/n. If

r—1 >a_17
n T n

Proof. Let vy,...,v, be the vertices of B. By Lemma 2.1 (with a + b playing the role of b) there

then G contains a copy of H.

is a subset A9 C V(G) of cardinality |Ag] = a so that every r-subset of Ay has at least a + b
common neighbors in G. Next we find an embedding of H in G described by an injective function
f: AUB — V(G). Start by defining f : A — Ay to be an arbitrary bijection. Now embed the
vertices of B one by one. Suppose that the current vertex to be embedded is v; € B, 1 <17 < b. By
the assumption on H, v; has at most r neighbors in H, all of them obviously in A. Let N; C A be
the set of neighbors of v; in A, |N;| < r. The set of images f(N;) = {f(vi) : v; € N;} is a subset of
Ay of cardinality at most r, and has therefore at least a + b common neighbors in G. As the total
number of vertices embedded so far is strictly less than a + b, there is a vertex w € V(G) connected
to all vertices in f(N;) and not used in the embedding previously. Set f(v;) = w. It is immediate
from the above description that once the embedding ends, the function f produces a copy of H in

G. O

Corollary 2.3 Let H be a bipartite graph with mazimum degree v on one side. Then there exists a
constant ¢ = ¢(H) > 0 such that
ex(n,H) < n? v

Note that the last corollary is tight for every value of r > 2. Indeed, by the construction in [2]
(modifying that in [18]), and by the well known results of [21], for every fixed s > (r — 1)! 4+ 1 the
Turédn number of the complete bipartite graph K,  is @(nQ_l/ ). Note also that the assertion of the
corollary can be deduced from the main result of Fiiredi in [14]. An improved version of his result

is proved in Section 6.

3 Turan numbers of bipartite degenerate graphs

Recall that a graph is r-degenerate if every subgraph of it contains a vertex of degree at most r. We

need the following easy and well known fact.



Proposition 3.1 Let H = (U, F') be an r-degenerate graph on |U| = h vertices. Then there is an
ordering (vi,...,vp) of the vertices of H so that for every 1 < i < h the vertex v; has at most r

neighbors v; with j <.
The following lemma is similar to a result proved in [20].

Lemma 3.2 For every integer r > 1 and every integer n, every graph G = (V,E) with |V| = n
vertices and at least n®~ 107 edges contains disjoint sets A1, By C V such that every r-tuple of vertices
in A1 has at least ni6 common neighbors in By, and every r-tuple of vertices in B1 has at least nio

common neighbors in A;.

Proof. Note, first, that since n 1 < n?/2, n > 2197 > 1000. Partition the vertex set V into
disjoint sets A, B of cardinalities |A| = [2], |B| = | %] such that at least half of the edges of G cross
between A and B. (The existence of such a partition can be proved, for example, by choosing a set
A of the desired size at random and by estimating the expected number of edges between A and its
complement.) Denote by G; the bipartite subgraph of G cousisting of all edges of G between A and
B. Obviously, |E(G1)| > LE(G)| > in® 0.

Choose at random a subset 77 C B consisting of 47 (not necessarily distinct) random members
of B. Thus |T1| < 4r. Denote

Ay = Ao(Tl) = {G, ceA: Ty C NGl(a)} .

Let X = |Ag|- Let Y be the random variable counting the number of 3r-tuples in Ay whose common

neighborhood in B has fewer than nio vertices. We estimate the expectations of X and Y.

dg, (a, B)\ " E(G)\" »
E[X] _ Z ( Gl‘(éli )) > ‘A| (||14(HB})|‘> > 24r71nlfl4w > 271,0'6,
a€A

where the first inequality follows from the convexity of f(z) = (z/ |B|)4T.

In order to estimate the expected value of Y, observe that for a fixed 3r-tuple R C A the
NG, (B
|B]

subsets R of cardinality 3r of A for which |[Ng (R)| < n®! it follows that

=1 (5) () < () (i) - () () =

By linearity of expectation we conclude that E[X — Y] = E[X] — E[Y] > n%®. Hence there exists

a choice of T} for which X —Y > n%6. Choose such T}, and for each 3r-tuple in Ay with fewer
0.1

. As there are at most (|£,|)

probability that R will be a subset of Ay is precisely

than n”" common neighbors, delete one vertex from Ay. It follows that there is a set A; C A of

cardinality |A;| > n%% so that

every 3r-tuple in A; has at least n’-! common neighbors in B. (2)



Fix an A, as above.
Now choose at random a subset 7, C A; consisting of 2r (not necessarily distinct) uniformly
chosen members of A;. Note that |T3| < 2r, and set

By = Bl(TQ) = {b eB:T, C NGl(b)} .

