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1 Introduction

Helly’s theorem asserts that if F is a finite family of convex sets in Rd in
which every d+ 1 or fewer sets have a point in common then

⋂
F 6= ∅. Our

starting point, the (p, q) theorem, is a deep extension of Helly’s theorem.
It was conjectured by Hadwiger and Debrunner and proved by Alon and
Kleitman [3]. Let p ≥ q ≥ 2 be integers. A family F of convex sets in Rd is
said to have the (p, q) property if among every p sets of F , some q have a
point in common.

Theorem 1 ((p, q) theorem, Alon & Kleitmen) For every p ≥ q ≥ d+
1 there exists a number C = C(p, q, d) such that whenever F is a finite
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family of convex sets in Rd with the (p, q) property then there is a set of at
most C points intersecting all the sets of F .

Note that if we are only interested in the existence of C(p, q, d) and not in
its precise value, it is sufficient to consider the case q = d+ 1.

Here we consider analogues and relatives of the (p, q) theorem for other
settings, both geometric and abstract. The original proof of the (p, q) theo-
rem uses two main tools: the fractional Helly theorem and the weak epsilon-
nets for convex sets. Our main result (the union of Theorem 8 and Theorem
9) shows that in an abstract setting, the appropriate fractional Helly prop-
erty is sufficient to derive the existence of weak epsilon-nets and the validity
of a (p, q) theorem. These notions and the precise formulation will be given
in Section 3 and the theorem will be proved in Sections 4 and 5.

One consequence we derive is a “topological (p, q)-theorem”. A family
F of subsets of Rd, whose members are either all open or all closed, is a good
cover if

⋂
F∈G F is contractible or empty for all G ⊂ F . Helly proved that

his theorem continues to hold for finite good covers. Here we show

Theorem 2 The assertion of the (p, q) theorem remains valid for all finite
good covers in Rd.

A crucial step in the proof of this theorem is of independent interest as it
gives a homological condition for the edge-cover number ρ of a hypergraph
(equivalently, the simplicial complex spanned by it) to be bounded as a
function of the fractional edge-cover ρ∗.

A simplicial complex K is called d-Leray if the i-th homology of K and
all of its induced subcomplexes vanish when i ≥ d.

Theorem 3 For every d ≥ 1 there are constants c1 = c1(d) and c2 = c2(d)
such that for a d-Leray simplicial complex K, ρ(K) ≤ c1(ρ∗(K))c2.

As a 1-Leray complex K is simply the clique complex of a chordal graph
it follows that ρ(K) = ρ∗(K) (since chordal graphs are perfect). For d > 1
our proof implies that c2(d) = dO(d) but we do not have examples showing
that c2 = 1 + ε will not suffice. In Section 7 we describe a 2-Leray complex
K which satisfies ρ(K) = Ω(ρ∗(K) log ρ∗(K)).

These topological results will be proved in Section 6.
In Section 8 we consider convex lattices sets in Rd. Doignon proved [9]

that the Helly number for convex lattice sets in Rd is 2d.
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Theorem 4 For p ≥ q ≥ 2d, the assertion of the (p, q) theorem applies to
all finite families of lattice convex sets in Rd.

Using a theorem of Hausel we can show that planar convex lattice sets
satisfy even a (p, 3)-theorem for every p.

Conjecture 5 For p ≥ q ≥ d+1, the assertion of the (p, q) theorem applies
to all finite families of lattice convex sets in Rd.

Recently, this conjecture was proved by Bárány and Matoušek [6].
Alon and Kalai [2] used the method of [3] to prove (p, q) theorems in

several geometric situations, for example for piercing convex sets in Rd by
hyperplanes. In Section 9 we provide an example showing that no (p, q)
theorem or a similar property, even in a weak sense, hold for stabbing convex
sets by lines in R3.

Proposition 6 For every integers m0 and k, there is a system C of more
than m0 convex sets in R3 such that every k sets of C have a line transversal
but no k + 4 of them have a line transversal.

It seems that k + 4 could be improved to k + 3, or perhaps k + 2, by a
more careful analysis of our construction. But achieving k + 1 seems more
challenging.

It is often asked in connection of the (p, q) theorem to give some examples
where the (p, q) condition holds. The following example is useful: Let µ be
a probability measure on Rd and consider all convex sets with measure at
least δ. If δ > q/p then this family satisfies the (p, q) property. The first
step in the proof of Alon and Kleitman shows that if a family satisfies the
(p, q) property then it has such a form but for a much smaller value of δ.

2 Transversal numbers of hypergraphs

Transversals and matchings. Let F be a finite set system on a (finite
or infinite) set X (so F can also be regarded as a hypergraph). We recall that
the transversal number of F , denoted by τ(F), is the minimum cardinality of
a subset of X which intersects all F ∈ F . τ(F) is also called the vertex-cover
number of F .

The fractional transversal number τ∗(F) is the minimum of
∑
x∈X f(x)

over all nonnegative functions f :X → [0, 1] that satisfy
∑
x∈F f(x) ≥ 1 for
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all F ∈ F . (If X is infinite we only consider functions f attaining finitely
many nonzero values.) Clearly always τ∗(F) ≤ τ(F).

Let νd(F) denote the largest size of a subhypergraph M ⊂ F such
that degM(x) ≤ d for all x ∈ X. The matching number of F is ν(F) =
ν1(F). Also note that the (p, q) property for the family F can be restated
as νq−1(F) < p.

The fractional matching number ν∗(F) is the maximum of
∑
S∈F f(S)

over all nonnegative real functions f : F → [0, 1] which satisfy:
∑
{f(S) : S ∈

F , x ∈ S} ≤ 1, for every x ∈ X. Clearly, ν(F) ≤ ν∗(F) and it is easy
to see that νd(F)/d ≤ ν∗(F). Linear programming duality gives that
τ∗(F) = ν∗(F).

There can be a large gap between the transversal number and fractional
transversal number. An example to keep in mind is the family Mm,n

([m]
n

)
of all n-subsets of a set of size m. In this case τ∗ = m/n while τ = m−n+1.
Thus, when m = 2n we get τ∗ = 2 and τ = n+ 1.

