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Abstract

We prove a lower bound of Ω(log n/ log log n) on the competitive ratio of any (deterministic
or randomized) distributed algorithm for solving the mobile user problem introduced by
Awerbuch and Peleg [5], on certain networks of n processors. Our lower bound holds for
various networks, including the hypercube, any network with sufficiently large girth, and
any highly expanding graph. A similar Ω(log n/ log log n) lower bound is proved for the
competitive ratio of the maximum job delay of any distributed algorithm for solving the
distributed scheduling problem of Awerbuch, Kutten and Peleg [4] on any of these networks.
The proofs combine combinatorial techniques with tools from linear algebra and harmonic
analysis and apply, in particular, a generalization of the vertex isoperimetric problem on
the hypercube, which may be of independent interest.
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1 Introduction

In this paper we establish an Ω(log n/ log log n) lower bound for the competitive ratio of
two natural problems in distributed computing on various networks of n processors. These
problems are the mobile user problem introduced in [5, 6] and the distributed job scheduling
problem introduced in [4]. For both problems there is a known polylogarithmic upper bound
proved in the papers cited above, by applying the sparse partitions technique for any network
with n processors. Our results thus imply that this is not far from being optimal, showing
that sparse partitions yield nearly optimal bounds for these two problems. Here is a more
precise formulation of the results.

1.1 Mobile users

In large communication networks, it may be desirable to allow users to move freely around
the network and communicate with other users who are also free to move, an example
being cellular telephone networks. [[A related situation is one where the mobile objects are
files which may move through the network.]] Motivated by problems of this type, where
the goal is to access an object which can change location in the network, Awerbuch and
Peleg [5, 6] defined the problem of on-line tracking of a mobile user. We are given a data
communication network, and one unique object called the mobile user. Initially, the mobile
user is located at some node s, known to all the processors. The mobile user moves among
the nodes (processors) of the network. From time to time requests are invoked at the nodes.
There are two types of requests. The first is the move request, Move(u,w), invoked at the
current location u of the mobile user; the result of Move(u,w) should be to move the user
from node u to node w. The second is the find request, Find(v), which can be invoked at
any node v; the result should be to send a message from node v to the current location of
the user. So that the “current location of the user” is well defined, we assume that requests
occur in a sequential order.

We use a simple standard model for synchronous communication networks. The network
is modeled as an undirected graph, where vertices represent processors and edges represent
communication links. Each processor is modeled as a state machine (where the number of
states can be infinite) which can receive and send messages. A processor with d incident
edges has d+1 input channels and d output channels. d of the input and output channels are
used for communicating with its neighbors. The extra input channel is used for receiving
input, such as Move and Find requests. The processors operate in lock-step synchrony.
At each step, based on its current state and the messages (if any) on its input channels,
a processor may change state and send any number of messages on output channels. In
the case of randomized algorithms, the choice of new state and messages can be made
probabilistically. A message sent from u to a neighbor v at step t is received by v at step
t+ 1. A more detailed description of the model is given in Section 2.

As in [5, 6], we measure the cost of a distributed algorithm for the mobile user problem
by its communication cost , the total number of messages sent. Each sending of a single
message over a single link adds one to this cost. We assume no bound on the size of a “single
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message” when proving our lower bounds. A tracking algorithm A receives a sequence σ
of Move and Find requests, and must execute them on-line. Let CostA(σ) be the total
communication cost incurred by A on the request sequence σ. If A is randomized, then
CostA(σ) is the expected value. Here we assume that a request is not invoked until all the
messages of the algorithm, sent while serving the previous request, reach their destinations.
This assumption only strengthens our lower bound.

Again as in [5, 6], the efficiency of an on-line algorithm A is given by its competitive
ratio, which measures the cost of A relative to the optimal cost of a “global” algorithm
which knows the entire sequence σ in advance. For the mobile user problem, the optimal
cost Costopt(σ) is easy to calculate. It is just the sum of the optimal costs of all the requests
in σ, where the optimal cost of Move(u,w) is the distance from u to w, and the optimal
cost of Find(v) is the distance from v to the current location of the user.

The algorithm A has competitive ratio c if there is a constant a such that, for every
request sequence σ,

CostA(σ) ≤ c · Costopt(σ) + a. (1)

In using this definition, we will be concerned with classes of networks of arbitrarily large
size, and corresponding families of algorithms, one algorithm for each network in the class.
In such cases, we let c (and sometimes a) be a function of n, the number of vertices in the
network.

The competitive analysis of algorithms was introduced in [19] and has been considered
in numerous recent papers. Three representative examples that deal with problems related
to the ones we consider here are [5], [7] and [8]. While the problems we consider are on-
line problems, it should be noted that the distributed nature of the problems make them
somewhat different than the well-known k-server problem, and, more generally, problems
which fit the framework of request-answer games [10]. In such problems, the difficulty arises
because, when answering a particular request, the on-line algorithm has no knowledge of
future requests, although it is usually assumed that the algorithm has perfect knowledge of
all past requests. In the problems we consider, the algorithm might also have incomplete
knowledge of past requests. For example, when Find(v) is invoked, the processor at v will
not in general know the past sequence of Move operations which brought the user to its
current location.

It is easy to construct algorithms for the mobile user problem with competitive ratio
O(1) for certain classes of graphs, examples being trees and rings. For general graphs,
one simple strategy, the centralized strategy, works by having a particular node, say s, be
always informed of the current location of the mobile user. The competitive ratio of this
algorithm is proportional to the diameter of the graph, which could be Ω(n). At another
extreme, the no information strategy simply moves the user without informing other nodes
of the new location, and the algorithm responds to Find(v) by performing a breadth-first
search from v. On certain graphs, the competitive ratio is again Ω(n). Awerbuch and Peleg
[5] show that a much better competitive ratio is possible. They give a (deterministic) on-
line distributed algorithm for the mobile user problem on any network with n processors,
with a competitive ratio O(log2n). In the present paper we show that there are networks in
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which no algorithm can have a competitive ratio smaller than Ω(log n/ log log n). In proving
this result, we show that a “bad” request sequence can be chosen by an oblivious adversary
(cf. [10]) which must choose the entire sequence knowing only the algorithm. This adversary
is weaker than adaptive adversaries which choose each request based on the response of the
algorithm to previous requests. Of course, using a weaker adversary makes our lower bound
results stronger.

Theorem 1 There is a class of networks for which the competitive ratio of any (determinis-
tic or randomized) on-line distributed algorithm for the mobile user problem is Ω(log n/ log log n)
(against an oblivious adversary), where n is the number of processors in the network.

In this result, the additive term a in (1) can be any function of n. We obtain the above lower
bound for networks of three different types, described in Section 1.3. Among these networks
are ones which have been considered extensively in the design of distributed networks,
including the hypercube and highly expanding graphs.

1.2 Distributed job scheduling

In [4], Awerbuch, Kutten and Peleg define the distributed scheduling problem. We discuss
here only a special case of the problem. We use the same synchronous network model as
above. Initially, at step t = 0, some processors are given sets of jobs to execute. At each
step, a processor can execute at most one job and can send any number of jobs and messages
to neighboring processors. The algorithm continues until all the jobs are executed. More
precisely, let jv(t) denote the number of jobs residing at processor v just before it executes
step t. An “input” σ is an assignment of non-negative integers to jv(0) for all v. If processor
v executes kex jobs at step t, sends a total of kout jobs to neighbors at step t (where kex ≤ 1
and kex + kout ≤ jv(t)), and receives a total of kin jobs which neighbors of v send to v at
step t, then jv(t + 1) = jv(t) + kin − kout − kex . The algorithm continues until the step
t0 such that jv(t0) = 0 for all v, and this t0 is the cost of the algorithm. Thus, the cost
measures the maximum delay of a job. The definition of competitive ratio is the same as
in (1), where Costopt(σ) is the maximum delay of a job in an optimal schedule produced
by a “global” scheduling algorithm which knows σ completely. Here, we assume that the
additive term a is a constant which is independent of n. (Indeed, it is not hard to see, for
this special case of the problem, that no nontrivial lower bound for the competitive ratio
holds if a can depend on n.)

In [4], a more general problem is considered, where jobs can be initiated at any time
unit, not only at time 0. The cost of an algorithm is defined as the sum of all job delays.
The authors give a polylogarithmic upper bound for their measure. They also prove that
their distributed on-line algorithm is competitive under a much stronger measure of compet-
itiveness, which immediately implies a polylogarithmic upper bound under the maximum
delay measure. Moreover, for the above special case, where jobs are initiated only at time
0 and a job can be executed in one time unit, the algorithm described in Section 4 of [4]
has competitive ratio O(log n). We have the following lower bound for the special case.
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Theorem 2 There is a class of networks for which the competitive ratio of any (determin-
istic or randomized) distributed algorithm for the distributed scheduling problem, under the
maximum delay measure, is Ω(log n/ log log n), even in the case that all jobs are initiated
at time 0.

