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Abstract

For a set C of words of length 4 over an alphabet of size n, and for
a, b ∈ C, let D(a, b) be the set of all descendants of a and b, that is, all
words x of length 4 where xi ∈ {ai, bi} for all 1 ≤ i ≤ 4. The code C
satisfies the Identifiable Parent Property if for any descendant of two
code-words one can identify at least one parent. The study of such
codes is motivated by questions about schemes that protect against
piracy of software. Here we show that for any ε > 0, if the alphabet
size is n > n0(ε) then the maximum possible cardinality of such a code
is less than εn2 and yet it is bigger than n2−ε. This answers a question
of Hollmann, van Lint, Linnartz and Tolhuizen. The proofs combine
graph theoretic tools with techniques in additive number theory.
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1 Introduction

Let |N | = n and C ⊆ N4. For a, b ∈ C define the set D(a, b) of all descen-
dants of a, b as follows

D(a, b) = {x ∈ N4 | xi ∈ {ai, bi} for 1 ≤ i ≤ 4}.

We say that the code C has the Identifiable Parent Property (IPP) if for
every descendant one can always identify at least one of the parents, that
is, for every x ∈ ∪a,b∈CD(a, b) there is a p ∈ C such that if a, b ∈ C and
x ∈ D(a, b) then p ∈ {a, b}. Equivalently, as mentioned in [3], C has the IPP
if and only if:

IPP1: For every distinct a, b, c ∈ C there is an 1 ≤ i ≤ 4 such that ai, bi, ci
are all distinct, and

IPP2: for every a, b, c, d ∈ C with {a, b} ∩ {c, d} = ∅ there is an 1 ≤ i ≤ 4
such that {ai, bi} ∩ {ci, di} = ∅.

Define:
f(n) = max{|C| : C ⊆ N4 has IPP}.

The study of f(n) is motivated by questions about schemes that protect
against piracy of software. The authors of [3] proved that

(1 + o(1))n3/2 ≤ f(n) ≤ n2, (1)

and raised the problem of closing the gap between the upper and lower
bounds. Here we show that for every ε > 0 there is an n0 = n0(ε) such
that for every n > n0,

f(n) ≤ εn2 (2)

and yet

f(n) ≥ n2−ε. (3)
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2 The upper bound

It is convenient to distinguish the alphabets that are used in each coordinate.
Let Ni be the alphabet used in coordinate i (1 ≤ i ≤ 4). |Ni| = n, and Ni are
pairwise disjoint. Thus C ⊆ N1 × N2 × N3 × N4. By omitting all members
of C that have a coordinate that does not belong to any other code word we
omit at most 4n words, and may assume now that:

(∗) Each letter l ∈ N1 ∪N2 ∪N3 ∪N4 appears in at least two members of C
(or does not appear at all).

Fact 2.1 No two members of C have three common coordinates.

Proof. If a, b ∈ C with a1 = b1, a2 = b2, a3 = b3, then by assumption (∗)
there is a c ∈ C, c 6= a such that c4 = a4. But then {a, b, c} violate IPP1. 2

Fact 2.2 If there are distinct i1, i2 ∈ {1, 2, 3, 4} and two distinct words a, c ∈
C with ai1 = ci1, ai2 = ci2, then there are no distinct words b, d ∈ C such
that bj1 = dj1, bj2 = dj2, where {j1, j2} = {1, 2, 3, 4} \ {i1, i2}.

Proof. Assume the opposite. Then a, b, c, d violate IPP2 if all words are
distinct. If, say, a = b, then {a, c, d} violate IPP1. 2

Fact 2.3 For every distinct i1, i2 ∈ {1, 2, 3, 4}:

|{x ∈ C | (∃y ∈ C) ((y 6= x) ∧ (yi1 = xi1) ∧ (yi2 = xi2))}| ≤ 2n− 1.

Proof. Assume the fact does not hold for say, i1 = 1, i2 = 2. Con-
struct a bipartite graph G with color classes N3 and N4 as follows: for each
x ∈ {x ∈ C | (∃y ∈ C)((y 6= x) ∧ (x1 = y1) ∧ (x2 = y2))} the pair x3x4 is an
edge of G. By assumption and Fact 2.2 G has more than 2n−1 edges, hence
it has a cycle. Therefore, since it is bipartite, it contains a path of length 3.
Let x4(x3 = y3)(y4 = z4)z3 be that path, where these coordinates arise from
appropriate x, y, z ∈ C. Let x′ ∈ C be such that x′1 = x1, x′2 = x2, x′ 6= x. If
x′ = z then {x, y, z} violate IPP1, otherwise {x′, y, x, z} violate IPP2 with
the grouping {x, z}, {x′, y}. 2
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To prove the upper bound, we also need the following result, proved in
Alon, Duke, Lefman, Rödl and Yuster [1] by applying the regularity lemma
of Szemerédi [5].

