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Abstract

A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let
q(G) denote the maximum number of vertices in a trivial subgraph of G. Motivated by an open
problem of Erdős and McKay we show that every graph G on n vertices for which q(G) ≤ C log n
contains an induced subgraph with exactly y edges, for every y between 0 and nδ(C). Our
methods enable us also to show that under much weaker assumption, i.e., q(G) ≤ n/14, G still
must contain an induced subgraph with exactly y edges, for every y between 0 and eΩ(

√
logn).

1 Introduction

All graphs considered here are finite, undirected and simple. For a graph G = (V,E), let α(G)
denote the independence number of G and let w(G) denote the maximum number of vertices of a
clique in G. Let q(G) = max{α(G), w(G)} denote the maximum number of vertices in a trivial
induced subgraph of G. By Ramsey Theorem (see, e.g., [10]), q(G) ≥ Ω(log n) for every graph G

with n vertices. Let u(G) denote the maximum integer u, such that for every integer y between 0
and u, G contains an induced subgraph with precisely y edges. Erdős and McKay [5] (see also [6],
[7] and [4], p. 86) raised the following conjecture

Conjecture 1.1 For every C > 0 there is a δ = δ(C) > 0, such that every graph G on n vertices
for which q(G) ≤ C log n satisfies u(G) ≥ δn2.

Very little is known about this conjecture. In [3] it is proved for random graphs. For non-random
graphs, Erdős and McKay proved the following much weaker result: if G has n vertices and q(G) ≤
C log n, then u(G) ≥ δ(C) log2 n. Here we prove the following, which improves the Ω(log2 n)
estimate considerably, but is still far from settling the conjecture.
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Theorem 1.2 For every C > 0 there is a δ = δ(C) > 0, such that every graph G on n vertices for
which q(G) ≤ C log n satisfies u(G) ≥ nδ.

We suspect that u(G) has to be large even if q(G) is much larger than C log n. In fact, we propose
the following conjecture.

Conjecture 1.3 Every graph G on n vertices for which q(G) ≤ n/20 satisfies u(G) ≥ Ω(n).

Our methods enable us to show that the following weaker statement holds for any graph G satisfying
the above assumption.

Theorem 1.4 There exists a constant c > 0, such that every graph G on n vertices for which
q(G) ≤ n/14 satisfies u(G) ≥ ec

√
logn.

Throughout the paper we omit all floor and ceiling signs whenever these are not crucial. All
logarithms are in base 2, unless otherwise specified. We make no attempt to optimize the absolute
constants in our estimates and assume, whenever needed, that the number of vertices n of the graph
considered is sufficiently large.

2 Sets with large intersection and large complements-intersection

Lemma 2.1 Let F be a family of s subsets of M = {1, 2, . . . ,m}, and suppose that each F ∈ F
satisfies εm ≤ |F | ≤ (1− ε)m. Suppose, further, that there are integers a, b, t such that

s
(
ε(1− ε)

)t − (s
a

)
δt > b− 1.

Then there is a subset G ⊂ F of b members of F such that the intersection of every a members of
G has cardinality larger than δm, and the intersection of the complements of every a members of G
has cardinality larger than δm.

Proof. We apply a modified version of an argument used in [2]. Let A1 and A2 be two random
subsets of M , each obtained by picking, randomly, independently and with repetitions, t members
of M . Define G′ = {F ∈ F : A1 ⊂ F, F ∩ A2 = ∅}. The probability that a fixed set F ∈ F lies in
G′ is (

|F |
m

)t(m− |F |
m

)t
≥
(
ε(1− ε)

)t
.

Call a subfamily S of a members of F bad if either the cardinality of the intersection of all members
of S or the cardinality of the intersection of all the complements of these members is at most δm. If
S is such a bad subfamily, then the probability it lies in G′ is at most δt. Indeed, if the cardinality
of the intersection of all members of S is at most δm, then the probability that all members of A1

lie in all these members is at most δt, and if the cardinality of the intersection of the complements
is at most δm, then the probability that all members of A2 lie in all complements is at most δt. By
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linearity of expectation, it follows that the expected value of the random variable counting the size
of G′ minus the number of bad a-tuples contained in G′ is at least

s
(
ε(1− ε)

)t − (s
a

)
δt > b− 1.