As is the case with Theorem 1 we prove the above theorem for networks of all three types
described in the next subsection. In addition, for the more general problem we can improve
the lower bound to Ω(log n).

Most of our results still hold if the model is restricted so that at most a constant number
of jobs can be transferred over each edge at each step. The only exception is that we do not
have Theorem 2 in this case for high-girth graphs of degree d = o(log n/ log log n). Indeed,
we cannot, since there is a distributed job scheduling algorithm for the special case with
competitive ratio O(d) in any graph of degree d, if at most a constant number of jobs can
be sent over each edge at each step. In this algorithm, all jobs initiated at processor v are
executed by v itself.

1.3 The networks

The first class of networks we consider is the one we call here the high-girth networks. These
are networks of size n whose underlying graph is d-regular and its girth, i.e., the size of the
shortest cycle in it, as well as its diameter, are both Θ(log n/ log d). It is well known that
such graphs exist (see, e.g., [11]). For any d in the range 3 ≤ d ≤ (log n)b, where b is any
constant, we can prove the lower bounds in Theorems 1 and 2 for any such network. We
note that it has been observed by several researchers, including the first author, Awerbuch,
Peleg and Schäffer, that networks of high girth supply easily lower bounds on the complexity
of network synchronizers [3] and graph spanners [17].

The second class of networks considered is the class of hypercube networks. The d-
dimensional hypercube, denoted Cd, is the graph with vertices {0, 1}d where two vertices
are adjacent if the Hamming distance between them is 1, i.e., if they differ in precisely
one coordinate. The number of vertices here is n = 2d. Unlike the case of the high-
girth networks, where the proofs are purely combinatorial, the proofs here (and especially
the proof of Theorem 1) are more complicated and require some additional tools. We
first apply a Harmonic Analysis technique, used previously in [14], to derive a certain
fractional isoperimetric inequality for the cube, which may be of independent interest. In
the traditional isoperimetric problem, we are given the size |A| of a set A of vertices of Cd

and an integer m. The goal is to place a lower bound on the size of any set X such that X
contains all vertices that lie within distance m from some vertex in A. In this case, Harper
[13] has shown that |X| is minimized when A is as close as possible to a ball in Cd. Given
this result, a tight lower bound on |X| can be calculated. We need a generalization of this
problem where, for each v ∈ A, among all the vertices within distance m of v, we know only
that some fraction γ of them belong to X (so the traditional problem is the case γ = 1).
Although we do not have tight bounds on |X| for the case γ < 1, we can prove a lower
bound which is sufficient for our purposes. Roughly speaking, we show that |X|/|A| must
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grow exponentially in m, provided that γ is not too small and |A| is not too large. This
lower bound is the key to proving Theorem 1. The proof that Theorem 2 holds for the cube
is simpler. We also define a probabilistic generalization of the regional matchings defined
in [5, 6], and give a lower bound on their complexity. This lower bound is used to prove a
lower bound on the trade-off between the move-stretch and the find-stretch of any mobile
user algorithm on the cube; these are, informally, the competitive ratios restricted to the
Move and Find operations, respectively, in σ.

Although the proofs for the cube are more complicated technically than the ones for the
high-girth networks, the effort seems worthwhile, as the hypercube is one of the more popular
architectures considered by researchers working in the design of distributed networks.

The third class of networks we consider is the class of highly expanding graphs. Such
graphs have also been suggested to be the underlying graphs of distributed networks, as
their high connectivity properties may be helpful in the implementation of various com-
munication protocols (see, for example, [18]). [[Intuitively, a graph is highly expanding if
every sufficiently small set U of vertices expands by some sufficiently large factor when all
neighbors of U are included.]] It is well known (see [1] and its references) that there is
a tight correspondence between the expansion properties of a graph and the eigenvalues
of its adjacency matrix. We thus prefer to define our class of graphs in terms of their
eigenvalues. Let us call a graph an (n, d, λ)-graph if it is a d-regular graph on n vertices
and the absolute value of every eigenvalue of its adjacency matrix, except the largest, is at
most λ. It is known ([12],[15],[16]) that for any n and d with nd even there are (n, d, λ)-
graphs with λ = O(

√
d). We can show that Theorems 1 and 2 hold for any such graph

with d = Θ((logn)b), for any constant b ≥ 4. The proof here combines the Linear Algebra
techniques applied commonly in the study of expanders with the basic combinatorial idea
used in the proof for the hypercubes.

The rest of this paper is organized as follows. The model we use for distributed algo-
rithms is defined more precisely in Section 2. Section 3 deals with the mobile user problem,
and Section 4 concerns the distributed scheduling problem. Sections 3 and 4 each contain
more details about the definition of each problem and contain subsections for the three
types of networks.

2 The Model

Let G = (V,E) be an undirected graph, where V = {u1, . . . , un}. We imagine that there
is a processor pi associated with vertex ui, and we often identify a processor with its
associated vertex. A particular (deterministic) distributed algorithm is specified by a setM
of messages, a set I of external inputs, and for each processor pi, a set Qi of states, an initial
state qi,0, and a transition function δi. The sets M, I, and Qi can be infinite. If pi has d
incident edges, say {e1, . . . , ed}, then for each q ∈ Qi, x ∈ I∪{∅}, andm1, . . . ,md ∈M∪{∅},
the transition function δi(q, x,m1, . . . ,md) = (q′,m′1, . . . ,m

′
d) for some q′ ∈ Qi and some

m′1, . . . ,m
′
d ∈M∪{∅}. An input sequence is given by σ(t, i) ∈ I ∪{∅} for integer t ≥ 0 and

1 ≤ i ≤ n, meaning that pi receives external input σ(t, i) at step t. The symbol ∅ means
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that no input is received. The transition functions and an input sequence induce, in the
natural way, a synchronous computation of the algorithm. Initially, at step 0, each pi is in
its initial state. Thereafter, at each step t ≥ 0, if pi is in state q, receives external input x,
and receives message mj over the edge ej for 1 ≤ j ≤ d, then pi enters state q′ and sends
m′j over the edge ej . As above, mj = ∅ (resp., m′j = ∅) means that no message was received
(resp., is sent). A message sent by pi over the edge {pi, pj} at step t is received by pj at
step t+ 1.

In the case of a randomized algorithm, δi(q, x,m1, . . . ,md) is a probability distribution
on Qi × (M∪ {∅})d. In this case, the transition functions and an input sequence induce a
distribution on computations.

We will be concerned only with input sequences which are essentially finite, meaning
that there is some T such that σ(t, i) = ∅ for all t ≥ T and all i. Given such an input
sequence, the communication complexity of the algorithm is the (expected) total number of
messages sent by all processors at all steps. If the action (q′,m′1, . . . ,m

′
d) is selected by pi

at step t, then the number of messages sent by pi at step t is |{ j | m′j 6= ∅ }|.
State q of pi is quiescent if δi(q, ∅, ∅, . . . , ∅) = (q, ∅, . . . , ∅), with probability 1 in the case

of a randomized algorithm. The system is quiescent if all pi are in quiescent states. We
assume that all initial states are quiescent.

Given a graph G = (V,E) and u, v ∈ V , let distG(u, v) denote the distance between u
and v in G. Let BG(u, r) = { v | distG(u, v) ≤ r } denote the ball of radius r centered at u.
When G is clear from context, the subscript G is omitted.

From now on we assume, whenever this is needed, that n is sufficiently large. Logarithms
with no specified base are in base 2. To simplify the notation we also omit all floor and
ceiling signs whenever these are not crucial. Also for simplicity, we have not tried to optimize
the constants in our results.