Lemma 2.4 ([1], Proposition 4.4) For every γ > 0 and every integer k
there exists a δ = δ(k, γ) > 0 such that every graph G on n vertices containing
less than δnk copies of the complete graph Kk on k vertices, contains a set
of less than γn2 edges whose deletion destroys all copies of Kk in G.

We can now prove the required upper bound for f(n).

Theorem 2.5 For every ε > 0 there exists n0 = n0(ε) such that f(n) < εn2

for every n > n0.

Proof. Let C ⊆ N1 × N2 × N3 × N4 have the IPP, |C| = f(n), with Ni

being pairwise disjoint and satisfying |N1| = |N2| = |N3| = |N4| = n. By
Facts 2.1 and 2.3 we can omit from C at most 6 · 2n+ 4n = 16n members to
get a code C ′, |C ′| ≥ f(n) − 16n that has IPP in which no two code words
share more than one coordinate. Let H be the 4-partite graph on the classes
of vertices N1, N2, N3, N4 obtained by taking the edge-disjoint union of all
K4 copies {x1, x2, x3, x4} for every x ∈ C ′.

This graph has at least (f(n)− 16n)6 edges, and as it is the edge-disjoint
union of f(n) − 16n copies of K4, one has to delete at least f(n) − 16n of
its edges to destroy all copies of K4 contained in the graph . If we assume
that f(n) > εn2, this implies, for sufficiently large n, that we have to delete
at least ε

2
n2 edges of H to destroy all copies of K4.

By Lemma 2.4 (with k = 4, γ = ε/2), this implies that H contains at
least δn4 distinct copies of K4 for a constant δ = δ(ε) > 0. Among these K4

copies, only f(n) ≤ n2 correspond each to one x ∈ C. Similarly, the number
of K4 copies that contain at least two edges arising from the same x ∈ C is
at most O(n3), since there are at most n2 ways to choose x, at most 15 ways
to choose two of its edges, and this determines already at least three vertices
of the K4. It follows that H contains a copy of K4 in which every edge comes
from a different x ∈ C. In particular, if a1, a2, a3, a4 are the vertices of this
K4, then there exist distinct x, y, z, w ∈ C such that

x1 = a1, y3 = a3, z2 = a2, w1 = a1,
x2 = a2, y4 = a4, z3 = a3, w4 = a4.
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But then x, y, z, w violate IPP2, contradicting the fact that C has IPP. Thus
f(n) ≤ εn2 for n > n0(ε), completing the proof. 2

Remark 2.6 The proof and the known bounds in the proof of the regularity
lemma actually show that

f(n) = O

(
n2

(log∗ n)1/5

)
,

where log∗ n = min{k | log2 log2 . . . log2︸ ︷︷ ︸
k times

n ≤ 1}.

3 The lower bound

Our main tool here is an arithmetic lemma proven using the method of
Behrend [2], and its extension by Ruzsa [4], with some modifications.

A linear equation with integer coefficients

∑
aixi = 0 (4)

in the unknowns xi is homogeneous if
∑
ai = 0. If X ⊆ N = {1, 2, . . . , n},

we say that X has no non-trivial solution to (4), if whenever xi ∈ X and∑
aixi = 0, it follows that all xi are equal.
Note that if X has no non-trivial solution to (4), then the same holds for

any shift (X + u) ∩N (where u is positive, negative or zero).
We need the following simple fact, which follows from the convexity of

the function g(t) = t2.

Fact 3.1 Let p1, p2, . . . , pk be k strictly positive reals whose sum is 1, and
suppose

∑k
i=1 piri = r, where r1, r2, . . . , rk are reals. Then

k∑
i=1

pir
2
i ≥ r2,

and the inequality is strict unless r1 = r2 = . . . = rk = r.
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Proof. Put ri = r + εi, then

k∑
i=1

pi(ri + εi) = r +
k∑
i=1

piεi = r

and hence
∑k
i=1 piεi = 0. It thus follows that

k∑
i=1

pir
2
i =

k∑
i=1

pi(r + εi)
2 =

k∑
i=1

pir
2 + 2r

k∑
i=1

piεi +
k∑
i=1

piε
2
i = r2 +

k∑
i=1

piε
2
i ≥ r2,

and the last inequality is strict unless all numbers εi are 0. 2

Lemma 3.2 [Main Lemma] For q = d2
√

logne there exist:

1. a set X1 ⊆ N , |X1| ≥ n

2O(log3/4 n)
with no non-trivial solution to

2x+ 3y + qz − (q + 5)w = 0; (5)

2. a set X2 ⊆ N , |X2| ≥ n

2O(log3/4 n)
with no non-trivial solution to

5x+ (q + 3)y − 3z − (q + 5)w = 0; (6)