The dual of the hypergraph F is the hypergraph Fdual whose vertices
correspond to the edges of F and whose edges correspond to the vertices of
F with incidence relation being reversed. The dual notion to the notion of
the transversal number is the edge-cover number, ρ(F), of a hypergraph F .
It is the minimal number of edges required to cover all vertices. Similarly,
the fractional edge-cover number is defined by ρ∗(F) = τ∗(Fdual).

Transversal numbers, fractional transversal numbers and weak ε-
nets The relations between transversal numbers, fractional transversal
numbers and matching numbers is a topic of central importance in com-
binatorics. Call a class of hypergraphs hereditary if it is closed under taking
subhypergraphs.

Our work can be regarded as a contribution towards understanding of
the following question:

Problem 7 1. For which hereditary class F of hypergraphs F is it true that
τ is bounded above by a function of τ∗?

2. Let d be a fixed positive integer. For which hereditary class F of
hypergraphs F is it true that τ is bounded by a function of νd?

For a collection F of subsets of X and a (multi-) subset Y ⊂ X a weak
ε-net for Y is a set Z ⊂ X so that every S ∈ F with |S ∩ Y | ≥ ε|Y | satisfies
S ∩ Z 6= ∅. (Z is called an ε-net if Z ⊂ Y .)
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It is easy to see that for a hypergraph F the following conditions are
equivalent (with g(x) = f(1/x)):

• τ is uniformly bounded by a function g of τ∗ for all subhypergraphs
of F .

• There is a function f such that for every ε and every Y there is a weak
ε-net of size at most f(ε).

We will call a hypergraph satisfying these conditions a hypergraph of
finite type or a hypergraph with the weak ε-net property. (We will adopt
the same notion for a class of hypergraphs (possibly all finite) when the
function f(ε) can be chosen uniformly for all hypergraphs in the class.) The
combinatorial conditions for a hypergraph to be of a finite type and the
nature of the functions f(ε) for the size of the weak ε-net which can arise
are not understood.

The corresponding questions for classes of hypergraphs closed under re-
strictions are well understood. (Equivalently these are the questions on the
relations between ρ and ρ∗ for hereditary classes of hypergraphs.) In order
that τ be bounded by a function of τ∗ for all restrictions of a hypergraph
F to subsets X ′ of X it is necessary and sufficient that for every Y and
ε > 0 there is an ε-net of size at most f(ε) and this is equivalent to the VC-
dimension of F being finite. (When talking about a family of hypergraphs
the VC-dimension should be uniformly bounded.) Haussler and Welzl [14]
proved that f(ε) = O(d(1/ε) log(1/ε)), where d is the VC-dimension, and
Komlós, Pach and Woeginger [19] gave examples showing this cannot be
further improved. Ding, Seymour and Winkler [8] characterized when τ is
bounded by a function of ν for a hypergraph and all of its restrictions.

Having a finite VC-dimension is closed under duality. (Thus, bounded
VC dimension is a necessary and sufficient condition for ρ being bounded as
a function of ρ∗ for a hereditary class of hypergraphs.) This is not the case
for being of finite type. The class of examples

([m]
n

)
is not of finite type but

the class of their duals is.

3 The fractional Helly theorem

Fractional Helly properties. The fractional Helly theorem of Katchal-
ski and Liu [18] states that if F1, F2, . . . , Fn ⊆ Rd are convex sets such the
number of (d + 1)-tuples I ⊆ [n] with

⋂
i∈I Fi 6= ∅ is at least α

( n
d+1

)
then
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there exists a point common to at least βn sets Fi. Here α ∈ (0, 1] is a pa-
rameter and the theorem asserts the existence of a β = β(d, α) > 0 for all α.
(We will use β(d, α) to denote the best possible β for which the theorem
holds.) Katchalski and Liu proved first that β(d, α) ≥ α/(d + 1) and also
presented a better bound which shows that β → 1 when α → 1. Kalai [16]
and Eckhoff [10] proved that β(d, α) = 1− (1− α)1/(d+1).

Let G be a (finite or infinite) family of sets. We write that G satisfies
FH(k, α, β) if for every F1, F2, . . . , Fn ∈ G such the number of k-tuples I ⊆
[n] with

⋂
i∈I Fi 6= ∅ is at least α

(n
k

)
, there exists a point common to at least

bβnc of the Fi. We say that G has fractional Helly number k if for every
α ∈ (0, 1) there exists β = β(α) > 0 such that FH(k, α, β(α)) holds. If k is
not important we speak of the fractional Helly property.1

It may happen that we cannot find a β > 0 for all α > 0 but there exist
some α and β > 0 with FH(k, α, β). Then we speak of the weak fractional
Helly property. The weakest among such properties is with α = 1 and some
β > 0. In particular, the Helly property implies FH(k, 1, 1).

In the first part of their proof of the (p, q) theorem for convex sets, Alon
and Kleitman showed, using the fractional Helly theorem, that τ∗ is bounded
for every family of convex sets with the (p, d + 1)-property. The proof is a
simple double counting plus the linear-programming duality and it works
unchanged in the abstract setting, thus showing that if F has fractional
Helly number d + 1 then τ∗(F) is bounded by a function of νd(F); this is
part (i) of the following theorem. An additional observation employing the
weak fractional Helly property is expressed in part (ii).

Theorem 8 (i) For every d and p there exists an α > 0 such that the
following holds. For any finite family F satisfying FH(d+1, α, β) with some
β > 0 and having the (p, d+1) property (i.e. νd(F) < p), we have τ∗(F) ≤ T ,
where T depends only on p, d, and β.

(ii) For every d, p, k ≥ d+ 1, and β0 > 0 there exists an α > 0 such that
the following holds. For any finite family F satisfying the weak fractional
Helly property FH(d+1, 1, β0), the fractional Helly property FH(k, α, β) with
some β > 0, and the (p, d+1) property, we have τ∗(F) ≤ T , where T depends
only on p, d, k, β0, and β.

We give the proof in Section 4. In Section 7, we present an example
showing that the (3, 2) property and the 2-Helly property together are not

1Strictly speaking, this definition only makes sense for infinite families G, since for a
finite family some β(α) depending on |G| always exists. When dealing with finite families,
we really mean that β(α) should be independent of the size of the family.
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sufficient to bound τ∗(F). At present we do not know whether the (3, 2)
property plus FH(2, α, β) for some α < 1 and β > 0 are sufficient or not.