Hence there is a particular choice of A1, A2 such that the corresponding difference is at least b. Let
G be a subset of G′ of cardinality b obtained from G by removing at least one member from each
bad a-tuple. This G clearly possesses the required properties. 2

We need the following two special cases of the last lemma.

Corollary 2.2 Let F be a family of subsets of M = {1, 2, . . . ,m}, and suppose that each F ∈ F
satisfies εm ≤ |F | ≤ (1− ε)m.
(i) If |F| ≥ (4/ε)2 then F contains two sets such that the size of their intersection and the size of
the intersection of their complements are both at least (ε/4)2m.
(ii) If |F| ≥ m3/4 and ε(1− ε) ≥ m−1/30, then F contains a family of at least m0.6 sets, so that the
intersection of each three of them is of size at least m1/2, and the intersection of the complements
of each three of them is of size at least m1/2.

Proof. Part (i) follows by applying the lemma with s = (4/ε)2, a = b = t = 2 and δ = (ε/4)2.
Part (ii) follows by applying the lemma with s = m3/4, a = 3, t = 4, δ = m−1/2 and b = m0.6. 2

3 Density and induced subgraphs

For a real γ < 1/2 and an integer t, call a graph G (γ, t)-balanced if the number of edges in the
induced subgraph of G on any set of r ≥ t vertices is at least γ

(
r
2

)
and at most (1 − γ)

(
r
2

)
edges.

We need the following simple fact.

Lemma 3.1 Let G = (V,E) be a (γ, n/3)-balanced graph on n vertices. Then there is a set U of
γn/6 vertices of G such that for W = V − U and for each u ∈ U , u has at least γ|W |/6 and at
most (1− γ/6)|W | neighbors in W .

Proof. If G has at least n/2 vertices of degree at most (n − 1)/2, let V1 be a set of n/2 such
vertices. By assumption there are at least γ

(
n/2
2

)
edges in the induced subgraph on V1, and hence it

contains a vertex of degree bigger than γn/3. Omitting this vertex from V1 and applying the same
reasoning to the remaining subgraph, we get another vertex of degree at least γn/3. Continue in
this manner γn/6 steps to get a set U of γn/6 vertices. This set clearly satisfies the requirements.
Indeed, by definition, every vertex in U has at most (n − 1)/2 < (1 − γ/6)2n = (1 − γ/6)|V − U |
neighbors. On the other hand it has at least γn/3− γn/6 = γn/6 neighbors outside U . If G does
not have at least n/2 vertices of degree at most (n − 1)/2, we apply the same argument to its
complement. 2

The following lemma is crucial in the proof of the main results.
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Lemma 3.2 Let G = (V,E) be a (6ε, n0.2)-balanced graph on n vertices, and suppose that ε ≥
n−0.01. Define δ = 0.5(ε/4)2 and put k = 0.3 logn

log(1/δ) − 1. Then there are pairwise disjoint subsets
of vertices A0, A1, . . . , Ak+1, B0, B1, . . . , Bk+1 with the following properties:
(i) |Ai| = 2i for each i.
(ii) |B0| = 3 and |Bi| = 2 for each i ≥ 1.
(iii) B0 is an independent set in G.
(iv) Each vertex of Bi is connected to each vertex of Ai, and is not connected to any vertex of Aj
for j > i.
(v) There are no edges connecting vertices of two distinct sets Bi.
(vi) The induced subgraph of G on Ai contains at least 6ε

(|Ai|
2

)
edges.

Proof. By Lemma 3.1 there is a set U0 of εn vertices of G, so that for W0 = V − U0, |W0| = m0,
each vertex of U has at least εm0 and at most (1− ε)m0 neighbors in W0. Therefore, by Corollary
2.2, part (ii), there is a set S of at least m0.6

