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Abstract

Let fd(G) denote the minimum number of edges that have to be added to a graph G to transform

it into a graph of diameter at most d. We prove that for any graph G with maximum degree D

and n > n0(D) vertices, f2(G) = n − D − 1 and f3(G) ≥ n − O(D3). For d ≥ 4, fd(G) depends

strongly on the actual structure of G, not only on the maximum degree of G. We prove that the

maximum of fd(G) over all connected graphs on n vertices is n/bd/2c −O(1). As a byproduct, we

show that for the n-cycle Cn, fd(Cn) = n/(2bd/2c − 1)−O(1) for every d and n, improving earlier

estimates of Chung and Garey in certain ranges.

1 Preliminaries and results

Extremal problems concerning the diameter of graphs have been initiated by Erdős, Rényi and Sós in [4]

and [5]. Problems concerning the change of diameter if edges are added or deleted have been initiated

by Chung and Garey in [2], followed by a survey of Chung [1] which contains further references, e.g.

the paper by Schoone, Bodlaender and Leeuwen [6]. A related problem, decreasing the diameter of a

triangle-free graph by adding a small number of edges while preserving the triangle-free property, has
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been considered by Erdős, Gyárfás and Ruszinkó [3]. In this paper we continue the direction initiated

in [2] and investigate the minimum number of edges one has to add to a graph G to transform G into

a graph of diameter at most d. Let fd(G) denote this minimum.

In general, by [6], it is NP-complete to determine the minimum number of edges to be added to

a graph to make it of diameter d. On the other hand, in some cases it is trivial to find fd(G). For

example, fd(G) = n− 1 for every d ≥ 2 if G has n vertices and no edges, f1(G) is equal to the number

of edges in the complement of G since only the complete graph has diameter one. The function f2(G)

is already interesting. If G has n vertices and maximum degree D(G) then f2(G) ≤ n − D(G) − 1,

because G can be trivially extended into a graph of diameter at most two by adding all missing edges

from an arbitrary vertex of degree D. We shall prove that this bound is tight for fixed D and large

n (Theorem 2.1). For the case d = 3 we show ( Theorem 2.3 ) that for any n-vertex graph G with

maximum degree D, f3(G) ≥ n − O(D3) (and there are examples for which f3(G) ≤ n − O(D2)).

If these results are applied to the cycle Cn we get that f2(Cn) = n − 3 for sufficiently large n and

n− 100 ≤ f3(Cn) ≤ n− 6 (Corollaries 2.2 and 2.4).

For general d we prove that fd(G) ≤ n/bd/2c for any connected graph G on n vertices (Theorem

3.1) and we also show that this is tight for every n and d ≥ 2, up to a constant additive term (Theorems

3.2, 3.4). This is proved by considering the value of fd(G) where G is a path of length n/bd/2c with

pending paths of length bd/2c − 1 at each of its vertices.

These results (and their proof techniques) can be applied to get good lower bounds of fd(G) for

other graphs G as well. We demonstrate this with the case when G = Cn, the cycle with n vertices:

for an arbitrary positive integer h, bn/(2h−1)c−7 ≤ f2h(Cn) ≤ bn/(2h−1)c and bn/(2h−1)c−155 ≤
f2h+1(Cn) ≤ bn/(2h−1)c (Corollary 3.5). Thus fd(Cn) is determined up to an additive constant error

term.

It is worth comparing our estimates to the ones of Chung and Garey [2]. They proved that for t

even, the minimum diameter C(n, t) which can achieved by adding t edges to Cn satisfies n/(t+2)−1 ≤
C(n, t) ≤ n/(t+ 2) + 3. It is easy to check that for t ≥ c

√
n our lower bound is stronger, otherwise it

is weaker. The importance of the magnitude of t is even more visible from a conjecture stated in [1]:

One can decrease the diameter of a path Pn to (n+ t− 1)/(t+ 1) by adding t edges (for t even). If t

may depend on n, this conjecture says that it is enough to add (n− 4)/2 edges to Pn to get a graph

of diameter three. However, by Corollary 2.4, n− 100 edges
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2 Diameter two and three

Theorem 2.1 Let G be a graph of order n with maximum degree D. Then at least n−D−1 edges are

needed to extend G into a graph of diameter at most 2, provided n is sufficiently large (as a function

of D).

Observe, that this result is tight, since – as already mentioned – adding all missing edges to a vertex

of degree D we obtain a graph of diameter two.