Fractional Helly and weak ε-nets. In the second main part of the
proof of the (p, q) theorem for convex sets, the existence of weak ε-nets for
convex sets is used. This important notion was introduced by Haussler and
Welzl [14] and further studied in several papers, such as [1], [7].

As far as we know, at least three different proofs of existence of weak
ε-nets for convex sets are known. Two are given in Alon et al [1]: a direct
geometric argument, leading to a weak ε-net of size O((1/ε)−2d−1

) for every
fixed d, and an argument based on a selection lemma of Bárány [5], giving
a weak ε-net of size O((1/ε)d+1) for d fixed. Our subsequent generalization
is based on this latter proof. In [1], the bound is still slightly improved, by
applying a more sophisticated selection lemma, and the current best bound,
due to Chazelle et al. [7], is close to O((1/ε)d) and is obtained by another
geometric argument. Finding the correct estimates for weak ε-nets is, in
our opinion, one of the truly important open problems in combinatorial
geometry.

The original argument about the existence of weak ε-nets involving Bárány’s
selection lemma relies on several theorems in convexity, such as Tverberg’s
theorem and the colorful Carathéodory theorem. Here we show that a sim-
ilar conclusion can be derived from a fractional Helly property, but we have
to assume it not only for F but also for all intersections of the sets of F .

Theorem 9 For every integer d ≥ 1 there exists α > 0 such that the follow-
ing holds. Let F be a finite family of sets and let F∩ = {

⋂
H : H ⊆ F} be

the family of all intersections of the sets in F . If F∩ satisfies FH(d+1, α, β)
with some β > 0 then we have

τ(F) ≤ c1 · τ∗(F)c2 ,

where c1 and c2 depend only on d and β.

Our proof yields much worse estimates for c1 and c2 than those known
for convex sets; in fact, our exponent c2 is exponential in d. On the other
hand, in the strongest example we are aware of with the fractional Helly
property for intersections, even in the abstract setting, τ is only slightly
superlinear in τ∗. A lower bound concerning convex sets [21] shows that
c1 ≥ eΩ(

√
d) is needed in the worst case.
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4 The (p, q) Property and τ ∗

Here we prove Theorem 8. The statement (i) can be proved exactly as in
Alon and Kleitman [2]; for the reader’s convenience, we outline the argument
here, a little simplified but leading to slightly worse quantitative bounds.

As we already mentioned it follows from linear programming duality
that for every finite hypergraph F we have τ∗(F) = ν∗(F). Recall that
the fractional matching number, ν∗(F) is the maximum of

∑
F∈F g(F ) over

all functions g:F → [0, 1] satisfying
∑
F∈F :x∈F g(F ) ≤ 1 for all x ∈ X.

Moreover, the maximum is attained by a rational-valued function g, for
which we can write g(F ) = nF

D for integers nF and D. Let {F1, F2, . . . , Fn}
be the multiset containing nF copies of each F ∈ F (so n =

∑
F∈F nF ).

Suppose that νd(F) is bounded, i.e. F has a (p, d + 1) property. Then
the multiset {F1, . . . , Fn} certainly has the (p′, d + 1) property with p′ =
(p− 1)d+ 1 since among any p′ of its sets, the same set occurs (d+ 1)-times
or there are at least p distinct sets.

For brevity, call an index set I ⊆ [n] good if
⋂
i∈I Fi 6= ∅ (i.e. I is in

the nerve of F). So for every I ∈
([n]
p′
)

there is at least one good (d + 1)-

tuple J ⊆ I, and hence the total number of good J ∈
( [n]
d+1

)
is at least(n

p′
)
/
(n−d−1
p′−d−1

)
≥ α

( n
d+1

)
for a suitable α = α(p, d).

By FH(d + 1, α, β), there is a point x in at least βn of the Fi. On the
other hand, since the multiset {F1, . . . , Fn} was defined using a fractional
matching, no point is in more than n

ν∗(F) of the sets Fi, and we conclude
that τ∗(F) = ν∗(F) ≤ 1

β .
In part (ii), we assume that F satisfies FH(d+ 1, 1, β0) and FH(k, α, β)

with a suitable α > 0 and some β > 0, and has the (p, d + 1) property.
We define F1, . . . , Fn using an optimal fractional matching as above, and it
suffices to show that there is a point common to at least βn of the Fi.

We want to show that there are at least α
(n
k

)
good index sets K ∈

([n]
k

)
,

with α = α(p, d, k, β0) > 0; then we can use FH(k, α, β).
To this end, let m = m(p, d, k, β0) be a sufficiently large integer (inde-

pendent of n). It suffices to prove that each index set M ∈
([n]
m

)
contains at

least one good k-element K, since then the total number of good k-tuples
is at least

(n
m

)
/
(n−k
m−k

)
≥ α

(n
k

)
. To exhibit a good k-tuple in a given m-tuple

M , we use Ramsey’s theorem.
For each I ∈

(M
p′
)
, we choose a good (d + 1)-element J = J(I) ⊂ I

(here we use the (p′, d + 1) property, where p′ is as in the proof of (i)).
This J(I) has one of

( p′
d+1

)
types, where the type is given by the relative
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positions of the elements of J(I) among the elements of I (in the natural
ordering of I). By Ramsey’s theorem, if m is sufficiently large, there exists
an r-element N ⊆M , with r still large, such that all I ∈

(N
p′
)

have the same
type. Let i1 < i2 < . . . < ir be the elements of N in the increasing order, let
s = br/p′c, and let L = {ip′ , i2p′ , . . . , isp′}. Now all the J ∈

( L
d+1

)
are good,

since for each of them we can find an I ∈
(N
p′
)

with J(I) = J .
By FH(d+ 1, 1, β0) applied to {Fi : i ∈ L}, there are at least β0s among

the sets indexed by L sharing a common point. If β0s ≥ k, which can be
guaranteed by setting m sufficiently large, we have obtained a good k-tuple
contained in M . This proves part (ii) of Theorem 8. 2

5 The Fractional Helly Property and Piercing

In this section, we prove Theorem 9. Let c: 2X → 2X denote the closure
operation induced by the considered family F given by c(A) =

⋂
{F : A ⊆

F ∈ F}, where c(A) = X if no F ∈ F contains A (c(A) is an abstract
analogue of the convex hull). For a multiset {x1, . . . , xm} ⊆ X and I ⊆ [m],
put GI = c({xi : i ∈ I}).