3 Tracking a Mobile User

First we say more about the correct behavior of an algorithm A for the mobile user problem
on a graph G = (V,E). For this problem, G has a distinguished vertex s, the initial location
of the mobile user. All of our results hold for any choice of s ∈ V . The set of external
inputs is I = {Move(u,w),Find(v) | u,w, v ∈ V }. Let σ = σ1, . . . , σk be a sequence of
requests from I. Let li be the location of the user just before σi is executed. (That is, if
there is a j < i with σj = Move(u,w), then li is the destination w of the last such Move;
otherwise, li = s.) We consider only sequences σ where, if σi = Move(u,w), then u = li,
i.e., the move must start from the current location li. Initially, the system is quiescent.
Suppose that A has executed the prefix σ1, . . . , σi−1 for some i ≥ 1 and that the system
is quiescent. If σi = Move(u,w), we give input σi to u. We require that, with probability
1, the system eventually reaches quiescence. If σi = Find(v), we give input Find(v) to v.
We require that, with probability 1, the system eventually reaches quiescence and that li
receives a message at some step between the step when Find(v) is given to v and the step
at which quiescence is reached. We say that a request completes when the system reaches
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quiescence after the invocation of the request.
Let CostA(σ) be the communication complexity of A on the input σ. (Note that this

is well-defined since no messages are sent when the system is quiescent.) Costopt(σ) is the
sum of the optimal costs of the requests in σ, where the optimal cost of σi = Move(u,w) is
dist(u,w), and the optimal cost of σi = Find(v) is dist(v, li).

[[To give a very high-level outline of the method used to prove lower bounds on the
complexity of the mobile user problem, focus for the moment on the special case of a
deterministic algorithm A and a request sequence of the form Move(s, w),Find(v), where
we know a bound m such that dist(v, w) ≤ m. Suppose we want to show that either A’s
Move cost is at least δW or A’s Find cost is at least δR. When A executes Move(s, w), it
may write information at vertices in some set W (w); we imagine that the algorithm “colors”
these vertices. If A’s communication cost when executing Move(s, w) is at most δW−1, then
|W (w)| ≤ δW . Define R(v), the read set of v, to be the first δR − 1 vertices which receive
messages when A executes Find(v), assuming that Move(s, w) has not yet been executed.
As before, |R(v)| ≤ δR; furthermore, R(v) induces a connected subgraph. (Each set W (w)
also induces a connected subgraph, although this is not used in the proof.) If we can find
vertices v and w with dist(v, w) ≤ m and R(v)∩W (w) = ∅, then we can conclude that one
of the two desired lower bounds holds since, on the request sequence Move(s, w),Find(v),
the execution of Find(v) will not send a message to w unless some colored vertex receives
a message. The proof thus rests on intersection properties of families of sets W (w) and
R(v) of bounded size, where each read set induces a connected subgraph. To prove a lower
bound on competitive ratio, we must consider longer request sequences, consisting of a
Move followed by several Find ’s, so that the total optimal Find cost dominates the optimal
Move cost dist(s, w) (which could be as large as the diameter of the network). Moreover,
to cancel the effect of a large additive term a in the definition of competitive ratio, we must
repeat the construction for several phases.]]

In Section 3.1 we prove Theorem 1 for high-girth graphs of degree d = log3n. The
proof for this case is particularly clean and simple, so it serves as an introductory example
for the more complicated proofs to follow. In Section 3.2 we outline the method used to
prove Theorem 1 for the other networks. In Section 3.3 the method is applied to high-girth
graphs of smaller degree. Section 3.4 considers the generalization of the vertex isoperimetric
problem described in Section 1.3. In Section 3.5, a result from Section 3.4 is used to prove
Theorem 1 for hypercubes. Theorem 1 is proved for highly expanding graphs in Section 3.6.
The final two subsections contain related results on regional matchings (Section 3.7) and
the trade-off between move-stretch and find-stretch for any mobile user algorithm on the
cube (Section 3.8).

3.1 An illustrative example

.
In this section we prove Theorem 1 for high-girth networks of degree d = log3n, girth g

that satisfies g ≥ logd n = Ω(log n/ log log n) as well as g ≤ 2 logd n < log n, and diameter
Θ(logn/ log log n). The fact that such graphs exist for every (sufficiently large) n is well

10



known; see, e.g., [11].
We first prove the result for deterministic algorithms. Fix n and let the mobile user

start at vertex s of a network as above. We prove the lower bound by constructing a request
sequence in phases: the cost for the on-line algorithm in each phase is Ω(log2n/ log log n);
the optimal cost for each phase is O(log n); and the number of phases can be as big as we
wish. The large number of phases is needed to handle a possibly large value of the additive
term a (which may even depend on n) in the definition (1) of competitive ratio. Each phase
ends by having the mobile user return to s, to ensure that the work done during one phase
does not help during future phases.

Let us say a vertex u is colored at a particular time t in a particular phase if some
message sent during this phase, or the mobile user itself, reached u by time t. Consider a
Find request invoked at some vertex v. After the request, messages are sent in the network.
Let R(v) (the read set of v) denote the set of g/4 vertices which these messages visit first,
assuming that no vertex other than s has been colored yet in this phase. More precisely,
starting with the system in the quiescent configuration at the beginning of the phase, invoke
Find(v) at v, and place v in R(v). In the synchronous computation of Find(v), let Rt be
the set of vertices (processors) which receive a message at step t. For t = 1, 2, 3, . . ., set
R(v)← R(v)∪Rt until the size of R(v) reaches g/4, or until the system becomes quiescent.
If setting R(v) ← R(v) ∪ Rt causes the size of R(v) to exceed g/4 at some step t, then
arbitrarily select enough vertices from Rt so that the size of R(v) is exactly g/4. Note that
if we invoke Find(v) after some vertices have been colored by previous Move and Find
operations in this phase, and if R(v) does not contain a colored vertex, then Find(v) sends
at least g/4 messages. This is true because Find(v) will not send a message to the current
location of the mobile user unless some colored vertex receives a message. [[Referring to the
high-level outline above, we take m = 1, δW = log2n, and δR = g/4.]]

Lemma 3 For every phase, there exists a vertex w in the network for which no more than
log n of its neighbors v choose w ∈ R(v).

Proof. Fix a phase. There are at most n · g/4 < 1
4n log n pairs 〈w, v〉 such that w ∈ R(v).

If the lemma is not correct, then there would be at least n log n > 1
4n log n such pairs, a

contradiction. 2

Fix some w which satisfies the conclusion of Lemma 3.

Lemma 4 There exists a sequence of vertices {vi}logn
i=1 which are neighbors of w, such that

the following holds:

Consider the request sequence Move(s, w),Find(v1), . . . ,Find(vlogn),Move(w, s). Let
W0 be the set of vertices colored at the completion of Move(s, w), and for 1 ≤ i ≤ log n
let Wi be the set of vertices colored at the completion of Find(vi). For 0 ≤ i < log n,
if the number of vertices in Wi is smaller than log2n, then R(vi+1) contains no vertex
in Wi.
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Proof. Let N(w) denote the set of neighbors of w whose read set does not include w. By
Lemma 3 [[and the assumption d = log3n,]] |N(w)| ≥ log3n− log n.

We construct the sequence vj inductively. Assume we have already chosen the first i
vertices in the sequence. We claim that if i < log n, and the number of vertices in Wi is
smaller than log2n, then there exists a vertex v ∈ N(w) such that R(v)∩Wi = ∅. To prove
this claim, suppose it is false. The number of vertices in N(w) −Wi is bigger than the
number of vertices in Wi. Thus there is a vertex in Wi which belongs to the read set of at
least two vertices in N(w)−Wi. However, each read set is connected and has size at most
g/4, and hence a cycle of size at most 2(g/4) + 2 < g exists in the network, a contradiction.

2

The last lemma clearly implies that the total cost of the on-line algorithm, given the
request sequence described in the lemma, is at least (log n)(g/4) = Ω(log2n/ log log n). Since
the optimal cost is only O(log n) this completes the proof of the theorem for deterministic
algorithms.

It is not difficult to modify this proof for randomized algorithms. By the easy direction
of the main result of [20], in order to prove a c(n) lower bound for the competitive ratio
of any randomized algorithm for our problem it suffices to find a probability distribution
on the inputs (i.e., the request sequences) so that for every deterministic algorithm the
expectation (over the request sequences) of the ratio between the cost of the on-line al-
gorithm and the optimal cost is at least c(n). The probability distribution chosen on the
request sequences is the following. Let P = P (n) be a fixed large number, which will be
the number of phases. In each phase independently, choose a random vertex w according
to a uniform distribution, and then choose randomly and independently according to a uni-
form distribution log n neighbors v1, . . . , vlogn of w. The request sequence for the phase is:
Move(s, w),Find(v1), . . . ,Find(vlogn),Move(w, s). The proof of Lemma 3 implies that at
least half of the vertices w satisfy the assertion of the lemma. The proof of Lemma 4 implies
that if the total cost incurred by the on-line algorithm in a phase is less than log2n then the
probability that a randomly chosen neighbor of w will not meet the colored part in its read
set is at least, say, 1/3. Linearity of expectation now implies that the expected cost of the
on-line algorithm during a phase is Ω((log n)g) = Ω(log2n/ log log n), whereas the optimal
cost is O(log n). Thus the lower bound holds for randomized algorithms as well. 2

We note that since the diameter of our network is Θ(log n/ log log n), the deterministic
centralized strategy (where s is always informed of the current location of the user) has
competitive ratio O(log n/ log log n). Thus our bound is optimal for the specific network
used.