0 > n0.5 vertices in U0, so that any three of them
have at least m0.5

0 ≥ n0.5/2 common neighbors and at least m0.5
0 ≥ n0.5/2 common non-neighbors

in W0. Since G is (6ε, n0.2)-balanced, its induced subgraph on S contains an independent set
of size three (simply by taking, repeatedly, a vertex of minimum degree in this subgraph, and
omitting all its neighbors). Let A0 be a set consisting of an arbitrarily chosen common neighbor
of these three vertices, and let B0 be the set of these three vertices. Define also C1 to be the set
of all common non-neighbors of the vertices in B0 inside W0. Therefore |C1| ≥ n0.5/2. By Lemma
3.1 applied to the induced subgraph on C1, it contains a set U1 of ε|C1| ≥ (4/ε)2 vertices such
that for W1 = C1 − U1, |W1| = m1, each vertex of U1 has at least εm1 and at most (1 − ε)m1

neighbors in C1. By Corollary 2.2, part (i), there is a set B1 of two vertices of U1, having at least
(ε/4)2m1 ≥ 0.5(ε/4)2|C1| = δ|C1| ≥ 0.5δn0.5 common non-neighbors and at least 0.5δn0.5 common
neighbors. Let A1 be a set of two of these common neighbors that contains the maximum number
of edges among all possible choices for the set A1 (one edge in this particular case), and let C2 be
the set of all common non-neighbors. Note that by averaging, and as G is (6ε, n0.2)-balanced, the
number of edges on A1 is at least 6ε

(|A1|
2

)
. Note also that there are no edges between B0 and A1.

Applying the same argument to the induced subgraph on C2 we find in it pairwise disjoint sets
B2 of two vertices, A2 of four vertices, and C3 of size at least 0.5δ2n0.5, so that each member of
B2 is connected to each member of A2 but to no member of C3, and A2 contains at least 6ε

(|A2|
2

)
edges. We can clearly continue this process as long as the resulting sets Ci are of size that exceeds
n0.2, thus obtaining all sets Ai, Bi. The construction easily implies that these sets satisfy all the
required conditions (i)-(vi). 2

Corollary 3.3 Let G, ε, n, δ and k be as in Lemma 3.2. Then u(G) ≥ 6ε
(

2k

2

)
, that is, for every

integer y between 0 and 6ε
(

2k

2

)
, G contains an induced subgraph with precisely y edges.

Proof. Let a1, a2, a3, . . . , ap be an ordering of all vertices of ∪iAi starting with the unique vertex
of A0, followed by those in A1, then by those in A2, etc. Given an integer y in the range above, let
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j be the largest integer such that the induced subgraph of G on A = {a1, a2, . . . , aj} has at most
y edges. Let z denote the number of edges in this induced subgraph. Notice that as y ≤ 6ε

(
2k

2

)
,

j < p, as the sets Ai satisfy the conclusion of Lemma 3.2, (vi). By the maximality of j, the number
of neighbors of aj+1 in A is bigger than y − z, and hence |A| > y − z. To complete the proof we
show that one can append to A appropriate vertices from the sets Bi to get an induced subgraph
with the required number of edges. Note that the set A consists of the union of all sets Ai for i
between 0 and some d ≤ k, together with some vertices of Ad+1. Therefore we have |A| ≤

∑d+1
i=0 2i.

Observe also that for each 1 ≤ i ≤ d and b ∈ Bi,

2i = |Ai| = d(b, Ai) ≤ d(b, A) ≤
i∑

j=0

|Aj | = 1 + . . .+ 2i < 2i+1. (1)

The proof will easily follow from the proposition below.

Proposition 3.4 If 2i+1 ≤ y− z < 2i+2 for 1 ≤ i ≤ k, then one can add some vertices from Bi to
A to get y − z′ < 2i+1, where z′ is the number of edges in the induced graph on the augmented set.

Proof of Proposition 3.4. Let Bi = {bi1, bi2}. First we add bi1 to A. Recalling (1), we get
y − z < 2i+2 − 2i = 3 · 2i (where z is the number of edges in the new set A). If y − z < 2i+1, then
we are done, otherwise y − z ≥ 2i+1, while the degree of bi2 to the new set A is less than 2i+1 + 1,
i.e. at most 2i+1, again due to (1). Adding bi2 decreases the difference y − z by at least 2i, thus
making it less than 3 · 2i − 2i = 2i+1. 2

To prove the lemma, recall that initially y− z < |A| ≤
∑d+1

i=0 |Ai| < 2d+2. As long as y− z ≥ 22,
we find an index 1 ≤ i ≤ d+ 1 such that 2i+1 ≤ y − z < 2i+2 and apply Proposition 3.4 to reduce
the difference y− z below 2i+1, using vertices from Bi. Once we reach y− z < 22 = 4, we add y− z
vertices from B0, obtaining the required number of edges. 2

Finally to prove Theorem 1.2 we need also the following lemma of Erdős and Szemerédi [8].