Proposition 10 (A Tverberg-type theorem) Let F be a finite family
and suppose that F∩ satisfies FH(d + 1, 1

4 , β) for some β > 0. Then there
exist integers a = a(d, β) and b = b(d, β) such that for every multiset
{x1, . . . , xab} ⊆ X there are d + 1 pairwise disjoint subsets I1, . . . , Id+1 ∈([ab]
a

)
with

d+1⋂
i=1

GIi 6= ∅. (1)

That is, a sufficiently large (multi)set can be partitioned into d + 1 parts
whose closures have a common point.

Let us remark that α = 1
4 is used just for concreteness and it can be

replaced by any other constant strictly below 1, if a and b are chosen suitably.
Proof. Let b = dd/βe + 1 and a = bd. Let m =

(ab
a

)
and consider the

multiset S = {GI : I ∈
([ab]
a

)
}; its sets are members of F∩. We want to

apply fractional Helly to S and so we first need to show that at least 1
4 of

the (d+ 1)-tuples of sets in S intersect.
We check that, in fact, at least 1

4 of all (d + 1)-tuples (I1, I2, . . . , Id+1)
of pairwise distinct a-element index sets Ii ⊂ [ab] satisfy

⋂d+1
i=1 Ii 6= ∅. Intu-

itively, this is because d + 1 independent random a-element subsets of [ab]
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are very likely to be all distinct and to have a point in common, since a is
very large compared to b. Quantitatively, the relative fraction of intersecting
(d+ 1)-tuples of distinct a-element subsets of [ab] is

|{(I1, . . . , Id+1) ∈
([ab]
a

)d+1
: Ii 6= Ij for i 6= j and

⋂d+1
i=1 Ii 6= ∅}|

m(m− 1) · · · (m− d)

≥
|{(I1, . . . , Id+1) ∈

([ab]
a

)d+1
:
⋂d+1
i=1 Ii 6= ∅}|

m(m− 1) · · · (m− d)

− md+1 −m(m− 1) · · · (m− d)
m(m− 1) · · · (m− d)

≥
ab
(ab−1
a−1

)d+1 −
(ab

2

)(ab−2
a−2

)d+1

md+1
− 1

4
≥ a

bd
− a2

2b2d
− 1

4
=

1
4
.

By FH(d + 1, 1
4 , β) applied to S, there exists an H ⊆

([ab]
a

)
such that⋂

I∈HGI 6= ∅ and

|H| ≥ bβmc > d

b

(
ab

a

)
. (2)

Thus H contains a significant fraction of all possible a-tuples of indices, and
such a large system has to contain d + 1 disjoint a-tuples. With our pa-
rameters, we can use a result of Frankl (Theorem 10.3 in [11]), according to
which (2) implies the existence of pairwise disjoint I1, . . . , Id+1 ∈ H (but it
is easy to derive a similar result with somewhat worse quantitative param-
eters). 2

Bárány [5] proved the following selection lemma: if P ⊂ R
d is an n-

point (multi)set, then there exists a point x contained in the convex hulls
of at least cd

( n
d+1

)
subsets of P of cardinality d + 1, where cd > 0 depends

on d but not on n. Here we derive an abstract analogue (replacing the
colored Carathéodory theorem in Bárány’s argument by the fractional Helly
property).

Proposition 11 (A selection lemma) Let F be a finite family such that
F∩ satisfies FH(d + 1, α, β) with a suitable α = α(d) > 0 and some β > 0.
Then for any multiset {x1, . . . , xn} ⊆ X there exists a family H ⊆

([n]
a

)
such

that |H| ≥ λ
(n
a

)
and ⋂

I∈H
GI 6= ∅,

where a = a(d, β) is as in Proposition 10 and λ > 0 depends only on d
and β.
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Proof. Let S = {GI : I ∈
([n]
a

)
}; we want to show that a significant fraction

of the (d+ 1)-tuples in S intersect, in order to apply fractional Helly.
Let

T =
{
{I1, . . . , Id+1} : Ii ∈

([n]
a

)
, Ii ∩ Ij = ∅ for i 6= j and

d+1⋂
i=1

GIi 6= ∅
}
.

Proposition 10 implies that for each subset J ∈
([n]
ab

)
there exist pairwise

disjoint I1, . . . , Id+1 ∈
(J
a

)
such that

⋂d+1
i=1 GIi 6= ∅, and so each J contributes

a (d + 1)-tuple in T . On the other hand, for any given {I1, . . . , Id+1} ∈ T ,
the a(d + 1) indices in I1 ∪ · · · ∪ Id+1 are contained in

(n−a(d+1)
ab−a(d+1)

)
of the

ab-tuples J . Therefore

|T | ≥
(n
ab

)(n−a(d+1)
ab−a(d+1)

) ≥ ( n
ab

)a(d+1)

≥ 1
(ab)a(d+1)

( (n
a

)
d+ 1

)

and Proposition 11 follows by FH(d+ 1, α, β) applied to S. 2

Proof of Theorem 9. The value of τ∗(F), being the minimum of a
linear function with rational coefficients over a rational polytope, is attained
for some rational-valued f :X → [0, 1], which is nonzero only at finitely
many points, say x1, . . . , xr. We write f(xi) = ni

D with integers ni and
D, and we let Y = {y1, . . . , yn} be the multiset obtained by taking each
xi with multiplicity ni. We have |Y | = n =

∑r
i=1 ni = τ∗(F) · D and

|Y ∩ F | ≥ D = n/τ∗(F) for all F ∈ F .
From now on, we exactly follow an argument in [1] for the existence of a

weak ε-net. Namely, we choose a transversal Z for F by the following greedy
algorithm. Initially, Z is empty. Having already put z1, . . . , zk into Z, we
check if there is a D-element subset J ⊂ [n] such that GJ = c({yi : i ∈
J}) contains none of z1, . . . , zk. If there is no such J then the current Z
intersects the closures of all D-element subsets of Y and, in particular, it is
a transversal for F . If such a J exists, we apply Proposition 11 to the set
{yi : i ∈ J}. This yields a point, which we denote by zk+1, that is contained
in GI for at least λ

(D
a

)
a-tuples I ⊂ J . (We may assume D ≥ a and thus

λ
(D
a

)
> 0, for otherwise Y will do as a small transversal.) This finishes the

description of the algorithm.
Call an a-tuple I ⊂ [n] alive if GI ∩{z1, . . . , zk} = ∅ and dead otherwise.