3.2 Outline of the proof method

Let G be a class of graphs. The method is the following:

1. Choose appropriate functions δR(n), δW (n),m(n), and choose a constant α, 0 < α ≤ 1.
[[On networks having n vertices, δR(n) is an upper bound on the size of read sets,
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δW (n) is an upper bound on the number of colored vertices, and m(n) is an upper
bound on the distance from the finder to the current location of the user.]] (We may
write simply δR, δW , and m, when the number n of vertices is clear from context.)

2. Fix an arbitrary G = (V,E) from the class G, and let n = |V |. Consider a family of
“read sets” {R(v) | v ∈ V } where v ∈ R(v) and |R(v)| ≤ δR for all v, and where each
R(v) induces a connected subgraph of G. Recall that B(w,m) is the set of vertices
within distance m from w. Say that a vertex w is costly if, for any set W ⊆ V with
|W | ≤ δW , at least a fraction α of the vertices v ∈ B(w,m) satisfy R(v) ∩W = ∅.

3. Show that, no matter how the read sets are chosen, at least a fraction α of the vertices
of G are costly.

The set W corresponds to the set of “colored” vertices. Given a deterministic algorithm
A, the read sets are defined as in the previous section, using δR as an upper bound on the
size of a read set. In the proof of the previous section, for example, we took δR = g/4,
δW = log2n, and m = 1.

Let A be a deterministic mobile user algorithm for G. Consider the probability dis-
tribution on request sequences obtained by choosing w uniformly at random from V ,
and choosing v1, . . . , vlogn uniformly at random from B(w,m); then the sequence is σ =
Move(s, w),Find(v1), . . . ,Find(vlogn),Move(w, s). Let D(n) be the maximum diameter of
an n-vertex graph in G. Then the expected cost of A (over the request sequences) and the
optimal cost can be bounded as

E(CostA(σ)) ≥ α ·min{ δW (n), α · (log n) · δR(n) },
Costopt(σ) ≤ 2D(n) + (log n) ·m(n).

Some explanation of the first bound may be helpful. The reasoning is the same as in the
previous section. First, w is costly with probability at least α. Suppose that the chosen w is
costly. As before, let Wi be the set of vertices colored by Move(s, w),Find(v1), . . . ,Find(vi).
If |Wi| ≤ δW , then the expected cost of Find(vi+1) is at least αδR, since with probability
at least α we choose a vi+1 with R(vi+1) ∩Wi = ∅. If |Wi| > δW , then the cost of the
algorithm is at least δW . If A is randomized, we again use [20] to conclude that there is
a request sequence σ such that CostA(σ) is at least as large as the first bound above. As
before, we repeat the construction for a large enough number of phases. In applications, we
will have δW (n) large enough and D(n) small enough that the lower bound on competitive
ratio becomes simply Ω(δR(n)/m(n)).

3.3 High-girth graphs

In this section we prove Theorem 1 for d-regular graphs whose girth g and diameter are both
Θ(logn/ log d), for any degree d = d(n) in the range 3 ≤ d(n) ≤ (log n)b for any constant b.
We follow the outline described in the previous section. As in the example of Section 3.1,
we take δR = g/4 and δW = log2n. Letting l(n) = dlogd−1 log ne, take m(n) = 6l(n). We
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can take α = 1/8. Note that this choice of the parameters gives a lower bound on the
competitive ratio of Ω(δR(n)/m(n)) which is Ω(log n/ log log n).

Let G = (V,E) be a high-girth graph as above. For any choice of d in the range above,
g = Ω(logn/ log log n) and l = O(log log n). Therefore, for any w ∈ V , the subgraph induced
by B(w, 6l) in G is a tree which we denote Tw. For w ∈ V , let L(w, r) = {v | dist(v, w) = r}
be the r-th “level” of Tw. Since L(w,m) contains at least half of the vertices in B(w,m),
we concentrate on vertices in L(w,m). (Alternatively, when choosing the find requests vi
in the proof outline, we could choose uniformly from L(w,m).) Fix a family of read sets
R(v), each of size at most g/4.

Let U(w) be the set of vertices v ∈ L(w, 6l) whose read set R(v) goes “up” into Tw at
least distance 3l, i.e.,

U(w) = { v ∈ L(w, 6l) | R(v) ∩ L(w, 3l) 6= ∅ }.

[[The proof is completed by proving the following two statements:]]

1. At least half of the w ∈ V have |U(w)| ≤ log5n.

2. If |U(w)| ≤ log5n then w is costly.

To prove the first statement, let

P = { 〈x, v〉 | x ∈ R(v) },

and note that |P | ≤ (g/4)n = O(n log n). Let

U ′ = { 〈w, x, v〉 | v ∈ U(w) and x ∈ R(v) ∩ L(w, 3l) }.

Assuming for contradiction that at least half of the w ∈ V have |U(w)| > log5n, we would
have |U ′| > 1

2n log5n. Let k = maxx∈V |L(x, 3l)|, and note that k = O(log3n). For each
pair 〈x, v〉 ∈ P there are at most k triples 〈w, x, v〉 ∈ U ′, since dist(x,w) = 3l for any such
triple. Therefore, |U ′| ≤ k|P | = O(n log4n), a contradiction.

To prove the second statement, let W be any set of size at most log2n, and suppose
for contradiction that at least half of the vertices v ∈ L(w, 6l)− U(w) have R(v) ∩W 6= ∅.
Therefore, there is a particular z ∈W and a set Y ⊆ L(w, 6l)− U(w) with

|Y | ≥ log6n− log5n

2 log2n
= Ω(log4n),

such that z ∈ R(v) for every v ∈ Y . Let v, v′ ∈ Y be such that a, the least common ancestor
of v and v′ in Tw, satisfies dist(v, a) > 3l (this is possible because of the lower bound on the
size of Y ). Since R(v) and R(v′) do not go up into Tw farther than distance 3l, it follows
that R(v)∩R(v′) contains no vertex of Tw. In particular, z is not in Tw. Therefore, there is
a cycle of length at most 2(g/4) + 12l < g in G passing through a and z. This contradiction
shows that R(v)∩W = ∅ for at least half of the vertices v in L(w, 6l)−U(w), and therefore
at least 1/8 of the vertices v in B(w,m). This shows that w is costly, and completes the
proof of the theorem for high-girth graphs. 2
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3.4 Fractional neighborhoods

The subject of this section is the generalization of the vertex isoperimetric problem on
the hypercube mentioned in Section 1.3. We first define the problem for a general graph
G = (V,E). For A,X ⊆ V , m ≥ 1, and 0 < γ ≤ 1, we say that X is a γ-fractional
m-neighborhood of A if, for every v ∈ A,

|B(v,m) ∩X| ≥ γ|B(v,m)|.

The goal is to place a lower bound on |X| in terms of |A|,m, and γ. [[The reader who is
not interested in the details of the proof of this lower bound can simply note the statement
of Theorem 6 and skip directly to Section 3.5, since these details are not needed later.]]

To establish such a bound for hypercubes, we first introduce some tools by giving two
definitions and stating a known inequality. Let f be a real-valued function defined on Cd.
The p-norm of f is

‖f‖p =

 1
2d

∑
v∈Cd

|f(v)|p
1/p

.

For 0 < ε < 1, let Tε(f) be the function defined on Cd as

Tε(f)(v) =
∑
x∈Cd

f(x)
(

1 + ε

2

)d−dist(x,v) (1− ε
2

)dist(x,v)

.

For X ⊆ Cd, let 1X denote the characteristic function of X (for v ∈ Cd, 1X(v) = 1 if v ∈ X,
or 0 otherwise).

The operator f → Tε(f) was considered in [14]. The definition in [14] is given in terms
of the Fourier transform of f , but it is easy to see that it coincides with our definition. Two
important lemmas of Beckner [9] allow us to relate the 2-norm of Tε(f) to the (1+ε2)-norm
of f . As shown in [14], Beckner’s lemmas give the following inequality:

Lemma 5 For any real-valued function f on Cd and any 0 < ε < 1, [[if p = 1 + ε2 then]]

‖Tε(f)‖2 ≤ ‖f‖p.