We estimate the probability that B; contains an r-tuple R;, whose common neighborhood in A;

has less than n10 vertices. As in the calculation of E[Y'] above, this probability is at most

2r
|B| n0-1 |B|r o n’ 7
(r m) S e sy <t

Hence there exists a choice of T5 for which

every r-tuple in B; has at least n%! common neighbors in A;. (3)

We claim that the pair (A;, By) fulfills the requirements of the lemma. Indeed, for B; the desired
property holds by (3). To show it for A;, consider an arbitrary subset S C A; of cardinality |S| = r.
As |SUTy| < |S| + |T| < 7+ 2r = 3r, by (2) the set S UT; has at least n®! common neighbors in
B. Observe, crucially, that by the definition of B; all common neighbors of T in B belong to B;. It
follows that N¢ (SUT) C N§ (Tz) C B and [N, (SUTy)| > n%t. As N§, (S)N By = N§, (SUT),

the statement is proven. O

Theorem 3.3 Every graph G = (V,E) on |V| = n vertices with |[E(G)| > n2=10r edges contains
every r-degenerate bipartite graph H = (AU B, F) with |A|,|B| < n%!.

Proof. Let h = |A| + |B|. Order the vertices of H in such a way that for every 1 <7 < h, a vertex
v; € V(H) has at most r neighbors preceding it. Such an ordering is possible by Proposition 3.1.

Now apply Lemma 3.2 to G to get disjoint subsets A1, By C V(G) so that every r-tuple of vertices
in A; has at least n®"' common neighbors in Bj, and every r-tuple in B; has at least n%! common
neighbors in A;. We construct an embedding f : V(H) — V(G) by placing images of vertices from
A into A;, and images of vertices of B into Bj.

To construct the desired embedding, we proceed according to the chosen order (vy,...,vp) of the
vertices of H. If the current vertex v; € V(H) is a vertex from A, we first locate the images f(v;),
j < i, of the already embedded neighbors of v; in B. The set {f(v;) : j <%, (vj,v;) € E(H)} is a
subset of B; of cardinality at most 7. It has therefore at least n’! common neighbors in Ay, and
obviously not all of them have been already used in the embedding. We pick one unused vertex w
and set f(v;) = w. If v; € B, we can repeat the above argument, interchanging the roles of A; and
B;. |

Corollary 3.4 For every r-degenerate bipartite graph H on h vertices and for every n > ng(H) =
th'.
9L
ex(n,H) < n” Tor .

(=)



In fact the constant 10 in this corollary can be improved to 4 as stated in the following theorem,
whose proof is similar to that of one of the lemmas in [3]. This theorem also improves the estimate in
Theorem 3.3, but we believe it is instructive to include the somewhat simpler proof of that theorem

as well, and present the next proof separately.

Theorem 3.5 Let H be a bipartite r-degenerate graph of order h. Then for all n > h
ex(n,H) < R 22

Proof. The claim is trivial for 7 = 1 and we thus assume r > 2. Let G be a graph of order n with
at least h1/2rp2= i edges. As described in the proof of Lemma 3.2, there is a bipartite subgraph
Gi of G with parts A and B of sizes |A| = [n/2] and |B| = [n/2] such that |E(G1)| > 3|E(G)| >
% BL/2r 2= 4

Choose at random an ordered subset 7" consisting of 2r (not necessarily distinct) random members
of B. Denote A" = N, (T) ={a € A:T C Ng,(a)}. Let X =|A'|. Let Y be the random variable
counting the number of ordered 3r-tuples of vertices in A’ whose common neighborhood in B has

fewer than h vertices. We next estimate the expectations of X2 and of Y. Using the convexity of
2
f(z) = (z/|B|)”" we get

2r 2r
acEA

where here we used the fact that |A| = |n/2] > n/4. By Jensen’s Inequality and the fact that the
function z%" is convex, E[X?"| > E[X]?" > (2h)?"n". As explained in the proof of Lemma 3.2,

h—-1

E[Y] < |A]* (W

2r
) < |A|"h* < h?nT.
By linearity of expectation we conclude that

E [XQ’" —Y - B (”)] — E[X”] -EY]-h¥ (”)