Lemma 3.5 Let G be a graph of order n with at most n2/s edges. Then G contains a trivial
subgraph on at least Ω

(
s

log s log n
)

vertices.

Proof of Theorem 1.2. Let G = (V,E) be a graph with n vertices satisfying q(G) ≤ C log n.
Then, from Lemma 3.5, it follows easily that there is an β = β(C) > 0, so that G is (β, n0.2)-
balanced. By Lemma 3.2 this implies that u(G) ≥ nδ for some constant δ = δ(C) > 0. 2

4 Graphs with large trivial subgraphs

In this section we present the proof of Theorem 1.4. First we need to obtain a lower bound on
u(H) for a bipartite graph H with positive degrees. This is done in the following simple lemma,
which may be of independent interest.
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Lemma 4.1 Let H be a bipartite graph with classes of vertices A and B such that every vertex of
A has a positive degree. Then u(H) ≥ |A|.

Proof. Let B′ ⊂ B be a subset of minimum cardinality of B such that each vertex of A has at
least one neighbor in B′. Put |A| = n, and let d1 ≤ d2 ≤ . . . ≤ dn be the degrees of the vertices
of A in the induced subgraph H ′ of H on A ∪ B′. We assume that the vertices of A are 1, . . . , n.
Also for every j ∈ A, let Nj be the set of neighbors of this vertex in B′. By the minimality of
B′, d1 = 1. Similarly, by the minimality of B′ for each i > 1 we have di ≤ d1 + d2 + . . . + di−1.
Otherwise we can delete an arbitrary vertex of B′ not in

⋃i−1
j=1Nj , keeping all degrees in A positive

and contradicting the minimality. Therefore it is easy to see that every integer up to
∑n

i=1 di ≥ n

can be written as a sum of a subset of the set {d1, . . . , dn}, and is thus equal to the number of
edges in the corresponding induced subgraph of H ′ (and hence of H). 2

Remark. This result is clearly tight, as shown by a star (that is, by the trivial case |B| = 1) or
by a complete bipartite graph on A and B with |B| ≤ |A|, in case |A|+ 1 is a prime.

Next we need the following easy lemma which deals with the possible sizes of induced subgraphs
in a graph which is either a disjoint union of cycles or a long path.

Lemma 4.2 Let k be an integer and let H be a graph which is either (i) a disjoint union of k
cycles or (ii) a path of length 3k− 1. Then for every integers m ≤ k and t ≤ m− 2 there exists an
induced subgraph of H with exactly m vertices and t edges.

Proof. Since we can always consider a subgraph of H induced by the union of the first m cycles
in case (i) or a path of length 3m in case (ii), it is enough to prove this statement only for m = k.
(i). Denote by c1, . . . , ck the lengths of the cycles forming H. Given an integer t ≤ k − 2, let j be
the index such that c1 + . . . + cj−1 ≤ t < c1 + . . . + cj . If c1 + . . . + cj ≥ t + 2 then we can delete
a few consecutive vertices from the j-th cycle to obtain a graph with exactly t edges. It is easy to
see that the number of vertices of this graph is t+ 1 < k. Otherwise c1 + . . .+ cj = t+ 1. Then we
can delete one vertex from the j-th cycle and add any two vertices which form an edge from the
next cycle. In this case we obtain a graph with t edges and t + 2 ≤ k vertices. Note that in both
cases we constructed an induced subgraph of H with exactly t edges and at most k vertices. Since
the total number of disjoint cycles is k we can now add to our graph one by one isolated vertices
from the remaining cycles until we obtain a graph with exactly k vertices.
(ii). To prove the assertion of the lemma in this case just pick the first t+ 1 vertices of the path
and add an independent set of size k − (t + 1) which is a subset of the last 2k − 2 vertices of the
path. 2

A number is triangular if it is of the form
(
a
2

)
for some positive integer a. We need the following

well known result proved by Gauss (see, e.g., [9], p 179).