3. a set X3 ⊆ N , |X3| ≥ n

2O(log3/4 n)
with no non-trivial solution to

5x+ qy − 2z − (q + 3)w = 0. (7)

Proof. To prove part 1 we apply the method of Behrend [2]. Let d be an
integer (to be chosen later) and define

X1 = {
k∑
i=0

xid
i | xi <

d

q + 5
(0 ≤ i ≤ k) ∧

k∑
i=0

x2
i = B},

where k = blog n/ log dc − 1 and B is chosen to maximize the cardinality of
X1. If x, y, z, w ∈ X1 satisfy (5) and

x =
k∑
i=0

xid
i, y =

k∑
i=0

yid
i, z =

k∑
i=0

zid
i, w =

k∑
i=0

wid
i,
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then
2xi + 3yi + qzi = (q + 5)wi

for every 0 ≤ i ≤ k. But then, by Fact 3.1 (with k = 3, p1 = 2
q+5

, p2 = 3
q+5

and p3 = q
q+5

):

2x2
i + 3y2

i + qz2
i ≥ (q + 5)w2

i

for every 0 ≤ i ≤ k, and each such inequality is strict unless xi = yi = zi = wi.
As

∑
x2
i =

∑
y2
i =

∑
z2
i =

∑
w2
i , this implies that xi = yi = zi = wi for

0 ≤ i ≤ k, showing that X1 has no non-trivial solution to (5). The size of
X1 satisfies

|X1| ≥
n

d2(q + 5)k+1(k + 1) d2

(q+5)2

≥ n

(q + 5)logn/ log dd4 log n
.

Take d = b2
√

logn log qc (� q) to conclude that

|X1| ≥
n

2O(
√

logn log q)
. (8)

In order to prove Part 2 we apply the method of Ruzsa [4]. By Behrend’s
method (that is, by an obvious modification of the constants in the argument
given in the proof of Part 1 above) there exists Q ⊆ {1, 2, . . . , q/5} satisfying
|Q| ≥ q

2O(
√

log q)
with no non-trivial solution to 5x = y + 3z + w. Define

X2 = {
k∑
i=0

xi(q + 4)i | xi ∈ Q},

where k = blog n/log(q + 4)c − 1. Note that:

|X2| = |Q|k+1 ≥ n

2O(logn/
√

log q)
. (9)

Suppose now that there is a non-trivial solution x, y, z, w ∈ X2 of (6),
where

x =
k∑
i=0

xi(q + 4)i, y =
k∑
i=0

yi(q + 4)i, z =
k∑
i=0

zi(q + 4)i, w =
k∑
i=0

wi(q + 4)i.
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Then:

k∑
i=0

5xi(q + 4)i + (q + 3)
k∑
i=0

yi(q + 4)i =
k∑
i=0

3zi(q + 4)i + (q + 5)
k∑
i=0

wi(q + 4)i.

Let j be the minimum index such that not all {xi, yi, zi, wi} are equal.
Then:

k∑
i=j

5xi(q + 4)i + (q + 3)
k∑
i=j

yi(q + 4)i =
k∑
i=j

3zi(q + 4)i + (q + 5)
k∑
i=j

wi(q + 4)i.

Reducing modulo (q + 4)j+1 we conclude that

5xj(q + 4)j ≡ yj(q + 4)j + 3zj(q + 4)j + wj(q + 4)j (mod (q + 4)j+1).

But both sides are less than (q+ 4)j+1, as xj, yj, zj, wj ≤ 1
5
q, hence this is an

equality (and not only a modular equality):

5xj(q + 4)j = yj(q + 4)j + 3zj(q + 4)j + wj(q + 4)j

Dividing by (q + 4)j we get 5xj = yj + 3zj + wj, contradicting the as-
sumption that Q has no non-trivial solution to this equation. Thus X2 has
no non-trivial solution to (6), as needed.

The proof of Part 3 is analogous to that of Part 2. Here we start with
Q ⊂ {1, 2, . . . , 1

5
q} having no non-trivial solution to 5x = y + 2z + 2w and

satisfying |Q| ≥ q

2O(
√

log q)
. Then we take X3 = {∑k

i=0 xi(q+1)i|xi ∈ Q} where

k = blog n/ log(q + 1)c − 1.
As before,

|X3| ≥
n

2O(logn/
√

log q)
. (10)

If we assume that x, y, z, w ∈ X3 form a non-trivial solution to (7), and define
xi, yi, zi, wi and j as before, we conclude, by reducing modulo (q+1)j+1, that

5xj(q + 1)j ≡ yj(q + 1)j + 2zj(q + 1)j + 2wj(q + 1)j (mod (q + 1)j+1).