Initially, all the
(n
a

)
a-tuples are alive, and adding zk+1 to Z kills at least

λ
(D
a

)
of the a-tuples currently alive. So the size of the transversal found by
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the algorithm is at most(n
a

)
λ
(D
a

) ≤ 1
λ

(
en

D

)a
≤ ea

λ
· τ∗(F)a.

2

6 The Fractional Helly Property of Leray Com-
plexes

Next, we show that a fractional Helly property, and consequently a (p, q)
theorem, are implied by a topological condition. We recall that the nerve
N(F) of a hypergraph F is the simplicial complex on the vertex set F whose
simplices are all σ ⊆ F such that

⋂
F∈σ F 6= ∅.

A simplicial complex K is d-Leray if Hi(lk(K,σ)) = 0 for all σ ∈ K and
i ≥ d, where Hi is the i-dimensional homology with integer coefficients and
lk(K,σ) denotes the link of σ in K. Equivalently K is d-Leray iff Hi(L) = 0
for any induced subcomplex L ⊆ K and i ≥ d.

A hypergraph F is d∗-Leray if the nerve N(F) is d-Leray.

Theorem 12 Let F be a finite d∗-Leray hypergraph and let F∩ be the family
of all intersections of the sets of F . Then F∩ has fractional Helly number
d + 1; more precisely, for all α ∈ (0, 1), F satisfies FH(d + 1, α, β(α)) with
β(α) = 1− (1− α)1/(d+1).

The nerve of a family of subsets of Rd with the property that all non-
empty intersections of members of the family are contractible must be d-
Leray. This follows from standard nerve theorems in algebraic topology
which assert that the homology of the nerve of such a family is the same as
the homology of the union of the sets in the family. Theorem 2 thus follows
from Theorems 8, 9 and 12. Theorems 12 and 9 imply at once Theorem 3.

Wegner [26] proved that nerves of finite families of convex sets in Rd

satisfy the stronger d-collapsibility property. Let σ be a face of dimension
at most k − 1 of a simplicial complex X which is contained in a unique
maximal face τ of X. The operation X → Y = X − {η : σ ⊂ η ⊂ τ}
is called an elementary k-collapse. X is k-collapsible provided there is a
sequence of elementary k-collapses

X = X1 → X2 → · · · → Xm

12



such that dimXm ≤ k − 1.
Since an elementary k-collapse does not effect the homology in dimen-

sions at least k it follows that k-collapsible complexes are k-Leray. Katchal-
ski and Liu’s proof for their fractional Helly theorem uses (implicitly) only
d-collapsibility. In fact, d-collapsibility (or rather the first collapse step) is
implicit in Hadwiger and Debrunner early paper on the (p, q) property [12].

The main tool in the proof of Theorem 12 is the following consequence of
Kalai’s Upper Bound Theorem for Leray complexes, see [16, 17]. Let fi(L)
denote the number of i-dimensional faces of a simplicial complex L.

Theorem 13 (Kalai) Suppose L is d-Leray and f0(L) = m. Then fd(L) >( m
d+1

)
−
(m−r
d+1

)
implies fd+r(L) > 0.

As a consequence we obtain that fd(L) ≥ α
( m
d+1

)
implies fbβ(α)mc(L) >

0 , for β = 1− (1−α)1/(d+1). Note that Theorem 13 is sharp even for nerves
of convex sets in Rd as seen by the family which consists of r copies of Rd

and m− r hyperplanes in general position.
The upper bound theorem for families of convex sets, namely the as-

sertion of Theorem 13 for nerves of families of convex sets was conjectured
by Perles and Katchalski and was settled independently by Kalai and by
Eckhoff [10]. Kalai’s proof applied for arbitrary d-collapsible complexes.
Kalai further characterized face numbers of d-collapsible complexes which
was conjectured by Eckhoff using the technique of “algebraic shifting” and
extended his proof to apply for all Leray complexes where the crucial fact
is that the Leray property is preserved under algebraic shifting.

This fact also follows from a recent much more general result of Aramova
and Herzog [4]. As observed more recently by Kalai, d-Leray complexes with
complete (d− 1)-skeleta (and there is no loss of generality to assume this is
the case) are simply Alexander-duals of Cohen-Macaulay complexes. (The
Alexander duality is not the duality between hypergraphs considered above
but rather it is the same as the blocker construction in combinatorial op-
timization. The dual of a simplicial complex K on a vertex set V is the
set of all subsets S of V such that V \S /∈ K.) Since Alexander duality
commutes with algebraic shifting this observation gives an easier deriva-
tion that d-Leray simplicial complexes are preserved under shifting from
the corresponding fact for Cohen-Macaulay complexes. Moreover, it gives
a simple derivation for the characterization of their face numbers from the
corresponding characterization of f -vectors of Cohen-Macaulay simplicial
complexes discovered by Stanley in 1975 [25].

13



We return now to the proof of Theorem 12. To apply Theorem 13, we
need two auxiliary constructions. Let K be a simplicial complex on the
vertex set V . For a vertex v ∈ V and an integer l let Av,l(K) denote the
complex obtained from K by splitting v into l vertices v1, . . . , vl: The vertex
set of Av,l(K) is V ′ = V \ {v} ∪ {vi}li=1. The faces are all σ′ ⊂ V ′ such that
either σ′ ∈ K or σ′ = σ \ {v} ∪ C where v ∈ σ ∈ K and C ⊂ {v1, . . . , vl} .
Let B(K) denote the simplicial complex whose vertices are the non empty
faces of K, and {σ1, . . . , σn} ∈ B(K) if

⋃n
i=1 σi ∈ K.

Proposition 14 If K is d-Leray then
(i) Av,l(K) is d-Leray, and
(ii) B(K) is d-Leray.

Proof. For part (i), let L ⊆ Av,l(K) be an induced subcomplex on the
vertex set V0 ⊂ V ′. The simplicial map that is the identity on V0\{v1, . . . , vl}
and that maps the vertices in V0 ∩ {v1, . . . , vl} (if any) to v is a homotopy
equivalence of L onto an induced subcomplex of K, and hence Hi(L) = 0
for i ≥ d.