Proposition 4.3 Every positive integer is a sum of at most three triangular numbers.

Having finished all the necessary preparations we are now ready to complete the proof of our second
theorem.
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Proof of Theorem 1.4. Let G = (V,E) be a graph of order n such that q(G) ≤ n/14 and let I
be a largest independent set in G. Denote by G′ the subgraph of G induced by the set V ′ = V − I
and let I ′ be the maximum independent set in G′. By the definition of I, every vertex of I ′ has at
least one neighbor in I. Therefore the set I ∪ I ′ induces a bipartite subgraph H of G which satisfies
the condition of Lemma 4.1. This implies that u(G) ≥ u(H) ≥ |I ′|. Thus, if |I ′| ≥ e0.2

√
logn then

we are done. Otherwise we have α(G′) ≤ e0.2
√

logn.
Next suppose that there is a subset X ⊆ V ′ of size at least n1/2 such that the induced subgraph

G′[X] contains no clique of order at least e0.2
√

logn. Then, by the above discussion, q(G′[X]) ≤
e0.2
√

logn and it follows easily from Lemma 3.5 thatG′[X] is (e−0.2
√

logn, n0.2)-balanced. Now Lemma
3.2 and Corollary 3.3 imply that u(G) ≥ u(G′[X]) ≥ eΩ(

√
logn) and we are done again. Denote by

m the number of vertices in G′. Then m ≥ 13n/14 and q(G′) ≤ q(G) ≤ n/14 ≤ m/13. In addition,
we now may assume that every subset of vertices of G′ of order at least 2m1/2 > n1/2 contains a
clique of size larger than e0.2

√
logn > e0.2

√
logm. Since u(G) ≥ u(G′) it is enough to bound u(G′).

Now we start with G′ and delete repeatedly maximal sized cliques till we are left with less than
2m1/2 vertices. Let W1, . . . ,Wk be the deleted cliques and w1 ≥ . . . ≥ wk be their corresponding
sizes. According to the above discussion w1 ≤ m/13 and wk ≥ e0.2

√
logm. Also,

∑k
i=1wi ≥

m − 2m1/2. If for all 1 ≤ i ≤ k − 5 we have wi+5/wi < 3/5, then wj < (3/5)iw1 for all j ≥ 5i,
and thus

∑k
i=1wi ≤ 5

∑k/5
i=1w5i < 5

∑k/5
i=1(3/5)iw1 < 25w1/2 ≤ 25m/26 - a contradiction. Hence

we conclude that there is an i0, 1 ≤ i0 ≤ k − 5, such that wj ≥ (3/5)wi0 for i0 + 1 ≤ j ≤ i0 + 5.
For a vertex v ∈ Wj denote by NWi(v) the set of neighbors of v in Wi, i 6= j. First consider

the case when for some v, both NWi(v) and Wi − NWi(v) have size at least e0.01
√

logm. Then for
every two integers 0 ≤ a ≤ e0.01

√
logm and 0 ≤ b ≤ a− 1 if we pick any b vertices from NWi(v) and

a− b vertices from Wi −NWi(v), then together with v we obtain a set which spans exactly
(
a
2

)
+ b

edges. This immediately implies that u(G) ≥ e0.01
√

logm = eΩ(
√

logn). Hence we can assume that
for all i 6= j, the degree dWi(v) of every vertex v ∈ Wj is either less than e0.01

√
logm or larger than

|Wi| − e0.01
√

logm.
Denote by e(Wi,Wj) the number of edges between Wi and Wj . Let X ⊆ Wj be the set of all

vertices with degree in Wi less than e0.01
√

logm and suppose that |X| ≥ e0.01
√

logm. Let X ′ be a
subset of X of size e0.01

√
logm and let Y ′ be a set of all neighbors of vertices from X ′ in Wi. Clearly

|Y ′| ≤ e0.01
√

logm|X ′| = e0.02
√

logm. Consider a vertex u ∈ Wi − Y ′. This vertex is not adjacent
to all vertices of X ′ and hence has at least e0.01

√
logm non-neighbors in Wj . Thus, by the above

discussion, we know that dWj (u) ≤ e0.01
√

logm. Using the fact that |Wi|, |Wj | ≥ e0.2
√

logm we can
conclude that

e(Wi,Wj) ≤ e0.01
√

logm|Wi−Y ′|+ |Y ′||Wj | ≤ e0.01
√

logm|Wi|+e0.02
√

logm|Wj | ≤ e−0.1
√

logm|Wi||Wj |.