As before, this is actually an equality, implying that 5xj = yj + 2zj + 2wj
and supplying the desired contradiction.
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This completes the proof of the lemma. Since

q = d2
√

logne

we obtain, from (8), (9) and (10), that

|X1|, |X2|, |X3| ≥
n

2O((logn)3/4)
.

2

Corollary 3.3 There exists a set X ⊂ {1, . . . , n} satisfying

|X| ≥ n

2O((logn)3/4)

such that X has no non-trivial solution to (5), no non-trivial solution to (6),
and no non-trivial solution to (7).

Proof. Take two integers −n ≤ u2 ≤ n and −n ≤ u3 ≤ n randomly, uni-
formly and independently. X = X1∩ (X2 +u2)∩ (X3 +u3) has no non-trivial
solution to any of the above equations, and each x ∈ X1 has probability
Ω(2−O((logn)3/4)) to lie in the intersection. The result thus follows from the
linearity of the expectation. 2

Theorem 3.4 The function f(n) satisfies

f(n) ≥ n2

2O((logn)3/4)
(11)

Proof. It is more convenient to show that

f(n2
√

logn + 6n) ≥ n2

2O((logn)3/4)
,

which clearly gives (11).

Put q = d2
√

logne and let X be as in the corollary. Define

C = {(p, p+ 2x, p+ 5x, p+ (q + 5)x)|1 ≤ p ≤ n, x ∈ X}.
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Then C ⊂ N4 for N = {1, 2, . . . , (q + 6)n}. Clearly

|C| ≥ n2

2O((logn)3/4)
.

We claim that C has the IPP. Indeed, no two words in C share more than
one coordinate. Thus, if a, b, c ∈ C are distinct they cannot violate IPP1
since otherwise for every 1 ≤ i ≤ 4 there exists a pair among a, b, c sharing
the same coordinate in place i, implying by the pigeonhole principle that
some pair of words shares at least 2 coordinates, which is impossible.

It remains to check IPP2. Suppose that

a = (p1, p1 + 2x, p1 + 5x, p1 + (q + 5)x),
b = (p2, p2 + 2y, p2 + 5y, p2 + (q + 5)y),
c = (p3, p3 + 2z, p3 + 5z, p3 + (q + 5)z),
d = (p4, p4 + 2w, p4 + 5w, p4 + (q + 5)w)

satisfy {a, b} ∩ {c, d} = ∅ and yet {ai, bi} ∩ {ci, di} 6= ∅ for all 1 ≤ i ≤ 4.
Choose gi ∈ {ai, bi} ∩ {ci, di} for each i. No word can share 3 coordinates
with g = (g1, g2, g3, g4). Indeed, if for example, a1 = g1, a2 = g2 and a3 = g3

then, as gi ∈ {ci, di} for every i, either c or d have to agree with a on at least
2 coordinates, which is impossible.

Since gi ∈ {ai, bi} and gi ∈ {ci, di} for every i, each of the 4 words a, b, c, d
agrees with g = (g1, g2, g3, g4) on exactly 2 coordinates. Moreover, the indices
of those common coordinates of a and g, and those of b and g, are disjoint
(as together they have to cover all 4 coordinates); and the same occurs with
those of c and g with respect to those of d and g. It follows that up to
symmetry there are 3 possible cases.

Case 1:

a1 = g1, b3 = g3, c2 = g2, d1 = g1,
a2 = g2, b4 = g4, c3 = g3, d4 = g4.

Case 2:

a1 = g1, b2 = g2, c2 = g2, d1 = g1,
a3 = g3, b4 = g4, c3 = g3, d4 = g4.
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Case 3:

a1 = g1, b2 = g2, c1 = g1, d3 = g3,
a3 = g3, b4 = g4, c2 = g2, d4 = g4.

In Case 1, by noting that

(g2 − g1) + (g3 − g2) + (g4 − g3)− (g4 − g1) = 0

and that

g2 − g1 = a2 − a1 = 2x, g3 − g2 = c3 − c2 = 3z,
g4 − g3 = b4 − b3 = qy, g4 − g1 = d4 − d1 = (q + 5)w.

We conclude that
2x+ 3z + qy − (q + 5)w = 0.

Thus x = y = z = w by the construction of X that has no non-trivial solution
to (5). But then it follows that a = d, in contradiction to {a, b} ∩ {c, d} = ∅.

Similarly, Case 2 leads by the fact that X has no non-trivial solution to
(6), to the fact that x = y = z = w and hence again to the contradiction
a = d. Case 3 leads to x = y = z = w as X has no non-trivial solution to
(7), giving the contradiction a = c. This completes the proof. 2

Note added in Proof: As observed by S. Konyagin, the lower bound given
in Theorem 3.4 can be slighly improved to

f(n) ≥ n2

2O((logn)2/3)

by proving the first part of Lemma 3.2 using the method applied in the proofs
of its second and third part.
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