T T

S QU p2rT _ p2ror  por (”) > 0.
T
Hence we can fix a choice of T such that X%" —Y — h?" (:f) > 0.
Call an ordered subset S of 2r (not necessarily distinct) elements of A’ bad if:
(i) all elements of S are contained in the common neighborhood of a set U C B of size r for which
IN¢, (U) N A'| < h, or
(ii) there exists an ordered subset R of 3r elements of A’ whose first 2r members form the ordered
set S, such that [Ng (R)| < h,
otherwise it is called good. To rephrase, S is good if: (i) for every U C B of size |U| = r, for which
S C N¢g, (U), one has:
NG, (U) N A| > h, (4)

7



and (ii) for all subsets W C A’ of size |W| =,
Ng, (SUW)| > h. (5)

Every subset U C B satisfying |[Ng, (U) N A’| < h creates at most (h— 1)?" < h?" bad ordered 27-
tuples in A’, and every ordered subset R C A’ of size 3r with [N, (R)| < h generates exactly one bad
ordered 2r-tuple. Therefore, the total number of bad ordered 2r-tuples is at most Y + h%" (7;) < X7,
It follows that there is some ordered 2r-tuple S C A’ which is good. Fix such a good S and define
B' = Ng, (S) ={b€ B:S C Ng,(b)}. As in the derivation of Theorem 3.3, to complete the proof
it suffices to show that every r-tuple of vertices in A’ has at least h common neighbors in B’, and
every r-tuple of vertices in B’ has at least h common neighbors in A’. For B’ the desired property
follows directly from the fact that S is good, and from (4). To show it for A’ consider an arbitrary
subset W C A’ of cardinality r. Let S UW denote the ordered 3r-tuple of elements of A’ starting
with the 2r members of S and continuing with the r members of W. By (5), |[Ng, (SUW)| > h.
The crucial observation is now that by the definition of B’, all common neighbors of S in G; belong
to B'. Hence |[Ng (W) N B'| = [N§, (SUW)| > h. This completes the proof. O

Substituting, for example, h = n!/* in the last theorem, we obtain the following strengthening
of Theorem 3.3

Theorem 3.6 Every graph G = (V,E) on |V| = n vertices with |[E(G)| > n2=s edges contains

1/4

every r-degenerate bipartite graph H = (AU B, F) with at most n'/* vertices.

As mentioned in the introduction, an old conjecture of Erdds ([9], see also [7]), asserts that for every
fixed r-degenerate bipartite graph H, ex(n, H) = O(n? /7). Moreover, for 7 = 2 Erdés conjectured
(see [12], [13], [7]) that for any fixed bipartite graph H, ex(n, H) = O(n%/?) if and only if H is
2-degenerate. The last theorems do not prove any of these conjectures, but do supply an estimate of
a similar form, and hence provide evidence to support them. The problem of reducing the constant
4 in Theorem 3.5 all the way to 1, remains a challenging open question whose resolution seems to

require some additional ideas.

4 Ramsey numbers of graphs with given maximum degree

In this section we describe an application of Lemma 2.1 in the proof of the following Ramsey-type

result.

Theorem 4.1 Let H be a graph with h vertices and chromatic number k > 2. Suppose that there is
a proper k-coloring of H in which the degrees of all vertices besides possibly those in the first color
class are at most r, where 1 < r (< h). Define a(k,r) to be 1 if k > r and 0 otherwise. Then, for

every integer m > 1,

(log m)*E MR,

100m> (2r—k+2)(k—1)/2

H K,) <
U Kon) < (o



Note that in the above theorem £ is always at most r + 1, since the graph H is r-degenerate and
is thus (r + 1)-colorable. To prove this theorem we will need the following well known bound on the
independence number of a graph containing few triangles (see, e.g., Lemma 12.16 in [5], also see [1]

for a more general result).

Proposition 4.2 Let G be a graph on n vertices with mazimum degree at most d such that the
neighborhood of every vertex in G spans at most t > 0 edges. Then G contains an independent set
of order at least

O.l%(logd —(1/2) logt).