On the other hand, if |X| ≤ e0.01
√

logm then all the vertices in Wj−X have at least |Wi|−e0.01
√

logm

neighbors in |Wi|. This, together with the fact that |Wi|, |Wj | ≥ e0.2
√

logm, implies

e(Wi,Wj) ≥
(
|Wj | − e0.01

√
logm

)(
|Wi| − e0.01

√
logm

)
≥
(

1− e−0.1
√

logm
)
|Wi||Wj |.
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Now we can assume that for every i0 ≤ j1 < j2 ≤ i0 + 5 either

e(Wj1 ,Wj2)
|Wj1 ||Wj2 |

≤ e−0.1
√

logm or
e(Wj1 ,Wj2)
|Wj1 ||Wj2 |

≥ 1− e−0.1
√

logm.

Then, by the well known, simple fact that the diagonal Ramsey number R(3, 3) is 6 the above set
of cliques Wi0 , . . . ,Wi0+5 contains a triple Wj1 ,Wj2 ,Wj3 , i0 ≤ j1 < j2 < j3 ≤ i0 + 5, in which either
all the pairs satisfy the first inequality or all the pairs satisfy the second inequality. To finish the
proof of the theorem it is enough to consider the following two cases.

Case 1. For every 1 ≤ i1 < i2 ≤ 3,
e(Wji1

,Wji2
)

|Wji1
||Wji2

| ≤ e
−0.1

√
logm. Then an easy counting shows that

there are at least |Wj1 |/3 vertices in Wj1 with at most 3e−0.1
√

logm|Wji | neighbors in Wji , i = 2, 3.
Let X1 be any set of such vertices of size e0.05

√
logm and let W ′j2 ,W

′
j3

be the sets of all neighbors of
vertices from X1 in Wj2 and Wj3 , respectively. Then by definition, |W ′ji | ≤ 3e−0.1

√
logm|Wji ||X1| =

3e−0.05
√

logm|Wji |. Also, since e(Wj2 ,Wj3) ≤ e−0.1
√

logm|Wj2 ||Wj3 |, there exist at least 2|Wj2 |/3
vertices in Wj2 with at most 3e−0.1

√
logm|Wj3 | neighbors in Wj3 . Let X2 be a set of such vertices

of size e0.05
√

logm which is disjoint from W ′j2 . Note that the existence of X2 follows from the fact
that 2|Wj2 |/3 � |W ′j2 |. Let W ′′j3 be the set of all neighbors of vertices from X2 in Wj3 . Then
|W ′′j3 | ≤ 3e−0.05

√
logm|Wj3 | and hence |Wj3 | � |W ′j3 | + |W

′′
j3
|. Finally let X3 be any subset of Wj3

of size e0.05
√

logm which is disjoint from W ′j3 ∪W
′′
j3

. Then
⋃
iXi induces subgraph H of G, which

is disjoint union of cliques of order e0.05
√

logm with no edges between them. Clearly, every number
of the form

(
x
2

)
+
(
y
2

)
+
(
z
2

)
, 0 ≤ x, y, z ≤ e0.05

√
logm can be obtained as a number of edges in the

induced subgraph of H. Therefore, by Proposition 4.3, u(G) ≥ u(H) ≥ e0.05
√

logm = eΩ(
√

logn).

Case 2. For every 1 ≤ i1 < i2 ≤ 3,
e(Wji1

,Wji2
)

|Wji1
||Wji2

| ≥ 1− e−0.1
√

logm. Denote by H the subgraph

of G′ induced by the union of sets Wj1 ,Wj2 ,Wj3 . Let H be the complement of H and let l be
the number of vertices in H. Note that by our construction the set Wj1 corresponds to a largest
independent set in H and that |Wj2 |, |Wj3 | ≥ (3/5)|Wj1 |. Therefore

α(H) ≤ |Wj1 |∑3
i=1 |Wji |

l ≤ 5
11
l.