Proof. Assume thatG is extended byH. IfH has at mostD+1 tree components then e(H) ≥ n−D−1

and the proof is finished. Otherwise, select D+ 2 tree components of H, Ci, and a vertex xi of degree

at most one (in H) from each Ci, i = 1, 2, . . . , D + 2. Notice that from each xi at most D2 + D

additional components of H are reachable by paths of length at most 2 in G ∪ H, because at most

D(D−1)+D components are reachable by such a path of G and at most D components are reachable

by a 2 path which starts with an edge of H followed by an edge of G. Since G ∪H is of diameter 2,

this means that H has at most D2 +D + 1 components.

Call a component of H small if it has no more than h = 2D3 + 5D2 + 2D vertices, otherwise it is

called large. We claim that a large component C of H has at least |C|+D2 edges.

To see this, fix a large component C and select a point xi of degree at most one in each of the other

D+ 1 tree components of H. (Without loss of generality, we may assume that i = 1, 2, . . . D+ 1.) Let

Ai ⊆ C denote the vertices which are reachable from xi by a 2-path of G ∪H whose second edge is

from G or by a 1-path of G. By an argument similar to the one above it follows that |Ai| ≤ D2 +D,

so |A| ≤ (D + 1)(D2 +D), where A = A1 ∪ A2 ∪ . . . AD+1. Each vertex y ∈ (C \ A) is at distance at

most two from xi, i = 1, 2, . . . , D+ 1. By the definition of A, the shortest path from y to xi in G∪H
must be of length two and it must start with an edge yzi of H with some zi ∈ A. Since the degree of

zi in G is at most D, there are at least two distinct zi-s. This implies that y is adjacent to at least two

vertices of A in H. Thus C has at least 2(|C| − |A|) edges (in H) which, using that C is large, gives

2(|C| − |A|) ≥ 2|C| − 2(D + 1)(D2 +D) ≥ |C|+D2

proving the claim.

Set n0 = (D2 +D+ 1)(2D3 + 5D2 + 2D− 1) + 1. Then, if G has at least n0 vertices, H has a large

component C. Assume H has t other components. Since those t components span at least n− |C| − t
edges, we have

e(H) ≥ n− |C| − t+ e(C) ≥ n− (D2 +D + 1) +D2 = n−D − 1,

completing the proof. 2
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Corollary 2.2 For n > n0, at least n− 3 edges must be added to Cn to get a graph of diameter two.

Obviously, Corollary 2.2 is tight, and perhaps the best possible n0 can be determined with some

additional effort. We have the following example, showing that the best possible value of n0 is at least

11. Consider the Petersen graph with vertex set {1, . . . 10} and with edges (i, i + 5) (i ∈ {1, . . . 5}),
(i, i + 1 (mod 5)) (i ∈ {1, . . . 5}), (i, i + 2) (mod 5) (i, i + 2 ∈ {6, . . . 10}). Join a new vertex 11 to

vertices 1, 8 and 9. The resulting graph is a Hamiltonian graph of diameter two with eleven vertices

and eighteen edges, showing that for n = 11, Cn can be extended by less than n−3 edges to a diameter

two graph.

The following theorem shows that extending into diameter three does not require significantly less

edges than extending into diameter two.

Theorem 2.3 Suppose that G is a graph of order n with maximum degree D ( ≥ 2). Then at least

n− 3(D + 1)3 − 2(D + 1)2 − 1 edges are needed to extend G into a graph of diameter three.

Proof. Assume that G is extended by H so that the diameter of G ∪H is at most 3. Consider the

components of H and denote by t the number of components which are trees. We shall fix n− t edges

of H by selecting all edges of the tree components and selecting a unicyclic spanning subgraph in each

other component. We shall refer to these edges as the fixed edges. Observe that the average degree of

any subgraph formed by fixed edges is at most 2. Select a vertex xi of degree at most one in each tree

component (i = 1, 2, . . . , t). The edge of H incident with xi is called the root edge. Since G ∪H is of

diameter at most three, there is at least one path of length at most three with endpoints xi xj for all

pairs 1 ≤ i < j ≤ t. Call a path essential , if it is of length three and its middle edge is an edge of H.

We claim that there are at least
(t
2

)
− ct essential paths connecting distinct pairs xi, xj , where

c = (D + 1)3/2 depends on D only.