In [14] the operator Tε(f) is given in terms of the Fourier transform of f . We men-
tion now briefly how Lemma 5 follows from Beckner’s results (without using the Fourier
transform language). Write T dε to indicate the operator Tε on real-valued functions on Cd.
Clearly Cd is the Cartesian product of d copies of C1. First we note that T dε is the tensor
product of d copies of T 1

ε . To show that T dε = T 1
ε ⊗ · · · ⊗ T 1

ε , it is enough to notice that, for
every pair of points (a1, a2, . . . , ad) and (b1, b2, . . . , bd) of Cd,

T dε (1{(a1,a2,...,ad)})(b1, b2, . . . , bd) =
d∏
i=1

T 1
ε (1{ai})(bi).

15



This is immediate from the definition of T dε .
Let Z1, Z2 be two sets and let Ri be an operator on real-valued functions defined on Zi.

Let R1⊗R2 be the tensor product of R1 and R2 defined on the space of real-valued functions
on Z1×Z2. Now Beckner’s Lemma 2 [9] (whose proof is straightforward) asserts that if
‖Ri(f)‖2 ≤ ‖f‖p for every i and every real function f on Zi, then ‖(R1 ⊗R2)(f)‖2 ≤ ‖f‖p
for every real function f on Z1×Z2. Thus, it is enough to show Lemma 5 for d = 1. This
is exactly the content of Lemma 1 of Beckner [9]. In this case we have a (rather subtle)
inequality between three real numbers.

We can now state and prove a result on fractional neighborhoods.

Theorem 6 There is a constant c1 > 0 such that the following holds. Let d ≥ 1, 0 < γ ≤ 1,
1 ≤ m < d/2, and let A and X be two sets of vertices of Cd. If X is a γ-fractional m-
neighborhood of A, then

|X| ≥ c12mγ2

m
|A|1−m/d.

If, in addition, |A| ≤ 2d/2, then

|X| ≥ c12m/2γ2

m
|A|.

Proof. The second inequality is immediate from the first. To prove the first inequality, we
apply Lemma 5 with f = 1X . Let v ∈ A. The definition of Tε(1X)(v) involves a sum over
all x ∈ Cd. By taking the sum only over those x ∈ B(v,m) ∩X, and using the assumption
that the size of this set is at least γ|B(v,m)|,

Tε(1X)(v) ≥ γ
(
d

m

)(
1 + ε

2

)d−m (1− ε
2

)m
.

Therefore,

‖Tε(1X)‖22 ≥
|A|
2d
γ2

(
d

m

)2 (
1 + ε

2

)2(d−m) (1− ε
2

)2m

.

Letting p = 1 + ε2,
‖1X‖2p = (|X|/2d)2/p.

Substituting these bounds into the inequality of Lemma 5 and choosing ε = 1 − 2m/d
gives

|X| ≥ 2d
 |A|

2d
γ2

(
d

m

)2 (
1− m

d

)2(d−m) (m
d

)2m
p/2 .

Since the quantity in square brackets can be at most 1, we can replace the exponent p/2 =
(1 + ε2)/2 by the larger quantity 1−m/d. Since 2d(2−d)1−m/d = 2m,

|X| ≥ (2mγ2|A|1−m/d)
((

d

m

)(
1− m

d

)d−m (m
d

)m)2(1−m/d)

. (2)
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Since z! is (z/e)z
√
z to within constant factors, we have for some constant c > 0,(

d

m

)
≥ c

√
d

m(d−m)
(d/e)d

(m/e)m((d−m)/e)d−m

≥ c√
m

(
d

m

)m ( d

d−m

)d−m
.

Therefore, the second factor in (2) is at least (c/
√
m)2(1−m/d). So this factor is at least

c1/m for some c1. 2

Remark. For hypercubes, Harper [13] has shown that, given |A|, the size of a 1-fractional
m-neighborhood X is minimized when A is a Hamming ball, i.e., B(u, r) ⊆ A ⊆ B(u, r+ 1)
for some u and r. This is not always true for γ < 1, as the following simple example
illustrates. Let d = 3, |A| = 4, m = 1 and γ = 3/4. If A is a 2-dimensional subcube,
say {(0, ∗, ∗)}, then we can take X = A. If A is a Hamming ball, however, the smallest
(3/4)-fractional 1-neighborhood has size 5.

3.5 Hypercubes

In this section we prove Theorem 1 for hypercubes, using Theorem 6. Let Cd = (V,E),
and let {R(v) | v ∈ V } be a family of read sets. In addition to the upper bound δR on
the maximum size of a read set, it will be useful also to have an upper bound ρR on the
maximum radius of a read set, where the radius of R(v) is max{dist(u, v) | u ∈ R(v)}. Of
course, since each R(v) is connected, the upper bound δR on size is also an upper bound on
radius. The number of vertices is n = 2d.

Given δW ,m and α as in the proof outline, recall that w is costly if, for every set W ⊆ V
with |W | ≤ δW ,

|{ v ∈ B(w,m) | R(v) ∩W = ∅ }| ≥ α|B(w,m)|.

The following is the key lemma.

Lemma 7 There is a constant c2 > 0 such that for any sufficiently large d, any m, δR, δW ,
ρR, and α, and any family of read sets {R(v) | v ∈ V } of maximum size δR and maximum
radius ρR, if 1 ≤ m < d/2, ρR ≤ d/10, and δW (δR)2 < c2(1 − α)6 2m/2/m, then at least a
fraction α of the vertices of Cd are costly.

Proof. Suppose that at least a fraction 1−α of the w ∈ V are not costly. For each such w,
there is a set W (w) with |W (w)| ≤ δW such that R(v)∩W (w) 6= ∅ for at least a fraction 1−α
of the v ∈ B(w,m). Let S be the size of a ball of radius m. So there are at least (1−α)2Sn
pairs 〈w, v〉 such that R(v) ∩W (w) 6= ∅ and dist(v, w) ≤ m. Let β = (1− α)2/2. A simple
counting argument shows that, if we let V ′ be the set of v ∈ V such that R(v) ∩W (w) 6= ∅
for at least a fraction β of the w ∈ B(v,m), then |V ′| ≥ βn. (For otherwise, the number of
pairs 〈w, v〉 as above would be at most (β + (1− β)β)Sn < 2βSn = (1− α)2Sn.)
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With each v ∈ V ′ we associate a “special” vertex χ(v) as follows. By definition of V ′,
R(v) must intersect W (w) for at least a fraction β of the w’s in B(v,m). Since |R(v)| ≤ δR,
there must be a particular z ∈ R(v) such that z ∈W (w) for at least a fraction γ = β/δR of
the w’s in B(v,m). Define χ(v) = z, and note that dist(v, χ(v)) ≤ ρR.

In the following, we restrict attention to those z’s such that z = χ(v) for some v ∈ V ′.
Let

Az = { v | χ(v) = z }
Xz = {w | z ∈W (w) }.

It follows from [[the definitions of χ(v), Az, and Xz]] that, for every v ∈ Az, the set Xz

intersects B(v,m) in at least a fraction γ of the points of B(v,m). In other words, Xz is a
γ-fractional m-neighborhood of Az.

Since Az ⊆ B(z, ρR) for all z, and since ρR ≤ d/10 by assumption, |Az| ≤ |B(z, d/10)| ≤
2d/2 for d sufficiently large.

From Theorem 6 we have, for all z,

|Xz| ≥M |Az| where M =
c12m/2γ2

m
=
c12m/2β2

m(δR)2
.

Since the sets Az partition V ′, the number of pairs 〈w, z〉 such that w ∈ Xz is at least∑
z

|Xz| ≥
∑
z

M |Az| = M |V ′| ≥Mβn.

Therefore, there exists a w such that w ∈ Xz for at least βM different z’s, so |W (w)| ≥ βM
and δW ≥ βM . Substituting the values of M and β into δW ≥ βM , this contradicts the
assumed upper bound on δW (δR)2, if we take c2 = c1/8. 2

It is now easy to establish Theorem 1 for hypercubes. Let δR(n) = ρR(n) = d/10 =
(log n)/10, δW (n) = log2n, m(n) = 10 log log n, and α = 1/2. So all the conditions of
Lemma 7 are satisfied for all sufficiently large n. The diameter of an n-vertex hypercube is
D(n) = log n. As before, this gives a lower bound on competitive ratio of Ω(δR(n)/m(n)).

3.6 Highly expanding graphs

As indicated in the previous section, any graph for which a sufficiently good lower bound
on the size of fractional neighborhoods can be given will satisfy the assertion of Theorem 1.
The next lemma gives such a lower bound for (n, d, λ)-graphs, provided λ is much smaller
than d.