Proof of Theorem 4.1. We apply induction on k. Starting with kK = 2 and r = 1, put n = 100mh
and consider a red-blue edge coloring of K,. Note that in this case H is just a disjoint union of
stars. If the red graph has average degree at least 4h then it contains a subgraph with minimum
degree 2h. In this subgraph one can find any union of stars of order h just greedily. Otherwise, the
average degree of the red graph is at most 4h, so by Turdn’s theorem it contains a blue independent
set of size 100mh/(4h + 1) > m.

Now let r > k = 2 and consider a red-blue edge coloring of K,, with n = (%)rh’. If the
%(i?g%)r_lhr n, then we claim that the red graph contains a set of
at least h vertices, such that every r of them have at least A common neighbors in the red graph.
Indeed, by Lemma 2.1 it suffices to check that
((llggom)rth)r - (n) (h -1

nr—1 r n

number of red edges is at least

T
) >H —hT /P!> hT /2> h—1.

This indeed holds, since h > r > 2. By the reasoning described in Section 2, this implies that the

red graph contains a copy of H.

100m
logm

Next suppose that the red graph has at most % ( )T_lhr n edges. Then, by deleting repeatedly

100m
logm

degree at most d and at least n/2 vertices. If the neighborhood of every vertex in G spans at most

_ (100m\2r—3+1/1; 9
t= (logm) h

vertices of degree larger than d = ( )T_lhT we can obtain a red subgraph G with maximum

edges then, by Proposition 4.2 it contains a blue independent set of size at
least 5 5
O.l%(logd —1/2logt) = %(1/2 —1/(2r)) log (100m/ log m) > m.

Here we used that 1/2 —1/(2r) > 1/4 and that log(100m/logm) > (4/5) log m for all m > 2.
Otherwise, there is a subset of vertices of G of size at most d which spans at least ¢ red edges.

Then the conditions of Lemma 2.1 are satisfied again, since

(2t/d)" (d> (%)r > (2h)" — BT /r! > B > h - 1.

dr—1 r

Therefore the red graph contains a set of at least h vertices, such that every r of them have at least
h common neighbors in the red graph. As was explained earlier, this implies that the red graph

contains a copy of H, showing that indeed the result holds for £ = 2.



Assuming the result for £ — 1, we prove it for k, £ > 3. Given H as in the theorem, fix a proper
k-coloring of it with k color classes V1, V5, ..., Vi in which the degrees of all vertices besides possibly
those in V; are at most . Moreover, take such a coloring in which the cardinality of Vj is as large
as possible. Clearly every vertex in V5 U V3...U Vi_; has a neighbor in Vj, (since otherwise we can
shift it to V%, contradicting the maximality). Put V/ =V — V} and let H' be the induced subgraph
of H on V'. Then H' is (k — 1)-chromatic, and it has a proper (k — 1)-coloring in which the degrees

of all vertices besides those in the first color class are at most » — 1.

Put n = (%)(ZT_ICJFZ)(]C_I)/Z(Iog m)®®#TpT and consider a red-blue edge coloring of K,. As

before, if the number of red edges is at least e = %(llé)goz)(QT_kH)(k_l)/Q_l(log m)e ki)

M) (2(r—1)—k+3)(k—2)/2(
logm

h" n, then we

log m)a(k—l,r—l)hr—l

claim that the red graph contains a set U of at least (
vertices, so that any r of them have at least h common neighbors in the red graph. Note that

a(k — 1,7 — 1) = a(k,r). Hence, by Lemma 2.1, to prove this claim it suffices to check that

r _ r (2(r—1)—k+3)(k—2)/2
(2¢/n)" (n) (h 1) > (IOOm) (log m)* B0 BT — 17 /i

nr—1 T n logm

( 100m) (2(r—1)—k+3)(k—2)/2

1 a(k—1,r—1) r—l.
logm (logm) h

Thus, there is a set U as claimed. By the induction hypothesis, either the induced blue subgraph
on U contains a copy of K,,, in which case the desired result follows, or the induced red graph on

U contains a copy of H'. In the latter case, this copy can be completed to a red copy of H in K,,

since every r vertices of U have at least h common neighbors in the red graph.

%(llé)gﬂm)(2r7k+2)(kfl)/271 (log m)a(k,r)hr n edges.
2r—k+2)(k—1)/2—-1
toem) AT logmetn

Next suppose that the red graph has at most

Then, by deleting repeatedly vertices of degree larger than d = (

we can obtain a red subgraph G with maximum degree d and at least n/2 vertices. If the neighbor-
100m) (27—k+2)(k—1)—3+1/7‘( 2a(k,r) p2r

logm

by Proposition 4.2 it contains a blue independent set of size at least

hood of every vertex in G spans at most ¢t = ( logm) edges then,

0.1"7/12(1ogd— (1/2)logt) = 10?%(1/2 —1/(2r)) log (100m/ log m) > m.