As for part (ii), we first note that any complex L is homotopy equivalent
to B(L). Let η = {σ1, . . . , σp} ∈ B(L) where σ =

⋃p
i=1 σi ∈ L, and let

z =
∑p
i=1 λiσi ∈ |B(L)|, where |K| denotes the polyhedron of a simplicial

complex K. The mapping φ: |B(L)| → |L| given by

φ(z) =
1∑p

i=1 λi|σi|
∑
v∈σ

( ∑
{i : v∈σi}

λi

)
v

is the required retraction of B(L) onto L.
Next, let η = {σ1, . . . , σp} ∈ B(K), where σ =

⋃p
i=1 σi ∈ K. Clearly

St(B(K), η) = B(St(K,σ)) =
{
{τ1, . . . , τq} ∈ B(K) :

q⋃
j=1

τj ∪ σ ∈ K
}
.

Therefore

lk(B(K), η) =
{
{τ1, . . . , τq} ∈ B(K) :

⋃q
j=1 τj ∪ σ ∈ K,

{τ1, . . . , τq} ∩ {σ1, . . . , σp} = ∅
}
.

We consider two cases:

14



(a) {σ1, . . . , σp} 6= 2σ \ {∅} .

Let ∅ 6= τ ⊂ σ such that τ 6∈ {σ1, . . . , σp}. Then lk(B(K), η) is a cone
on τ and hence contractible.

(b) {σ1, . . . , σp} = 2σ \ {∅} . Then

lk(B(K), η) =
{
{τ1 ∪ c1, . . . , τq ∪ cq} : {τ1, . . . , τq} ∈ B(lk(K,σ)),

c1, . . . , cq ∈ 2σ
}
.

Thus lk(B(K), η) is obtained from B(lk(K,σ)) by replacing each ver-
tex of the latter by a (2|σ| − 1)-dimensional simplex.

The simplicial map lk(B(K), η)→ B(lk(K,σ)) given by

{τ1 ∪ c1, . . . , τq ∪ cq} 7→ {τ1, . . . , τq}

is clearly a retraction. It follows that lk(B(K), η) is homotopy equiv-
alent to B(lk(K,σ)) and hence to lk(K,σ)).

2

Proof of Theorem 12. By the assumption K = N(F) is d-Leray.
Suppose S = {G1, . . . , Gm} is a multiset in F∩, and let σ1, . . . , σk be dis-
tinct simplices in K such that S consists of mi copies of

⋂
F∈σi F for each

i = 1, 2, . . . , k,
∑k
i=1mi = m. Then L = N(S) is an induced subcomplex of

Aσ1,m1 · · ·Aσk,mkB(K) . By Proposition 14, L is d-Leray, and hence Theo-
rem 12 follows from Theorem 13. 2

7 Some examples

An example with no weak ε-net of linear size

The first issue we would like to discuss is the following: Given an (infinite)
hypergraph with the property that for every ε > 0 and every set Y , Y admits
a weak-ε net of size f(ε) what kind of behavior f(ε) might have.

Recall that for convex sets in Rd the known upper bounds are close to
(1/ε)d but no superlinear lower bound is known. In the most abstract case
of the problem we do not have better insight as we do not have an answer
even to the following problem:

15



Problem 15 Find an example of an (infinite) hypergraph H such that f(ε)
exists and f(ε)

(1/ε) log(1/ε) →∞.

The fact that there are such hypergraphs for which f(ε) ≥ Ω(1/ε) log(1/ε)
follows from an example by Komlós, Pach and Woeginger [19] for the case
of bounded VC-dimension. Here we present an interesting example (sim-
ilar to an unpublished one found independently by Pach, who also raised
Problem 16 below) which is also 2-Leray.

We first claim, without trying to optimize the absolute constants, that
for every (large) prime power p there is a hypergraph whose vertices are all
points of a projective plane P of order p, and whose edges, which we call
half lines, are subsets of the lines of P , where SL is a subset of the line L,
such that the following two conditions hold:
(i) |SL| > 1

4p(p2 + p+ 1) for every line L.
(ii) No subset of less than 0.1p log p points of the plane intersects all half
lines.

To prove this claim let each SL be a random subset of L were each point
is chosen, randomly and independently, with probability 1/2. It is easy to
see that (i) holds almost surely (that is, with probability that tends to 1
as p tends to infinity). To see that (ii) holds almost surely fix a set T of
0.1p log p points of P . It is easy to see that there are more than p2/2 lines of
P each of which contains at most 0.2 log p points of T . For each such line L,
the probability that SL does not intersect T is at least (1/2)0.2 log p = p−0.2

and therefore the probability that T intersects all half lines is at most

(1− p−0.2)p
2/2 ≤ e−p1.8/2.

As the total number of choices for a set T as above is only(
p2 + p+ 1
0.1p log p

)
≤ eO(p log2 p)

it follows that with high probability there is no set T of at most 0.1p log p
points that intersects all half lines, establishing the claim.

Consider, now, the disjoint union of all the hypergraphs above (for all
large prime powers p). The VC dimension of this hypergraph is clearly 2. If
X is the set of all points of the projective plane of order p and ε = 1/(4p),
then the corresponding weak ε-net has to intersect all half-lines of the plane
and by the claim above its size has to exceed 0.1p log p.
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To see that the nerve of this family is 2-Leray note that whenever we
have a pure subcomplex of the nerve of dimension at least 2 then the set
of its vertices forms a simplex. No homology beyond dimension 2 is thus
possible. In fact, it is not difficult to check that this example is 2-collapsible
as well.

For this example, if we close the set of edges under intersection f(ε) still
exists (as we have only added singletons). This shows that even if we require
that the hypergraph is closed under intersection the bound can be (slightly)
superlinear.

Problem 16 Can this example be realized by convex sets in R2 or perhaps
in R4 or R100? Can the simplicial complex spanned by the lines in a finite
projective plane be realized as the nerve of a family of convex sets in R2 or
R

100?

Problem 17 Is there a function d′ = d′(d) so that every d-collapsible com-
plex (or even every d-Leray complex) can be realized as the nerve of a family
of convex sets in Rd

′
?

In the following class of examples τ ≥ (τ∗)β for β > 1, but we do not
know if they are of finite type. Consider the 3n leaves of the ternary tree of
depth n. Given a set S of leaves we will define recursively a set of vertices
S̄ ⊃ S of the ternary tree as follows: An internal vertex belongs to S̄ if at
least two of its sons belong to S. Our hypergraph will have as vertices the
leaves of the tree and as edges those subsets S of leaves such that the root
of the ternary tree belongs to S̄. In this example τ∗ = (3/2)n and τ = 2n.
We do not know if this class of hypergraphs is of finite type.