Lemma 8 Let G = (V,E) be an (n, d, λ)-graph, suppose γd ≥ 6, and let A and X be sets
of vertices, where |A| ≤ γ

2(d+1)n. If X is a γ-fractional 1-neighborhood of A then

|X| ≥ γ2d2

9λ2
|A|.
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Proof. Clearly we may assume that X is minimal, i.e., any proper subset of it is not a
γ-fractional 1-neighborhood of A. In this case, every member of X either is in A or is a
neighbor of some vertex of A, and hence |X| ≤ |A|(d+ 1) ≤ γ

2n.
Put |X| = xn and observe that by the last paragraph x ≤ γ

2 . For any vertex v ∈ V let
N(v) denote the set of all neighbors of v. A simple Linear Algebra argument (see [2], page
122) implies that ∑

v∈V
(|N(v) ∩X| − xd)2 ≤ λ2x(1− x)n.

Therefore ∑
v∈A

(|N(v) ∩X| − xd)2 ≤ λ2x(1− x)n. (3)

However, since X is a γ-fractional 1-neighborhood of A, any v ∈ A has at least γd − 1
neighbors in X. Since x ≤ γ/2 and γd ≥ 6, this together with (3) implies that

|A|γ2d2

9
≤ λ2x(1− x)n ≤ λ2|X|,

implying the desired result. 2

In the remainder of this section we assume λ = O(
√
d), so Lemma 8 gives

|X| = Ω(γ2d|A|). (4)

Using Lemma 8 in place of Theorem 6, a version of Lemma 7 holds for highly expanding
graphs, where m = 1 and where the three inequalities in the hypothesis are replaced by

6 ≤ βd

δR
(5)

dρR+1 ≤ βn

2δR(d+ 1)
(6)

δW (δR)2 < c3(1− α)6d (7)

where β = (1− α)2/2 as before, and where the constant c3 > 0 depends on the constant c
such that λ ≤ c

√
d. Since the proof is very similar, we only describe the differences.

Recalling that γ = β/δR, (5) gives γd ≥ 6. Since Az ⊆ B(z, ρR), we use (6) to conclude

|Az| ≤ dρR+1 ≤ βn

2δR(d+ 1)
=

γn

2(d+ 1)
.

So we can apply (4) to conclude |Xz| ≥ M |Az| where M = Ω(γ2d). Now δW ≥ βM
contradicts (7) for a suitable choice of c3.

This version of the lemma is used to prove Theorem 1 for highly expanding graphs with
d = (log n)b for any constant b ≥ 4. We first note that the expansion properties of such
graphs imply that the diameter of any n-vertex highly expanding graph is O(log n/ log d).
For a suitable constant c, we take δR(n) = ρR(n) = c log n/ log log n and δW (n) = log2n.
Recall that m = 1. It is easy to check that (5), (6), and (7) hold if c is small enough.
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3.7 Regional matchings

Let G = (V,E) be a graph with n vertices. As defined by Awerbuch and Peleg [5, 6], an
m-regional matching for G is a family of “read sets” R(x) and “write sets” W (x) for x ∈ V
such that, if dist(v, w) ≤ m, then R(v) ∩W (w) 6= ∅. Although Awerbuch and Peleg used
regional matchings as a tool for constructing algorithms for the mobile user problem, the
development above shows that they are also a useful concept for proving lower bounds.

The complexity of a regional matching is given by the maximum sizes and radii of the
read sets and write sets. (Recall that the radius of R(v) is the maximum, over u ∈ R(v),
of dist(u, v).) For any G, m, and k, Awerbuch and Peleg [5] construct an m-regional
matching for G where all radii are at most (2k+ 1)m and all sizes are at most 2kn1/k. (It is
natural to express the maximum radius as a multiple of m, since the “optimal” maximum
radius is obviously m/2.) In this section, we define a probabilistic generalization of regional
matchings. For hypercubes, we prove a lower bound on the trade-off between expected
radius and expected size which has a form similar to the upper bound of [5] for deterministic
regional matchings in an arbitrary graph. Specifically, if the maximum expected radius is
at most km then the maximum expected size is nΩ(1/k).

Let
R = {R(x),W(x) | x ∈ V }

be a family of mutually independent random variables taking values in 2V . R is a p-
probabilistic m-regional matching for G if, for all v, w ∈ V with dist(v, w) ≤ m,

Pr[ R(v) ∩W(w) 6= ∅ ] ≥ p.

Let the expected read-size δR(R) denote the maximum, over all x ∈ V , of the expected
value of |R(x)|. Similarly, the expected read-radius ρR(R) is the maximum, over all x, of
the expected radius of R(x). The expected write-size δW (R) and the expected write-radius
ρW (R) are defined similarly in terms of the W(w). (In these notations, R is omitted when
it is clear from context. The papers [5, 6] define the radii normalized to m, which in our
notation would be ρR/m and ρW /m.)

The following gives a lower bound on the product of read-size and write-size for any
probabilistic regional matching for the cube, provided that the read-radius is not too close
to the diameter d of Cd. Of course, the same result holds with the roles “read” and “write”
interchanged. (If read-radius and write-radius can both be as large as the diameter of the
graph, then there is a trivial solution by taking all R(x) and W (x) to be the same singleton
set.)

Theorem 9 There is a constant c4 > 0 such that for all sufficiently large d, all m with
1 ≤ m < d/2, and any p-probabilistic m-regional matching for Cd with ρR ≤ pd/40,

δW (δR)3 ≥ c42m/2p6/m.

Proof. The proof is similar to that of Theorem 7. We first define the vertex χ(v) associated
with v. Fix v. Define a random variable W as follows: First pick w uniformly at random
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from B(v,m), and then pick a set W according to the distribution of W(w). By definition
of a probabilistic regional matching,

Pr[ R(v) ∩W 6= ∅ ] ≥ p.

With probability at most p/4, the size of R(v) exceeds the upper bound δR on its expected
value by more than the factor 4/p, and similarly for the radius of R(v). Therefore, there
must be a set S ⊆ V with |S| ≤ 4δR/p, max{dist(u, v) | u ∈ S} ≤ 4ρR/p ≤ d/10, and

Pr[S ∩W 6= ∅ ] ≥ p/2.

(For otherwise, Pr[ R(v) ∩W 6= ∅ ] would be at most p/2 + (1− p/2)(p/2) < p.)
Since |S| ≤ 4δR/p, there is a z ∈ S such that

Pr[ z ∈W ] ≥ p2/(8δR). (8)

Define χ(v) = z. Note that dist(v, z) ≤ d/10.
We next observe that (8) implies the following:

Claim. At least a fraction p2/(16δR) of the w’s in B(v,m) satisfy Pr[ z ∈ W(w) ] ≥
p2/(16δR).

To verify this claim, let

L = {w ∈ B(v,m) | Pr[ z ∈W(w) ] ≥ p2/(16δR) }.

From (8),

p2/(8δR) ≤ Pr[ z ∈W ]
= Pr[ z ∈W(w) | w ∈ L ] · Pr[w ∈ L ] + Pr[ z ∈W(w) | w 6∈ L ] · Pr[w 6∈ L ]
≤ Pr[w ∈ L ] + p2/(16δR).

So Pr[w ∈ L ] ≥ p2/(16δR), which proves the claim.
Let γ = p2/(16δR). Letting

Az = { v | χ(v) = z },
Xz = {w | Pr[ z ∈W(w) ] ≥ γ },

it follows from the claim that Xz is a γ-fractional m-neighborhood of Az.
Letting M = c12m/2γ2/m, and proceeding as in the proof of Theorem 7, there is a vertex

w such that w ∈ Xz for at least M different z’s. That is, Pr[ z ∈W(w) ] ≥ γ for at least M
different z’s. By another simple argument, the expected size of W(w) is at least Mγ. So
δW ≥Mγ, which gives the desired inequality. 2

The following corollary gives a lower bound on the trade-off between read-radius (viewed
as a multiple k of m) and size. We state the corollary in terms of a family {Rd | d ≥ 1}
where Rd is a probabilistic m-regional matching for Cd. The various parameters are given
as functions of n = 2d, the number of vertices of Cd.
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Corollary 10 There is a constant a1 > 0 such that the following holds. Fix a p > 0 and
let 1 ≤ k(n) ≤ a1p log n/log log n. There is a function m(n) such that for any family of
p-probabilistic m(n)-regional matchings for Cd with ρR(n) ≤ k(n)m(n),

δW (n) δR(n) = nΩ(1/k(n)).

Proof. Set m(n) = pd/(40 k(n)) (= p log n/(40 k(n))). By Theorem 9, for some constant
c,

δW (n) δR(n) ≥ ncp/k(n)(c4p
6/m(n))1/3.