Finally, we can assume that there is a subset of vertices of G of size at most d which spans at
least ¢ red edges. Then the conditions of Lemma 2.1 for getting a set U as before are satisfied again,

since

" Y (2(r—1)—h+3)(k-2),/2
(2t/d) _<d> <u> S (100m> (log m)2 B2k — K" r!

dr—1 r d logm
(2(r—1)—k+3)(k—2)/2
(llﬂom) (logm)a(k—l,r—l)hr—l_
ogm
Therefore the red graph contains a set of at least (%)(Q(T_l)_k+3)(k_2)/2(log m)elk—Lr=1pr-1

vertices, such that every r of them have at least A common neighbors in the red graph. As was

10



explained earlier, using this we can either find in the red graph a copy of H or in the blue graph a

copy of K,,. This completes the proof of the theorem. O

An easy probabilistic argument shows that the above theorem is nearly tight when m is large
and the fixed graph H is H = K, , with s much bigger than r. In fact, for every ¢ > 0, and
every fixed r, if s > so(r,€), then r(K; s, Ky,) > m”"~€ for all m > my(s), whereas by Theorem 4.1,
r(Kr,s, Km) < c(s)(m/logm)". See also [22] for some related results.

5 On a Ramsey-type problem of Erdos

As mentioned in the introduction, the following conjecture was raised by Erdds (see [7]).

Conjecture 5.1 There exists an absolute constant ¢ > 0 such that for every graph G with m edges

and no isolated vertices,
r(G) < 29V™,

Here we first describe a very short proof of the conjecture for bipartite graphs G.

Theorem 5.2 Let G be a bipartite graph with m edges and no isolated vertices. Then

r(G) < 216VmHL

The order of the exponent in this estimate is asymptotically tight. Indeed, let G be the complete
bipartite graph K .= . Then it contains m edges and it is easy to check that almost every
two-edge-coloring of the complete graph of order 2V™/2 where the color of every edge is chosen
randomly and independently with probability 1/2, does not contain a monochromatic copy of G.
Thus 7(G) > 2vV™/2,

Proof of Theorem 5.2. First we prove that G is y/m-degenerate. Otherwise, by definition, G
contains a subgraph G’ with minimal degree larger than v/m. Let (U, W) be the bipartition of G'.
Clearly, every vertex in U has at most |W| neighbors in G'. Therefore |W| > y/m and we obtain a

contradiction since the number of edges in G’ is

B@)| = Y dw) > VW] > m = |E(G)|.

veW

Let n = 216V™+1 and suppose that the edges of the complete graph K, are 2-colored. Then
clearly at least %(g) > nZ_ﬁ edges have the same color. These edges form a monochromatic
graph which satisfies the conditions of Theorem 3.6 with 7 = y/m. Thus this graph contains every
v/m-degenerate bipartite graph of order nl/% > 2%m 5 9. In particular, since the order of G is

obviously bounded by 2|E(G)| = 2m it contains a copy of G. This completes the proof. O

Theorem 5.3 Let G be a graph with m edges and no isolated vertices. If m is sufficiently large

then
r(G) < 27Vmloszm,
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To prove this theorem we need two lemmas of Graham, R6dl and Ruciniski [16]. We start with
some notation. Let H be a graph with vertex set V' and let U be a subset of V. Then we denote by
H[U] the subgraph of H induced by U and by e(U) its number of edges. The edge density d(U) of

U is defined by
e(U)

(%)

2

Similarly if X and Y are two disjoint subset of V, then e(X,Y") is the number of edges of G adjacent
to exactly one vertex from X and one from Y and the density of the pair (X,Y") is defined by

d(U) =

e(X,Y)

XYY = Txv)

We say that H is (p,y)-dense if for all U C V with |U| > p|V|, we have d(U) > . Similarly we say
that H is bi-(p,7)-dense if all pairs (X,Y) of disjoint subsets of V with |X| > p|V| and |Y| > p|V|
satisfy d(X,Y) > . The following two lemmas are proved in [16].