A hypergraph with Helly number 2 and yet not of finite type

Next we discuss a construction, which starts with a graph G and yields a
hypergraph F such that F∩ has Helly number 2. By choosing various G, we
obtain examples showing that some of the assumptions in our results cannot
be removed or weakened.

Let G = (V,E) be a graph, and let Ξ denote the system of all nonempty
independent sets in G. We define a family F with Ξ as the ground set and
with the sets Fv = {A ∈ Ξ : v ∈ A}, v ∈ V . The following properties are
easy to check:

• F , as well as F∩, have Helly number 2, i.e. satisfy FH(2, 1, 1).
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• If G contains no Kp as a subgraph then F has the (p, 2) property.

• τ(F) = χ(G) (the usual chromatic number) and τ∗(F) = χf (F) (the
fractional chromatic number).

Let us remark that this construction can be made “geometric”: there
exists a system of axis-parallel boxes in some Rm with the same nerve as F .
This is because every finite graph G can be represented as the intersection
graph of axis-parallel boxes in a sufficiently high dimension.

First we give a result complementary to Theorem 8.

Proposition 18 There exist hypergraphs F with Helly number 2 and with
ν(F) ≤ 2 (i.e. with the (3, 2) property) for which τ∗(F) is arbitrarily large.

Proof. In the above construction, it suffices to choose a triangle-free graph
G with arbitrarily large fractional chromatic number. For the latter, it suf-
fices that |V (G)|/α(G) is arbitrarily large, where α(G) is the independence
number. There are many constructions of such graphs, both probabilistic
and explicit; for example, the well-known probabilistic construction of Erdős
of graphs with large girth and large chromatic number works here. 2

The next example is relevant to Theorem 9.

Proposition 19 There exist hypergraphs F satisfying the (3, 2) property
and the fractional Helly property FH(2, 0, 1

3) (i.e. among any n sets, at
least n

3 have a common point), such that F∩ has Helly number 2, and with
τ∗(F) ≤ 3 and τ(F) arbitrarily large.

Proof. This time we let the starting graph G in the construction be a
Kneser graph with the vertex set

([m]
k

)
and with two k-tuples connected by

an edge iff they are disjoint. It is well-known that the chromatic number is
m − 2k + 2 [20], and if we set m = 3k − 1, it is easy to see that this G is
triangle-free and χf < 3. Finally, to verify FH(2, 0, 1

3) for the constructed set
system, we need to check that for every multiset {S1, . . . , Sn}, Si ∈

([3k−1]
k

)
,

there is a subsystem of at least n
3 k-tuples with a common intersection.

This is because the sum of sizes of the Si is nk > n m
3 and so some point is

contained in at least n
3 of the Si.

Note that in fact as τ∗(F) ≤ 3, for every multiset of its edges there is a
point in at least a 1/3 of them, that is, the property FH(2, 0, 1/τ∗) always
holds. 2
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8 Piercing Convex Lattice Sets

A convex lattice set is any set of the form C ∩Zd, where C ⊆ Rd is a convex
set and Zd denotes the d-dimensional integer lattice. Doignon [9] proved
that convex lattice sets in Zd have Helly number 2d. For a simpler proof see
[23].

Let p ≥ q ≥ 2d. The validity of the (p, q) theorem for finite families of
convex lattice sets in Zd (Theorem 4) is a consequence of Theorems 8 and
13 and the following

Lemma 20 The nerve of a finite family of convex lattice sets in Zd is 2d−1
collapsible.

Proof. We follow the method of Wegner [26] and Katchalski and Liu [18].
Let ≤ be a linear ordering on Zd such that all initial segments are lattice
convex sets; for example, we can choose a vector a ∈ Rd with no rational
dependence among the coordinates and define x ≤ y iff 〈a, x〉 ≤ 〈a, y〉.

Write k = 2d − 1 and let F = {F1, . . . , Fn} be a family of convex lattice
sets in Zd. By intersecting the sets with a large box, we preserve their nerve
but make them bounded and thus finite. For I ⊂ [n] let FI = ∩i∈IFi and
let N(F) = {I ⊂ [n] : FI 6= ∅} denote the nerve of F . For I ∈ N(F) let
xI = minFI . Choose a subset J of minimal cardinality such that xJ =
max{xI : I ∈ N(F)}. We claim that |J | ≤ k. Suppose to the contrary
that |J | ≥ k + 1 = 2d. Let H = {x ∈ Zd : x < xJ} then the family
G = {Fj : j ∈ J} ∪ {H} has empty intersection, and so some subfamily of
2d sets has empty intersection by the Helly property. Since H has to be one
of these 2d sets, it follows that there exists a J0 ⊂ J , |J0| = 2d− 1 such that
xJ = xJ0 , a contradiction. Clearly J is contained in a unique maximal face
of N , namely J ′ = {i : xJ ∈ Fi} hence N → N ′ = N − {I : J ⊂ I ⊂ J ′} is
a legal k-collapsing step. To complete the proof we note that the resulting
N ′ is again the nerve of the family of convex lattice sets, namely {Fj ∩H :
j ∈ J} ∪ {Fi : i 6∈ J} 2

Let us remark that in this case we do not really need to invoke Theorem
8 and, in fact, can get considerably better quantitative bounds by a more
direct argument. Our quantitative bounds in the abstract setting are large
mainly because the “Tverberg number” ab in Proposition 10 is large, but for
convex lattice sets, the Tverberg number can be bounded in a much better
way. For the Radon number (i.e., the number that ensures a partition into
two disjoint parts with intersecting closures), the known bound is d(2d−1)+3
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[24]; see also Onn [22], and for an r-partition, an analogous argument of
Jamison [15] yields the bound of (r − 1)(d+ 1)2d + 1.

We conjectured that convex lattice sets in Zd actually have fractional
Helly number d+ 1 (although the bound 2d for the Helly number is tight).
As was mentioned in the introduction, this conjecture was recently proved
in [6].

Hausel [13] proved a Gallai-type theorem for planar convex lattice sets:
if F is a family of convex lattice sets in Z2 such that every 3 sets intersect
(i.e. share a lattice point), then τ(F) ≤ 2. This implies FH(3, 1, 1

2), and so
by Theorem 8(ii), there is a (p, 3) theorem for planar convex lattice sets.