Since k(n) ≤ a1p log n/ log log n, m(n) ≤ log n, and p is fixed, the term (c4p
6/m(n))1/3 can

be absorbed into c, provided that a1 is sufficiently small. 2

3.8 Move-stretch versus find-stretch

In [5, 6], the competitive ratio is broken into two parts, the move-stretch and the find-stretch,
which are, informally, the competitive ratios restricted to the Move and Find operations,
respectively, in the request sequence (and the additive term a is taken to be zero). In this
section we give a lower bound on the trade-off between move-stretch and find-stretch for
any mobile user algorithm on the cube.

Given a randomized mobile user algorithmA and a request sequence σ, let Move-CostA(σ)
be the expected communication cost of A while executing the Move requests in σ. Let
Move-Costopt(σ) be the sum of the optimal costs of the Move requests in σ. The expected
move-stretch of A is the supremum, over all σ, of Move-CostA(σ)/Move-Costopt(σ). The
Find-CostA(σ), Find-Costopt(σ), and the expected find-stretch of A are defined analogously
for the Find requests.

For any G on n vertices, Awerbuch and Peleg [5] describe a deterministic tracking
strategy which allows a trade-off between move-stretch and find-stretch; specifically, letting
D be the diameter of G, move-stretch is O(k logD) and find-stretch is O(k2n1/k). For
example, when k = logn, both are O(log2n).

We have the following lower bound on the trade-off for any randomized mobile user
algorithm for hypercubes. Similar to Corollary 10, we state the result in terms of a family
{Ad | d ≥ 1} of algorithms for Cd, with move-stretch µ and find-stretch ϕ given as functions
of n = 2d.

Theorem 11 There is a constant a2 > 0 such that the following holds. For any family
of randomized algorithms for the mobile user problem on Cd, having expected move-stretch
µ(n) and expected find-stretch ϕ(n) ≤ a2 log n/log log n,

µ(n) = nΩ(1/ϕ(n)).

Moreover, this holds even for request sequences of the form Move(s, w),Find(v).
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Proof. Choose a2 ≤ a1/4. We apply Corollary 10 with p = 1/2 and k(n) = 2ϕ(n). This
gives an m(n) = O((log n)/ϕ(n)). Note that k(n) ≤ a1p log n/ log log n.

For each d and n = 2d, we obtain a p-probabilistic m(n)-regional matching Rd from the
algorithm Ad as follows. For each w ∈ V , let W(w) be the set of vertices that receive a
message when Ad executes Move(s, w); also include s and w in W(w). Let R(v) be the
set of 2ϕ(n)m(n) vertices which receive messages first when Ad executes Find(v) in the
configuration where all processors are in their (quiescent) initial states; also include v in
R(v). A more precise definition of R(v) is like the definition of R(v) in Section 3.1, the
difference being that, since Ad is randomized, R(v) is a random set. To see that Rd is a
(1/2)-probabilistic m(n)-regional matching, let w, v ∈ V with dist(w, v) ≤ m(n). The event
that R(v)∩W(w) = ∅ implies the event that, on the request sequence Move(s, w),Find(v),
the communication cost of Ad while executing Find(v) exceeds the upper bound ϕ(n)m(n)
on its expected value by at least the factor 2. This occurs with probability at most 1/2.

Since dist(s, w) ≤ log n for all w,

δW (n) ≤ µ(n)(log n) + 2,
δR(n) ≤ 2ϕ(n)m(n) + 1,
ρR(n) ≤ 2ϕ(n)m(n) = k(n)m(n).

(In fact, the last two bounds hold for the worst-case read-size and read-radius.)
So we can use Corollary 10 to conclude, for some constant c > 0, that

(µ(n)(log n) + 2)(2ϕ(n)m(n) + 1) ≥ δW (n) δR(n) ≥ nc/ϕ(n).

For sufficiently small a2, the conclusion follows since ϕ(n)m(n) = O(log n), and nc/ϕ(n) ≥
(log n)c/a2 . 2

A consequence of Theorem 11 is max{ϕ(n), µ(n)} = Ω(log n/ log log n). This also follows
from Theorem 1.

4 Distributed Scheduling

In the distributed scheduling problem, processors are from time to time given sets of jobs
to execute. At each step, a processor can execute at most one job and can send jobs to
neighboring processors. The cost measure is the maximum delay of a job, i.e., the maximum,
over all jobs j, of the number of steps that j remains in the system before being executed.
We now make this more precise.

Let J be an (infinite) set of job names. The set I of inputs is the set of finite subsets
of J . The input σ(t, i) ⊆ J means that processor pi is given the set of jobs σ(t, i) at step t.
We only consider finite input sequences, i.e., there is a time T such that σ(t, i) = ∅ for all
t ≥ T and all i. We assume that each job is input at most once, i.e., if (t, i) 6= (t′, i′) then
σ(t, i) ∩ σ(t′, i′) = ∅. Define start(j) = t for all j ∈ σ(t, i). Each state q of each processor
pi has a component jobs(q) which represents the set of jobs residing at pi when pi is in
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state q. If q is an initial state, then jobs(q) = ∅. Each message m also has a component
jobs(m) which is the set of jobs transferred from pi to pj when pi sends m to pj . At each
computation step, jobs must be conserved. More precisely, suppose that pi at step t receives
messages m1, . . . ,md from neighbors, sends messages m′1, . . . ,m

′
d to neighbors, executes the

job in set E (where |E| ≤ 1), and changes from state q to state q′. Let jobs in (resp., jobsout)
be the union of jobs(mk) (resp., jobs(m′k)) over 1 ≤ k ≤ d. Then jobs(q′), E, and jobsout

are pairwise disjoint, and

jobs(q′) ∪ E ∪ jobsout = jobs(q) ∪ σ(t, i) ∪ jobs in .

If E = {j} in this situation, define finish(j) = t+ 1. Given an input sequence σ and a (ran-
domized) scheduling algorithm A, let CostA(σ) be the (expected) maximum of finish(j)−
start(j) over all jobs j such that j ∈ σ(t, i) for some t, i.

In the next three subsections we prove Theorem 2 for the three types of graphs. Recall
that Theorem 2 concerns the special case of the problem where σ(t, i) = ∅ for all t > 0 and
all i. We also obtain a slightly larger lower bound for the more general problem.

4.1 High-girth graphs

For any d with 3 ≤ d ≤ (log n)b, let G be a d-regular high-girth graph whose girth g and
diameter are both Θ(log n/ log d).

Fix n. For every vertex v we define a scenario Sv as follows. Each vertex w in B(v, g/4)
receives g jobs at time 0. All other vertices do not get jobs. The subgraph of G induced
by B(v, g/2− 1) is a tree which we denote Tv. A global algorithm can simply have each w
that got jobs send its jobs, in the direction away from v in Tv, to a set of g vertices that
are at distance l = logd−1 g from w. Since l < g/4 for sufficiently large n, all jobs are sent
to vertices in Tv. Since Tv is a tree, each vertex receives at most one job to execute. So the
optimal cost is at most l + 1.

We prove the lower bound, again, by using the easy direction of [20]. [[The basic idea,
which is typical of scenario arguments, is that the distributed algorithm does not know
which scenario holds. In particular, if the cost of the algorithm is sufficiently smaller than
g/4 (the radius used in defining scenarios), then a vertex x will behave the same in many
different scenarios. This confusion leads to a contradiction.]] Pick at random one of the
scenarios Sx according to a uniform distribution on the vertices. We show that for every
(deterministic) distributed algorithm, the average cost over this distribution is at least g/16.
Indeed, assume this is false and there exists a distributed algorithm whose average cost is
less than g/16, and let us reach a contradiction. Let U be the set of all vertices u such
that the cost of the algorithm is less than g/8 in the scenario Su. Clearly, |U | ≥ n/2 since
otherwise the expectation of our algorithm exceeds g/16. For every u ∈ U and every vertex
x, we define chargeu(x) to be the number of jobs that x executes among those assigned
initially to the vertex u in the scenario Su. Define also Charge(x) =

∑
u∈U chargeu(x).

Consider a scenario Sx. Let y be a vertex in U such that chargey(x) > 0. Obviously the
distance between y and x is smaller than g/8. [[The vertex x must behave exactly the same
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in the scenarios Sx and Sy at the first g/8 time steps, since all the vertices in B(x, g/8)
receive the same number of jobs in both Sx and Sy. Similarly, y behaves the same in Sx and
Sy.]] Thus x will execute chargey(x) jobs originated at the processor y under the scenario
Sx. Moreover, it will execute them sometime during the first g/8 time steps. It follows
that for every vertex x, Charge(x) ≤ g/8 < g/2. Hence the total sum of Charge(x) over all
vertices x is strictly less than n · (g/2).