To see this observe, that for a fixed vertex xi
(o) there is one xj which can be reached from xi by a (nonessential) path of length zero (xi itself);

(i) there are at most D xj-s which can be reached from xi by (nonessential) paths of length one, since

to get to a new component only the edges of G can be used (and it is of maximum degree D);

(ii) there are at most D2 +D xj-s which can be reached from xi by (nonessential) paths of length two,

since xi has at most D+ 1 neighbors in G∪H and from each of them at most D xj-s can be reached;

(iii) there are at most D(D2 + D + 1) xj-s which can be reached from xi by nonessential paths of

length three, since from xi there are less than D2 +D+ 1 paths of length two having the second edge

from G and from each of them at most D xj-s can be reached. Therefore, from a fixed vertex xi at

most as many xj-s can be reached by nonessential paths of length at most three as the sum of the

above estimations, which is less than (D + 1)3 for D ≥ 2. From this the claim with c = (D + 1)3/2

follows.
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On the other hand, any edge of H can be the middle edge of at most (D + 1)2 essential paths,

since to both endpoints of such an edge at most D xj-s can be adjacent in G and at most one xj can

be adjacent in H. Moreover, the middle edges of essential paths are spanned by a set X of at most

t(D + 1) vertices, since those ones have to be adjacent to some xi. Using that the fixed edges form a

graph of average degree at most two on any subset of vertices, at most t(D+ 1) edges are fixed edges

among the middle edges of essential paths. These considerations give the(t
2

)
− t

2(D + 1)3

(D + 1)2
− t(D + 1) (1)

lower bound for the non-fixed edges of H. Set t0 = 3(D + 1)3 + 2(D + 1)2 + 1. For 0 ≤ t ≤ t0 H has

at least n − t ≥ n − t0 = n − 3(D + 1)3 − 2(D + 1)2 − 1 (fixed) edges and for t ≥ t0 the number of

fixed edges and the estimate (1) show that

|E(H)| ≥ n− t+
(t
2

)
− t

2(D + 1)3

(D + 1)2
− t(D + 1)

= n+ t

(
(t− 1)

2(D + 1)2

)
− t

(
3(D + 1)

2
+ 1

)
≥ n+ t

(
3(D + 1)

2
+ 1

)
− t

(
3(D + 1)

2
+ 1

)
= n ≥ n− 3(D + 1)3 − 2(D + 1)2 − 1,

from which the desired result follows. 2

Unlike in Theorem 2.1, the bound in Theorem 2.3 is probably not tight and can be improved to

n − O(D2). One can not expect better than that since if we take a graph G of maximum degree D

which contains a diameter 2 subgraph G∗ with approximately D2 vertices (such G∗ does exist, see

[5]), then adding all missing edges from a vertex of G∗ to V (G) \ V (G∗) we get an extension which is

of diameter at most three.

Corollary 2.4 At least n− 100 edges must be added to Cn to get a graph of diameter three.

We suspect that in fact for all n > n0 at least n − 6 edges have to be added to Cn to get a graph

of diameter three. If true, this is best possible as shown by the following example. Add the edge

(4, n− 2) and the edges (1, i) for 5 ≤ i ≤ n− 3. A similar solution is to replace (4, n− 2) by (3, n− 1).

3 Larger Diameter

We start this section with an upper bound on fd(G) for arbitrary d provided G is connected.

Theorem 3.1 For any connected graph G of order n, fd(G) ≤ n/bd/2c.
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Proof. It is enough to prove the theorem for even d, say d = 2h and one can also assume (by

monotonicity) that G is a tree. Select a longest path P = x1x2 . . . of G, we may assume that its

length is at least h, otherwise G has diameter at most h− 1. Remove the edge xhxh+1 from G. Each

vertex of the subtree T1 containing xh = y1 is at distance at most h − 1 = d/2 − 1 from xh since P

was maximal. The procedure is iterated on the subtree of G containing xh+1. Clearly, this partitions

G into subtrees Ti, each but the last one with at least h vertices. Moreover, each subtree Ti has a

vertex yi at distance at most h−1 from all vertices of Ti. This shows that there are at most t = dn/he
subtrees. The required extension of G is obtained by adding the edges ytyi for all 1 ≤ i < t. 2

We next show that for every d ≥ 2 and n, the following tree, which we denote by T (n, d), provides

an example where Theorem 3.1 is tight up to a constant additive term. The tree T (n, d) is defined

as follows. Put h = bd/2c and take a path of dn/he vertices. This will be called the horizontal path,

and its vertices x are called the top vertices. From each top vertex x of the horizontal path grow a

path Px with h vertices (including the top one). These paths are called the vertical paths and their

endpoints x (not belonging to the horizontal path) are called bottom vertices. Finally, delete, if needed,

hdn/he − n vertices from the last vertical path to make sure the total number of vertices is n. Thus,

the tree T (n, 2) = T (n, 3) is simply a path with n vertices, and, for even n, the tree T (n, 4) is called

an n-comb. The general case (with h dividing n) appears in Figure 1.