9 No Piercing for Transversal Lines in Space

A (p, d+1) theorem for hyperplane transversals for convex bodies in Rd was
proved in [2]: if C is a family of convex bodies in Rd such that among every
p of them, some d + 1 admit a hyperplane transversal (i.e. a hyperplane
intersecting all of them) then all bodies of C can be intersected by at most
C = C(d, p) hyperplanes. It is natural to ask whether a similar result could
be true for piercing convex bodies in Rd by j-flats with 1 ≤ j ≤ d − 2.
Proposition 6 formulated for the simplest case d = 3 and k = 1, shows that
even quite weak results of this type cannot be expected to hold. Proposition
6 follows from the next lemma by choosing a suitable finite set system.

Lemma 21 Let {S1, S2, . . . , Sm} be a system of subsets of [n]. There are
convex sets C1, C2, . . . , Cm in R3 such that each family Ci = {Cj : i ∈ Sj}
has a line transversal, and whenever {Cj : j ∈ J} is a family possessing a
line transversal, then by removing at most 3 indices from the index set J ,
we obtain an index set J0 with

⋂
j∈J0

Sj 6= ∅.

Proof of Proposition 6. Choose a family {S1, S2, . . . , Sm} such that
every k sets intersect but no k+1 do; for example, set Si = {I ∈

([m]
k

)
: i ∈ I}.

Proof of Lemma 21. The construction is based on the geometry of the
hyperbolic paraboloid z = xy, similar to many previous examples concerning
lines in R3, such as an example of Aronov, Goodman, Pollack and Wenger
mentioned in Wenger’s survey [27].

Let Σ ⊂ R3 be the surface with equation z = xy. For i ∈ [n], let `i
be the line x = i

n , z = i
ny on Σ. Let 0 < ε1 � ε2 � · · · � εm � 1 be

small numbers (εm is sufficiently small in terms of n and each εj is much
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smaller than εj+1). Let ρj be the vertical plane with equation y = j
m + εjx.

So ρj is nearly perpendicular to the lines `i but it is tilted a little, and so
its intersection with the surface Σ is a convex parabolic arc within ρj , with
equation z = j

m x+εjx
2. We let pij = `i∩ρj , and we set Cj = conv{pij : i ∈

Sj}. Here is an illustration (with Cj = {1, 3, 4}):

x

y

z

`1 `2 `3 `4

ρj

p1j

p2j

p3j

p4jCj

Each Cj is a very thin convex polygon. It lies vertically above Σ and below
the segment connecting the points p0j and pnj . It can be easily calculated
that the maximum vertical distance of a point of Cj from Σ is no larger than
εj .

We divide each Cj into two regions: the low region consists of points at
vertical distance at most εj/100n2 from Σ, and the high region is the rest
of Cj . Calculation shows that the low region consists of small triangle-like
pieces near the points pij ∈ Cj , as is indicated in the following drawing (the
low regions are drawn black):

Σ

Cj

The line `i is a transversal for the subfamily Ci, and it remains to check
the other assertion of the lemma. This is implied by the following two claims.
Claim A. If a line λ intersects at least two Cj in the low regions, then the
sets met by λ in the low regions are all met by some `i.

21



Claim B. Any line λ meets at most 3 of the Cj in the high regions.

To prove Claim A, we note that if λ intersects the low regions of Cj1
and Cj2 near points pi1j1 and pi2j2 , respectively, and i1 6= i2, then λ cannot
be almost parallel to the surface Σ and so if the εj are sufficiently small, no
such λ can meet more than two of the Cj .

To prove Claim B, we note that if we parameterize the line λ by the
y-coordinate, then the vertical distance of a point of λ from the surface Σ is
a quadratic polynomial pλ(y). Suppose that there are 4 intersections with
the high regions, and let their y-coordinates be y1 < y2 < y3 < y4. Let yk
correspond to the intersection with Cjk ; then yk is very close to jk

m . Since
the intersections are at high regions, we have

εjk
100n2

≤ pλ(yk) ≤ εjk . (3)

We check that if the εj decrease sufficiently fast, this is impossible for a
quadratic polynomial.

Namely, we show that the inequality pλ(y4) ≥ εj4/100n2 is impossible if
(3) holds for k = 1, 2, 3. Let pλ(y) = ay2 + by + c; then these conditions are
linear inequalities for a, b, c. The coefficient vector (y2

4, y4, 1) of the inequality
ay2

4 + by4 + c ≥ ε2
j4
/100n2 can be expressed as a linear combination of the

vectors (y2
k, yk, 1), k = 1, 2, 3. The coefficients in this linear combination

can be written using Vandermonde determinants in the yk, and so they are
bounded by a polynomial function of m (since yk+1 − yk ≥ 1

2m). It follows
that the maximum value of pλ(y4) is bounded by εj3 multiplied by a factor
polynomial in m. Thus, if εj4 is sufficiently large compared to εj3 , we get a
contradiction. 2

10 Further open problems

We conclude with a few additional open problems:

Does a weak form of fractional Helly suffice?

1. Are FH(2, α, β) with some specific α < 1 and β > 0 plus the (3, 2)
property, say, sufficient to bound τ∗(F)?
2. Is FH(2, α, β) with specific α < 1 and β > 0, assumed for F∩, sufficient
to bound τ(F) by a function of τ∗(F)?
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Is fractional Helly for distinct sets sufficient?

Our proofs use fractional Helly when some sets are repeated. Is this really
necessary?

In particular, for fractional Helly number 2 we can state this problem
in terms of the “non-intersection graph”: suppose that a graph G is such
that every k-vertex subgraph with at most (1 − α)

(k
2

)
edges contains an

independent set of size β(α) · k. Is this still true if we replace each vertex of
G by an independent set (maybe with smaller β′(α))?

Polytopes, Cohen-Macaulay complexes

Is ρ bounded by a function of ρ∗ uniformly for all polytopes, namely, for
all hypergraphs whose vertices are the vertices of some polytope and whose
edges correspond to facets of the polytope ?

Is ρ bounded by a function of ρ∗ uniformly for all Cohen-Macaulay com-
plexes?

Acknowledgment We would like to thank Shmuel Onn for helpful discus-
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