However, since |U | ≥ n/2, the total number of jobs which are assigned to central vertices
u of scenarios Su with u ∈ U is at least (n/2) · g. Since each of these jobs contributes to
chargeu(x) for some u and x, the sum of Charge(x) over all x must be at least (n/2) · g, a
contradiction.

The competitive ratio is Ω(g/ logd−1 g) = Ω(log n/ log log n) since g = Θ(log n/ log d).
2

Note that if d = Ω(logn/ log log n), then d = Ω(g). In this case the optimal cost is O(1)
and it can be achieved by a global algorithm which sends at most one job over each edge
at each step.

The special case of the distributed scheduling problem can always be solved by sending
all jobs to a particular processor which then distributes the jobs evenly to all the processors.
For a graph of diameter D, the competitive ratio of this algorithm is O(D). Therefore, for
high-girth graphs of degree d = (log n)b where b > 0, our lower bound is optimal to within
a constant factor.

For the general scheduling problem [[(i.e., not all jobs initiated at time t = 0)]], we have
the following for high-girth graphs.

Theorem 12 There is a class of networks for which the competitive ratio of any (deter-
ministic or randomized) distributed algorithm for the distributed scheduling problem, under
the maximum delay measure, is Ω(log n), if jobs can be initiated at any time.

Proof. Without any attempt to optimize the constants, consider, for a given n, a d = 64-
regular graph G = (V,E) with n vertices and girth g = Ω(log n).

For every vertex v we define a scenario Sv as follows. Each vertex w in B(v, g/4) receives
a set of d = 64 jobs at time t = 2i for all i ∈ {0, 1, . . . , g/64−1}. Therefore, altogether each
vertex in B(v, g/4) receives g jobs, and the last set of jobs is initiated at time t = g/32− 2.
All other vertices receive no jobs. As before, let Tv denote the induced subgraph of G on the
set of vertices B(v, g/2−1), which is a tree. A global algorithm can complete the execution
of each job at most two time units after its arrival time. This is done as follows. At time
t = 2i each vertex that receives jobs executes one of them and sends the other d− 1 to its
neighbors in the direction away from v in Tv. At time t = 2i+ 1 every vertex will have at
most one job which can be completed in this time unit. Hence the optimal cost is at most
2, a constant.

We prove the lower bound as before, by using the easy direction of [20]. Pick at random
one of the scenarios Sx according to a uniform distribution on the vertices. We show that
for every (deterministic) distributed algorithm, the average completion time, i.e., time t in
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which all the jobs will be done, is at least g/16. Note that since all the jobs were initiated
at times t < g/32, this will imply that the average value of the maximum delay of a job is
at least g/32 = Ω(log n) and hence complete the proof. The proof is almost identical to the
previous one. Assume this is false and there exists a distributed algorithm whose average
completion time is less than g/16, and let us reach a contradiction. Let U be the set of all
vertices u such that the completion time of the algorithm is less than g/8 in the scenario
Su. Clearly, |U | ≥ n/2. For every u ∈ U and every vertex x, we define chargeu(x) to be
the number of jobs that x executes among those assigned initially to the vertex u in the
scenario Su. Define also Charge(x) =

∑
u∈U chargeu(x).

Consider a scenario Sx. Let y be a vertex in U such that chargey(x) > 0. Obviously
the distance between y and x is smaller than g/8. The vertices x and y must behave
exactly the same in Sx and Sy at the first g/8 time steps, since all vertices in B(x, g/8)
and in B(y, g/8) receive jobs according to the same pattern in both Sx and Sy. Thus x will
execute chargey(x) jobs originated at the processor y under the scenario Sx. Moreover, it
will execute them sometime during the first g/8 time steps. It follows that for every vertex
x, Charge(x) ≤ g/8 < g/2. Hence the total sum of Charge(x) over all vertices x is strictly
less than n · (g/2).

However, since |U | ≥ n/2, the total number of jobs which are assigned to central vertices
u of scenarios Su with u ∈ U is at least (n/2) · g. Since each of these jobs contributes to
chargeu(x) for some u and x, the sum of Charge(x) over all x must be at least (n/2) · g, a
contradiction. 2

4.2 Hypercubes

The proof is similar to that given for high-girth graphs in Section 4.1. The scenario Sv gives
d = log n jobs to each vertex within distance d/10 from v. We first show that the optimal
scheduler can finish in time O(log d) by sending jobs “out”, i.e., in the direction away from
v. In fact, we show that this can be done even if we only allow a constant number of jobs
to be transferred along a single edge in one time unit. By symmetry, we may assume that v
is the all 0 vector, and hence the vertices in B(v, d/10) are all the vertices whose Hamming
weight is at most d/10. We need the following lemma.

Lemma 13 Let U be a set of vertices of Cd where the Hamming weight of each member of
U is at most d/3− 1, and suppose each vertex in U has a set of at most b jobs. Then each
such vertex of Hamming weight i can distribute its jobs among its neighbors with Hamming
weight i + 1 in such a way that no vertex receives more than db/2e jobs. Moreover, the
maximum number of jobs sent along an edge is at most d3b/2de.

Proof. For each u ∈ U , let j(u) (≤ b) denote the number of jobs of u. Consider the
following network-flow instance. The network consists of a source s, a sink t, and two layers
of vertices, U and W , where W is the set of all vertices of the cube with Hamming weight at
most d/3. For each u ∈ U , su is a directed edge of capacity j(u). For each w ∈W , wt is a
directed edge of capacity db/2e. In addition, if u ∈ U and w ∈W are neighbors in the cube,
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and the Hamming weight of w exceeds that of u by 1, then uw is a directed edge of capacity
d3b/2de. It is easy to see that the value of the maximum flow in this network is precisely
the sum

∑
u∈U j(u). Indeed, the cut consisting of all su edges shows that the maximum

flow cannot exceed this value. On the other hand, one can define a flow by having each
u ∈ U receive j(u) units of flow from s and by having u distribute this flow equally among
its out-neighbors w ∈ W . Since each u ∈ U has at least 2d/3 neighbors in W , this flow
sends at most 3j(u)/2d ≤ 3b/2d flow units on every uw edge. Moreover, since each w ∈W
has at most d/3 neighbors in U and each neighbor sends it at most 3b/2d flow units, each
w receives at most b/2 flow units, which it can now send to the sink t.

Since all the capacities in our network are integral, there is an integral flow whose value is∑
u∈U j(u). We can now distribute the jobs of each u ∈ U according to this flow, completing

the proof of the lemma. 2

By repeatedly applying Lemma 13 dlog de times, it follows that an optimal global
scheduler can, in log d steps, distribute all the jobs initiated according to the scenario
Sv among the vertices within distance d/10 + log d (≤ d/3 − 1) from v, so that each of
these receives at most a single job, which it can now execute in one additional time unit.
Therefore, an optimal scheduler can finish in time O(log d). It remains to show that any
on-line algorithm needs time Ω(d). This can be proved by a simple modification of the
argument in Section 4.1. Since the argument is very similar to the previous one, we omit
the details.

4.3 Highly expanding graphs

In order to obtain Theorem 2 for highly expanding graphs it is useful to first show that every
assignment of d jobs to each processor in any set of n/d processors in an (n, d, λ)-graph with
λ = O(

√
d) can be completed (by a global algorithm) in constant time. This can be proved

by combining Lemma 8 (with γ = 1) with Hall’s Marriage Theorem. Indeed, by this lemma
and Hall’s Theorem one can easily show that there exists a constant c > 0 (depending on
the constant c′ for which λ < c′

√
d), so that for every set A of at most n/d vertices in an

(n, d, λ)-graph G = (V,E) there is a collection of pairwise disjoint subsets Sa, a ∈ A, of V
so that each Sa is a set of neighbors of a of cardinality at least cd. By having the vertices
in Sa perform the jobs initiated at a it is clear that a global algorithm can complete all jobs
in time O(1/c) = O(1).

The basic combinatorial idea in Section 4.1 can then be used to prove that Theorem 2
holds for such graphs with an appropriate choice of d. E.g., d = (logn)b, for any constant
b ≥ 1 will do. Simply consider, for each vertex v, the scenario Sv in which all vertices in
B(v, s) for, say, s = logd−1(

√
n), get d jobs each at time t = 0. Then the optimal cost is a

constant, whereas it can be shown as before that the expected cost of any on-line algorithm
is Ω(s) = Ω(log n/ log log n). The details are almost identical to the ones above and are thus
omitted.
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