1 2 3

Figure 1.
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For d ≥ 4 the minimum number of edges one has to add to a graph to transform it to one of

diameter at most d – in contrast to the cases d ≤ 3 – depends on the structure of the graph in an

essential way. For example, one can transform T (n, 6) to a graph of diameter 4 by adding to it about
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n/3 edges simply by connecting one given vertex to all vertices which are neither top nor bottom

ones. On the other hand, significantly more (≈ n/2) edges have to be added to transform the n-comb

T (n, 4) into a graph of diameter four. In the next theorem it is shown that indeed, for arbitrary even

d, Theorem 3.1 is tight up to a constant additive term. (This remains true for odd d with a worse

constant and with a slightly more complicated proof and will be stated in Theorem 3.4).

Theorem 3.2 For every positive integer h and every n, f2h(T (n, 2h)) ≥ bn/hc − 6.

Proof. We may assume that h is a divisor of n. Take an arbitrary extension of T (n, 2h) into a graph

G of diameter 2h. Call the original edges black and the added ones red.

To capture the structure of the red edges, an auxiliary (multi)graph R is defined as follows. To each

vertical path Pi of T (n, 2h) a vertex i is associated, i.e., R has n/h vertices denoted by 1, 2, . . . , (n/h).

For every red edge with endpoints on the vertical paths Pi, Pj (1 ≤ i ≤ j ≤ n/h), let ij be an edge of

R. Notice that R can have multiple edges and (since i = j is possible), multiple loops as well. Clearly,

the number of edges of R is equal to the number of red edges of G.

To any set A ⊆ V (R) a subgraph G(A) of G is defined as follows. The vertex set X of G(A) is the

union of vertices on the vertical paths corresponding to A i.e. X = {∪V (Pa)|a ∈ A}. The edges of

G(A) are the edges of the subgraph induced by X in G except the (black) edges of the horizontal path.

(All red edges of G and the black edges on the vertical paths remain.) Observe that if A ⊆ V (R)

induces a subtree in R then G(A) is a tree as well (union of |A| vertical paths with |A| − 1 red

connecting edges). Let lA(u, v) denote the distance of vertices u, v in G(A). We shall use the following

lemma.

Lemma 3.3 Assume that A ⊆ V (R) induces a subtree in R. Then there exists x ∈ A such that

(i) lA(x, x) = h− 1.

(ii) There exists at most one top vertex y ∈ V (G(A)) for which lA(x, y) = h.

(iii) For every top vertex z ∈ V (G(A)) \ {x, y}, lA(x, z) ≥ h+ 1.

Proof. We apply induction on |A|, the case |A| = 1 is trivial (G(A) is a path of length h − 1). For

the inductive step, delete y ∈ A such that y is of degree one in the subtree R[A]. By the inductive

hypothesis there exists x ∈ A∗ = A− y satisfying the lemma (with A∗).

Claim: either x or y satisfies the lemma (with A). To prove the claim, consider the (unique) red

edge ab where b ∈ Py. If x does not satisfy the lemma (with A) then lA(x, y) ≤ h and (since the

shortest path from x to y must go through ab it follows that

lA(x, a) + 1 + lA(b, y) ≤ h.
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Now we prove that y satisfies the lemma (with A). Since (i): lA(y, y) = h − 1 is obvious and

lA(y, x) ≥ h is immediate from the assumption lA(x, y) ≤ h, it is enough to show that lA(y, z) ≥ h+ 1

holds for every z /∈ {x, y}. If this fails then (since the shortest path from y to z must traverse the red

edge ab from b to a) we get

lA(y, b) + 1 + lA(a, z) ≤ h.

By adding the two displayed inequalities we conclude that

lA(x, a) + lA(a, z) + lA(y, b) + lA(b, y) ≤ 2h− 2.

Since lA(y, b) + lA(b, y) = h− 1 this implies that

lA∗(x, z) = lA(x, z) ≤ lA(x, a) + lA(a, z) ≤ h− 1

which contradicts the choice of x (in A∗) and hence completes the proof of the claim and the lemma.

2

Now we return to the proof of Theorem 3.2. Assume that one can transform T (n, 2h) to a graph

of diameter at most 2h by adding at most n/h − 7 (red) edges. This implies that the graph R has

at least seven tree components C1, C2, . . . , Ct where t ≥ 7. Take the bottom vertex xCi in each tree

G(V (Ci)) according to Lemma 3.3.