Lemma 5.4 Let the numbers s, 3, p,n satisfy 0 < B,p,n < 1,5 > logy(4/n) and (1 — B)* > 2/3.
Then if H is a ((2p)°8°~1,n)-dense graph on N vertices, then there exists U C V(H) of size at least
p* 1B 2N such that H[U] is bi-(p,n/2)-dense.

Lemma 5.5 Let A and n be two integers and let a,e,y be positive numbers such that for all 0 <
r <A,

('yA_T - re)a > 1.

Let also G be a graph on n vertices with mazimum degree at most A. If H is a graph of order at

least a(A + 1)n which is bi—(ﬁ,’y)—dense then H contains a copy of G.
Using these two lemmas we next prove the following statement.

Proposition 5.6 Let m be an integer and let H be a graph with vertez set V,|V| > 23vmlogym gcp,

that every subset of H of size at least 4m? has density at least 1/(2m). If m is sufficiently large,
Jm

logom *

then H contains a copy of every graph G on 2m vertices with maximum degree at most

Proof. Let n =1/(2m),s = logy(4/n) = logom + 3,8 = 1/(8log, m) and let p = 272V™_ Since m
is sufficiently large, it is easy to check that

— e~ (Ho()/a 2

1 2log, m+-6
) .

8logy m

(-ppe=(1-
Also, by assumption, every subset of H of size

1 logy m+2
(2p)s[35_1|V| > 93vmlogym o(=2ym+1)(logym+3) (__~
8log, m

23\/ﬁ10g2m 2—(2+0(1))\/ﬁ10g2m > 2(1+0(1))\/ﬁlog2m > 4m?
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has density at least n = 1/(2m). Therefore, by Lemma 5.4, H contains an induced subgraph H' of
order at least

I +1
5716572|V‘ > 272\/m(10g2 m+2) 1 og2 1" 93vmlogym
P - 8logy m

93v/mlogy m 9—(2+0(1))y/mlog, m > 9(1+0(1))v/mlog, m

such that H' is bi-(272Y™,1/(4m))-dense.
Let G be a graph of order 2m with maximum degree at most A = lo\g/;m Set vy =1/(4m),a =

22V and € = (A 4 1)272V™. Then it is easy to check that 2m(A + 1)a = 2B+eM)vm
2(1+o(l)vmlogsm < |/ (H')| and that for every 0 < r < A we have

(VA_T—Te)a > (’yA—Ae)a:(( L )%— vm ( vm +1) 2@)23\/77

4m log, m \logy m

(2—(1+o<1>)\/m _ 2—(2+o<1>)m) 93vm _ 9(2+o(1))ym < 1.

In addition, we have that H' is bi—(ﬁ,fy)—dense. Thus G and H' satisfy all the conditions of

Lemma 5.5 and therefore it follows that H’ contains a copy of G. O
Having finished all the necessary preparations we are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let G = (V, E) be a graph with m edges and no isolated vertices. Then,

clearly, the number of vertices of G is at most 2m. Let Vj be the subset of 2,/mlog, m vertices of

G of largest degrees. Denote by G’ the subgraph of G induced by the set V — V; and by A(G') its

maximum degree. Note that

1
Z d(v) > SA(G)|Vo| = (vimlogy m) A(G).
vEVo
Therefore the maximum degree of G’ is bounded by ; O\g/zmm.

Let n = 27Vmlogam and let x be a 2-coloring of the edges of the complete graph K,,. Define, for
1 <7 < 44y/mlogym, sets of vertices U; and elements u; € U; as follows. U; is the set of all vertices
of K.

e Having chosen U;, select u; in U; arbitrarily.

e Having selected u; € U;, define
W; ={ueU; | x(ui,u) =35}, j=1,2.

Set U;+1 to be the largest of the sets Wi, Wy. By definition, |U;+1| > (|Ui| —1)/2. Also, by induction,

it is easy to show that

ey M n
|U|>211 22 —1> 5
In particular we obtain that for [ = 2v/mlogy m, |Uy| > 27Vmlogam 92l — 93v/mlogzm
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Define a new coloring x* on ui,...,uy 1 by setting x*(u;) = j (1 or 2) if x(u;,z) = j for all
x € Ujy1. Since this coloring splits the above 2/ — 1 vertices into two parts, there is a set S of [

vertices u;,,...,u; all having the same color. Without loss of generality we can assume that this

1
color is 1. Note that the vertices of S form a monochromatic clique of size 2y/m log, m which has
color 1 and that all the edges between S and Usy; are also colored 1.