We also have that the number of edges in H is bounded by e−0.1
√

logm
(
l
2

)
. This implies that

there are at least 21l/22 vertices in H with degree at most 22le−0.1
√

logm. Denote this set by X1

and consider the following process. Let C1 be a shortest cycle in the induced subgraph H[X1].
Note that such cycle must span no other edges of H. The existence of C1 follows from the fact
that if X1 spans an acyclic graph in H then it should contain an independent set of size at least
|X1|/2 ≥ 21l/44 > 5l/11 ≥ α(H), contradiction. If the length of C1 is at least 3e0.01

√
logm,

then in particular H contains an induced path of length 3e0.01
√

logm − 1 and we stop. Otherwise,
|C1| ≤ 3e0.01

√
logm. Let X2 be the set of vertices of X1 not adjacent to any vertex of C1. Since all

vertices in X1 have degree at most 22le−0.1
√

logm and |X1| ≥ 21l/22 we obtain that

|X2| ≥ |X1| − 22le−0.1
√

logm|C1| ≥ |X1| − 22le−0.09
√

logm ≥
(

1− e−0.05
√

logm
)
|X1|.
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We continue this process for k = e0.01
√

logm steps. At step i, let Ci be a shortest cycle in the induced
subgraph H[Xi] and let Xi+1 be the set of all the vertices in Xi not adjacent to any vertex in Ci.
We assume that |Ci| ≤ 3e0.01

√
logm, otherwise we found an induced path of length 3e0.01

√
logm − 1

and we can stop. Similarly as above one can show that for every i,

|Xi| ≥
(

1− e−0.05
√

logm
)
|Xi−1| ≥

(
1− e−0.05

√
logm

)i
|X1| = (1 + o(1))|X1| > 2α(H).

Therefore the same argument as in the case of C1 shows that a cycle Ci has to exist. In the end of
the process we either constructed an induced path of length 3k − 1 or a disjoint union of induced
k cycles with no edges between them. In both cases this graph satisfies the assertion of Lemma
4.2. Therefore for any integers 0 ≤ r ≤ k = e0.01

√
logm and 0 ≤ t ≤ r − 2, H contains an induced

subgraph on r vertices with exactly t edges. This implies that the same set of vertices spans
(
r
2

)
− t

edges in H. Since any number 0 ≤ y ≤ e0.01
√

logm can be written in this form we conclude that
u(G) ≥ u(H) ≥ e0.01

√
logm = eΩ(

√
logn). This completes the proof of the theorem. 2

5 Concluding remarks

• There are several known results that show that graphs with relatively small trivial induced
subgraphs have many distinct induced subgraphs of a certain type. In [11] it is shown that
for every positive c1 there is a positive c2 such that every graph G on n vertices for which
q(G) ≤ c1 log n contains every graph on c2 log n vertices as an induced subgraph. In [1] it is
shown that for every small ε > 0, every graph G on n vertices for which q(G) ≤ (1− 4ε)n has
at least εn2 distinct induced subgraphs, thus verifying a conjecture of Erdős and Hajnal. In
[12] it is proved that for every positive c1 there is a positive c2 such that every graph G on n
vertices for which q(G) ≤ c1 log n has at least 2c2n distinct induced subgraphs, thus verifying
a conjecture of Erdős and Rényi. The assertions of conjectures 1.1 and 1.3, as well as our
results here, have a similar flavour: if q(G) is small, then G has induced subgraphs with all
possible number of edges in a certain range.

• The following common strengthening of conjectures 1.1 and 1.3 may be true:

Conjecture 5.1 Every graph G = (V,E) on n vertices for which q(G) ≤ n/4 satisfies u(G) ≥
Ω(|E|).

By Lemma 3.5 the assertion of this conjecture implies that of Conjecture 1.1, and clearly it
implies that of Conjecture 1.3.

• It may be interesting to have more information on the set of all possible triples (n, q, u) such
that there exists a graph G on n vertices with q(G) = q and u(G) = u. Our results here show
that if q is relatively small, than u must be large. Note that the union of two vertex disjoint
cliques of size n/3 each, and n/3 isolated vertices show that the triple (n, n/3 + O(1), 4) is

9



possible. It may be interesting to decide how large u(G) must be for any graph G on n

vertices satisfying q(G) < n/(3 + ε).
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