Define another auxiliary (simple) graph R1 with directed and undirected edges as follows. The

vertices of R1 will be the tree components Ci of R. Connect Ci to Cj by an undirected edge in R1 if

the distance of xCi and xCj along the horizontal path is two. Define a directed edge in R1 from Ci to

Cj if the distance of xCi and some top vertex of G(V (Cj)) along the horizontal path is one.

Assume that Ci and Cj are not adjacent in R1. Consider a shortest path P from xCi to xCj in G.

Let u and v be the first and last vertex encountered on the horizontal path when traversing P from

xCi to xCj . Using Lemma 3.3 and the assumption that Ci and Cj are not adjacent we can estimate

|P |, the length of P as follows.

Case 1.: u = xCi and v = xCj . Then |P | ≥ (h− 1) + (h− 1) + 3 = 2h+ 1.

Case 2.: u = xCi and v 6= xCj (or by symmetry v = xCj and u 6= xCi .) Then |P | ≥ (h−1)+h+2 =

2h+ 1.

Case 3.: u 6= xCi and v 6= xCj . Then |P | ≥ h+ h+ 1 = 2h+ 1.

We get a contradiction to the assumption that G is of diameter at most 2h (we did not use the full

strength of Lemma 3.3). Thus the graph R1 must be complete so it has
(t
2

)
(directed or undirected)

edges. However, from the definition, R1 has at most 2t directed and at most t − 1 undirected edges

therefore 3t− 1 ≥
(t
2

)
must hold. This is a contradiction, since t ≥ 7. 2
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The lower bound proof for fd(T (n, d)) for odd values of d is similar to the even case and use the

full strength of Lemma 3.3. It is stated in the following theorem (in which we make no attempt to

optimize the additive constant term).

Theorem 3.4 For every positive integer h and every n, f2h+1(T (n, 2h+ 1)) ≥ bn/hc − 154.

Proof. As in the proof of Theorem 3.2, we may and will assume that h is a divisor of n. Take an

arbitrary extension of T (n, 2h+ 1) ( = T (n, 2h)) into a graph G of diameter at most 2h+ 1 and like

in the proof of Theorem 3.2, the added edges are called red. The auxiliary graph R is defined also as

in the proof of Theorem 3.2 and C1, C2, . . . , Ct denote the tree components of R. Since the number of

red edges is at least n
h − t, we may assume t ≥ 155 throughout the proof.

Select vertices xCi in each tree component Ci according to Lemma 3.3. Let xCi and xCi denote the

corresponding bottom and top vertices of G(V (Ci)). Moreover let yCi and yCi denote the (exceptional)

bottom and top vertices defined in part (ii) of Lemma 3.3. (If they do not exist let yCi = xCi and

yCi = xCi .)

We need a refined definition of the second auxiliary graph R1 (with undirected and directed edges)

as follows. The t vertices of R1 are the components Ci and Ci, Cj is defined as an undirected edge

of R1 in two cases: a. the distance of xCi and xCj along the horizontal path is two or three; b. the

distance of yCi and yCj along the horizontal path is one. A directed edge of R1 from Ci to Cj is defined

in two cases: c. the distance of xCi and yCj along the horizontal path is two; d. the distance of xCi
and a top vertex of G(V (Cj)) along the horizontal path is one.

Notice that at most 6 undirected edges are incident to any vertex of R1 and at most 4 directed

edges go out from any vertex of R1. Thus R1 has at most 7t edges. Therefore, by Turán’s theorem, R1

has an independent set of size at least t/15. The foregoing computations are not affected by assuming

that t
15 is an integer. We restrict our attention to these t/15 tree components Ci, 1 ≤ i ≤ t

15 , and

consider them as vertices in another (undirected) auxiliary graph R2. Two vertices Ci and Cj in R2

are considered adjacent if there is a red edge connecting two top vertices p, q where p, xCi and q, xCj

are both edges of the horizontal path.