Let H be the graph consisting of all the edges within the set Uy with color 1. First suppose
that the density of every subset of H of size at least 4m? is at least 1/2m. Then, by Proposition
5.6, H contains a copy of the graph G'. It is easy to see that such a copy of G’ together with the
set of vertices § forms a monochromatic subgraph of K, containing G. On the other hand if X is a

subset of H of size at least 4m? and density less than 1/2m, then an easy computation shows that

(-2) () (-5)

edges of the second color. Therefore by Turdn’s theorem there is a monochromatic clique of size 2m

X spans at least

of the second color. This clique contains every graph on 2m vertices and in particular a copy of G.
This completes the proof of the theorem. O

Note that the proof actually shows the following, which is obviously stronger than the assertion
of Theorem 5.3.

Theorem 5.7 For every graph G with m edges and no isolated vertices, (G, Kom) < 27V/mlogy m

provided m is sufficiently large.

6 Improved bounds on a Turan-type problem

Given integers k,t > 2 and s > 1 define the graph Lf’s as follows. The vertex set of this graph
consists of two disjoint sets X and Y of sizes s(l,f) + 1 and k respectively. X = {zo} U {z%} where
I runs through all ¢t-element subsets of {1,...,k} and 1 < a < s,and Y = {y1,...,yx}. For every
1 <1 <k we join y; to =g and also to every z¢ if ¢ € I. In particular, for s = 1 and ¢ = 2 this graph
is the induced subgraph on the first three layers of the Boolean k-cube. In this section we prove the

following result.

Theorem 6.1
ez(2n, Lf’s) < oW/t (g 4 1) P21t

This improves a result of Fiiredi [14], who proved that
ex(n, L) = O((s + 1)/tk2-1/tn2- 114,

Note that this result, as well as that of [14], supplies an alternative proof for Corollary 2.3, as Lf ok
contains every bipartite graph with maximum degree ¢ on one side and at most k vertices. The
dependence on k in our estimate above is essentially optimal for k = n!/t, and the dependence on s

is essentially optimal for all s > ¢!, as shown by the examples in [2].
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Proof. Let G = (V, E) be a graph on 2n vertices with at least 2111/¢(s + 1)1/t kn2=1/t edges. As in
Section 3, start with a partition of the vertex set V into disjoint sets V1, V5, each of cardinality 7, such
that at least half of the edges of G cross between V; and V5. Denote by GG; the bipartite subgraph
of G consisting of all edges of G between Vi and V,. By definition, |E(Gy)| > 2/ (s + 1)"/tkn2=1/t,

Without loss of generality assume that

t t
Z (dGl (’U)) < Z (dGI (U)) .
veVr veEVa
Let zg,...,z:—1 be a sequence of ¢t not necessarily distinct vertices of Vi, chosen uniformly and
independently at random, and denote T' = {zg,...,z;—1}. Let U be the set of all the common
neighbors of vertices from 7" in V3, that is, U = N§ (T) = {v € Vo | T C Ng, (v)}, and denote by X

the size of U. By linearity of expectation and Jensen’s inequality:
q y

EX] = > Pr(velU)=)_ (M)t _ Lew, (46 (v))

t
vEVS veEVS |‘/1| n
t
2 vevs, 4Gy (v) t
n (7”2” : ) n (|B(G)|/n)
> - = - =2(s + 1)k,
n n

For every subset of vertices S C V5 of size t define a weight w(S) by w(S) . Let Y be

_ 1
— NG, (9))]
the random variable which sums the total weight of subsets of U of size ¢ with at most (s + 1)(?)

common neighbors in G;. Note that for a given subset S C V5, of size ¢ the probability that it belongs

* t
to U is precisely ('NG;L(S”) . Therefore we can obtain the following bound on the expectation of Y:
NG, (9)
EY] = Z w(S)Pr(SCU) = Z ——
SCVa,|8|=t,| N, (S)|<(s+1)(}) SCVa,|S|=t| NG, (S)I<(s+1)(5)
t—2 _LINE (S t—2 dg, (v)
S (3 n 1) k ZSQV2,|S‘_t| Gl( )‘ _ (S+ 1) k ZUEV1 ( 1 )
t nt t nt
_ ¢ _ t
((s+ 1)(§))t § 2 vevs (dGl(U)) < ((s+ 1)(15))?5 2 > vevs (dGl (U))
- t! nt - t! nt
1) (*))t—2
< (s +1(3) E[X].
2
This implies that
Y
E X—(s—l—l)kt——k]ZO. (6)
((s+1)(3)t2

Hence there exists a choice of T" such that the random variables X and Y for the corresponding set U
satisfy (6). Pick such a set U. Then, by (6), we have [U] = X > (s+1)k* and Y < ((s+1)(¥))!2X.
Let U; be a random subset of U of size precisely k¥ and let Y; be the random variable which

counts the total weight of subsets S of U; of size ¢ with at most (s+1) (lz) common neighbors in G.
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Note that for every such S the probability that it lies in U; equals ()k(__tt) / (ic( ) Thus, it is easy to

see that
Eyi] = (%(;_f)Y < (;)ty < (%)t ((5 ) (’j))” ¥ - Kl ()

k
k(s + 1) (¥))r2 K+ )2 (k1) 1 1
= (DT T (s DD T @) 2(s+1) s+ 1

This implies that there is a particular subset U; C V5 of size k with Y1 < 1/(s 4+ 1). Fix such a set
U;.
Let S1,...,S8 (%) be all the subsets of U; of size t. We construct a set of distinct vertices {zf‘ €

1 <i < (f),ltg a < s} such that for every ¢ and «, 2 is adjacent to all vertices in S; and
2y # wo. Arrange the sets S; in a non-decreasing order of |Ng (S;)| and assign the vertices z{*
one by one to these sets in this order. Always pick the next vertex z{* from N¢ (S;) such that it
is different from all previous vertices and xy. Note that if this greedy procedure fails at step 7,
1<r< (l:), then clearly the set S, has [Ng (Sr)] <rs+1<(s+1) (f) Also by definition, we have

that |[Ng, (Si)| < [Ng, (Sy)| for all 4 < r. Thus we obtain a contradiction, since

+ z ¥ = § : > > > .
s+1 N (S, N= (S ol 2 s+
Si,\N&l(si)|§(s+1)(lz) | Gl( z)| | Gl( r)| +

Finally, recall that z( is adjacent to all the vertices in U and hence also to all the vertices in Uj.
Thus z( together with the vertices in U; and the vertices {z{*} form a copy of Lf **. This completes

the proof of the theorem. O

7 Concluding remarks

e A topological copy of a graph H is any graph obtained from H by replacing each edge by a
simple path, where all these paths are internally vertex disjoint. A 1-subdivision of H is the

topological copy of H obtained by replacing each edge of H by a path of length 2.

In [10] Erdés asked whether any graph on n vertices with ¢;n? edges contains a 1-subdivision
of K,, with m = co4/n for some positive ¢y depending on ¢;. We note that the results in [6],
as well as those in [19], imply that any such graph contains a topological copy of K, ., but
this copy is not necessarily a 1-subdivision.

However, the existence of a 1-subdivision of the required size follows immediately from Theorem
6.1 with ¢ = 2, s = 1 and k = ©(y/n). A similar result can also be derived from the main
result of [8], and can also be proved directly from the reasoning in the proof of Lemma 2.1
here. In fact, it is not difficult to show that for any fixed positive ¢ and § there is a positive
d = d(c,d) such that any graph on n vertices with at least nl/218 vertices of degree at least

cn each, contains a set of of at least y/n vertices so that each pair has at least ¢’n common
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neighbors. This clearly implies that any such graph contains a 1-subdivision of K, for any m

satisfying m + (%) < d'n.

As mentioned in Section 4, our estimate in Theorem 4.1 is nearly tight for some bipartite
graphs H. It seems, however, that this estimate is far from being tight for graphs H with
a large chromatic number. We conjecture that r(H, K,,) < m©) for every fixed graph H
with maximum degree r and all sufficiently large m. Note that Theorem 4.1 implies merely
r(H,K,) < mOP®) for this case.

The assertion of Theorem 5.2 can be extended to graphs with bounded chromatic number,

combining our ideas here with the techniques in [20]. We omit the details.

The proof of Theorem 6.1 implies a similar estimate for the Turdn number of the graph I:f *
obtained from Lf’s by replacing the vertex xzg by an independent set of ¢ vertices with the
same neighbors. This is because the set 1" in the proof can be chosen with no repetitions.
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