Assume that R2 is a complete graph. Let S denote the set of top vertices which are at distance one

along the horizontal path from some vertex xCi , 1 ≤ i ≤ t
15 . Using that {Ci|1 ≤ i ≤ t

15} is independent

in R1 and complete in R2 it follows that 2t
15 − 2 ≤ |S| ≤ 2t

15 and the subgraph G[S] induced by S in

G has at least
( t

15
2

)
(distinct) red edges. On the other hand, one can define n

h − t red edges of G by

selecting the red edges corresponding to the edges of the t tree components of R plus selecting the red

edges corresponding to edges of fixed unicursal spanning subgraphs of the other (non-tree) components

of R. Notice that the selected n
h − t red edges form a subgraph of G whose components are trees or
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unicursal graphs, in particular at most |S| ≤ 2t
15 of them are in G[S]. Therefore the number of red

edges in G[S] is at least

n

h
− t+

(
t/15

2

)
− 2t/15 =

n

h
+
t(t− 525)

450
>
n

h
− 154

(because t(t−525)
450 has minimum value −153.125 at t = 262.5). Therefore, if R2 is complete, the proof

is finished.

Assume that there exist Ci and Cj which are adjacent neiher in R1 nor in R2. Using this and

Lemma 3.3 (in full strength) we are going to show that |P |, the length of a shortest path P in G from

xCi to xCj is at least 2h+ 2 and this contradiction will finish the proof. Like in the proof of Theorem

3.2, let u and v denote the first and last vertex of P encountered in the horizontal path when P is

traversed from xCi to xCj .

Case 1.: u = xCi and v = xCj ; Then |P | ≥ (h− 1) + (h− 1) + 4 = 2h+ 2.

Case 2.: u = xCi and v = yCj ; (or, by symmetry u = yCi and v = xCj ;) Then |P | ≥ (h−1)+h+3 =

2h+ 2.

Case 3.: u = yCi and v = yCj ; Then |P | ≥ h+ h+ 2 = 2h+ 2.

Case 4.: u = xCi and v /∈ {xCj , yCj}; (or, by symmetry v = xCj and u /∈ {xCi , yCi}); Then

|P | ≥ (h− 1) + (h+ 1) + 2 = 2h+ 2.

Case 5.: all other cases. Then |P | ≥ h+ (h+ 1) + 1 = 2h+ 2.

This completes the case analysis and hence the proof of the theorem. 2

A graph H is obtained from a graph G by an elementary identification if H is obtained from G by

identifying two of its vertices u and v and by making the identified vertex adjacent to all neighbors of

u as well as to all neighbors of v. It is easy to see that fd(G) ≥ fd(H) for every d. It also follows that

if H is obtained from G by a sequence of elementary identifications then for every d, fd(G) ≥ fd(H).

(Note that this implies that for every m > n and every k and d, fd(T (m, k)) ≥ fd(T (n, k)), as T (n, k)

can be obtained from T (m, k) by a sequence of elementary identifications.) This transformation is

useful because it makes possible to apply Theorems 3.2, 3.4 to other graphs without translating the

proof technique to them. We demonstrate this with the example of the cycle Cn (in fact, for h = 1,

the next corollary gives another proof for Corollaries 2.2 and 2.4 although with worse constants).

Corollary 3.5 The values of fd(Cn) for the n-cycle Cn satisfy the following:

(i) For every positive integer h and for every n,

bn/(2h− 1)c − 7 ≤ f2h(Cn) ≤ bn/(2h− 1)c.

(ii) For every positive integer h and for every n

n/(2h− 1)− 146 ≤ f2h+1(Cn) ≤ bn/(2h− 1)c.

10



Proof. Let {1, . . . , n} be the vertex set of the cycle where the vertices appear in this order along the

cycle. The upper bound comes from adding the diagonals 1i for i = 2h, 4h− 1, 6h− 2, . . ..

To prove the lower bound note that if n is divisible by 2h − 1 then T (hn/(2h − 1), 2h) plus one

additional edge connecting the two ends of the horizontal path can be obtained from the cycle Cn by

a sequence of elementary identifications. To do so pick 2h− 1 consecutive vertices along the cycle, say

1, 2, 3, . . . , 2h− 1 and identify the pairs (1, 2h− 1),(2, 2h− 2), . . . , (h− 1, h+ 1). Repeating the same

process on each interval of 2h− 1 consecutive vertices along the cycle we obtain the above mentioned

graph. Since after deleting one of its edges we get T (hn/(2h − 1), 2h) (= T (hn/(2h − 1), 2h + 1) )

the desired result now follows from Theorems 3.2 and 3.4. If the length of the cycle is not divisible

by (2h − 1) we first apply the appropriate number of identifications to reduce it to a cycle of length

(2h− 1)bn/(2h− 1)c. 2

Acknowledgement. The authors appreciate the referee’s remarks especially the remark which im-

proved the estimate of theorem 3.2 by one.
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