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Abstract. Alon et. al. [N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy, Combinatorica,
20 (2000), pp. 451–476] showed that every property that is characterized by a finite collection of
forbidden induced subgraphs is ε-testable. However, the complexity of the test is double-tower with
respect to 1/ε, as the only tool known to construct such tests uses a variant of Szemerédi’s regularity
lemma. Here we show that any property of bipartite graphs that is characterized by a finite collection
of forbidden induced subgraphs is ε-testable, with a number of queries that is polynomial in 1/ε. Our
main tool is a new “conditional” version of the regularity lemma for binary matrices, which may be
interesting on its own.
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1. Introduction. Property testing, first started in [6] and [17], deals with the
following general question: Given a property P and an input which is assumed to come
in the form of an oracle, how many queries to the input are required to distinguish
between an input which satisfies P and an input which is ε-far (in the normalized
Hamming distance) from any input that satisfies P? Property testing in general, and
the investigation of graph testing that was started in [14], in particular, has become an
active research area in recent years (see, for example, [14, 3, 8, 15, 1, 4] and the surveys
[16, 9]). In particular, it was shown in [3] that every property that is characterized
by a finite collection of forbidden induced subgraphs is ε-testable, that is, one can
distinguish between graphs that satisfy it and graphs that are ε-far from satisfying it,
with a number of queries that is bounded by a function of ε only, and is independent
of the size of the input graph. However, the complexity of the test is double-tower
with respect to 1/ε, as the only tool known to prove this testability is a variant of
Szemerédi’s regularity lemma.

More recently, Alon and Shapira [1, 4] initiated a study of those graph properties
that are characterized by forbidden subgraphs and can be tested “very efficiently”
in the sense that they can be tested with only poly(1/ε) many queries. In [1] it is
shown that the property of not containing a given subgraph (where the subgraph is
not necessarily induced) is testable with a number of queries polynomial in 1/ε if and
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only if the forbidden subgraph is bipartite. In the context of testing digraphs for a
forbidden structure, [4] contains a similar (but more complex) classification. The only
known upper bounds for the cases where the number of queries is not polynomial are
the tower (or worse) functions that result from Szemerédi’s regularity lemma and its
variants.

Here we concentrate on graph properties that are characterized by a finite family
of forbidden induced subgraphs. For general graphs, the only known upper bound
is the tower of towers; it was obtained from the proof in [3] that this is testable at
all. We consider here the special case of bipartite input graphs and show, in contrast
to the above, that any property of bipartite graphs that is characterized by a finite
collection of forbidden induced subgraphs is ε-testable with a number of queries that
is polynomial in 1/ε.

Our main tool is a new “conditional” version of the regularity lemma for binary
matrices (Lemma 1.6 below), which may be interesting on its own. We combine this
with some methods similar to those of [11] to obtain the desired result ([11] is an
expanded version of the results from [10] about matrix-poset properties, while this
paper expands the results from [10] about testing of bipartite graphs; the original
bounds in [10] for bipartite graphs, while better than the previously known tower of
towers, were not polynomial in 1/ε).

Our results are stated for graphs that are already given with a bipartition of
their vertices (with the definition of a forbidden subgraph also relating to subgraphs
with a compatible bipartition). However, in the case of bipartite input graphs whose
bipartition is not given in advance (and general induced forbidden subgraphs), we can
first use the approximate bipartition oracle given in [14] to reduce that setting to our
setting.

We now note that the study of such bipartite graph properties is an extension of
the poset model studied in [11], in which the testability of properties is related to the
logical complexity of their description (for the purpose here a model is the language
in which the properties are expressed, so a model is essentially identifiable with its
family of expressible properties). In this case the poset is the 2-dimensional n × n
grid, which as a poset is the product of two n-size total orders (lines). The language
(syntax) includes the poset relation, the label unary relation (being labeled “1”), and
in addition, the relations row(x1, x2) which state that x1 is on the same row as x2,
and similarly col(x1, x2) for columns. ∀-properties in this model are properties that
can be described by a finite formula over a fixed number of variables with only ∀-
quantifiers in prenex normal form. Such properties would then correspond to exactly
the properties that are characterized by a finite collection of forbidden submatrices
(in a manner similar to what was done in [11] for the ∀-poset model). We call this
model the “submatrix model.” The submatrix model is closely related to a submodel
of the (not always testable) ∀∃-poset model, defined in [11].

The model “submatrix” includes some interesting properties. In particular, the
permutation-invariant properties in it are tightly connected to bipartite graph prop-
erties that are characterized by a collection of forbidden induced subgraphs.

Definition 1.1. For a finite collection F of 0/1 matrices, we denote by SF all
0/1-matrices that do not contain as a submatrix any row and/or column permutation
of a member of F .

Observation 1.2. Every bipartite graph property (where a bipartite graph is
identified with its adjacency matrix in the usual way) that is characterized by a finite
collection of forbidden induced subgraphs is equivalent to a property SF for some
finite set F of matrices. In addition, every SF -property in the “submatrix” model is
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equivalent to a bipartite graph property as above.

It is important to note that here we discuss forbidden induced subgraphs. Not
having a forbidden subgraph (rather than induced subgraph) is a monotone decreasing
property. In this case, the test for the property is trivial, by density. For a large enough
density, a Zarankiewicz (see [21], [13]) type theorem asserts that the answer “No” is
correct (as the graph will have a large enough complete bipartite graph), while if the
density is low then the answer is trivially “Yes,” as the graph is close to the empty
(edgeless) one. A thorough treatment of this case is found in [1]. The main result in
the present paper is the following.

Theorem 1.3. Let F be a fixed finite collection of 0/1 matrices. Property SF is
(ε, poly( 1

ε ))-testable for every ε > 0, by a 2-sided error algorithm.

The test above, however, is not only 2-sided but also very computation-intensive
(despite this computation using only a relatively small set of queries as data). Using
some additional tools we then derive a 1-sided error test which is also efficient in terms
of its running time.

Theorem 1.4. Let F be a fixed finite collection of 0/1 matrices. Property SF

is (ε, poly( 1
ε ))-testable for every ε > 0, by a one sided error algorithm whose running

time is polynomial in the time it takes to make the queries.

The derivation of Theorem 1.4 from the main tool used in Theorem 1.3 is done
in two stages, in sections 5 and 6. To present the test proving Theorem 1.3, we will
need some machinery.

Let M be a 0/1-labeled, n× n matrix (to simplify notation we restrict ourselves
to square matrices, but all arguments and theorems in this paper hold word-for-word
for rectangular n × m matrices as well). We denote by R(M) and C(M) the set of
rows and the set of columns of M , respectively. For an integer r, an r-partition of M
is a partition of the set R(M) into r′ ≤ r parts {R1, . . . , Rr′} and a partition of the
set C(M) into r′′ ≤ r parts {C1, . . . , Cr′′}. Each submatrix of the form Ri × Cj will
be called a block (note that the coordinate sets defining the blocks do not necessarily
consist of consecutive matrix coordinates). The weight of the (i, j) block is defined as
1
n2 |Ri||Cj |. We also define similar weights for the Ri’s and Cj ’s, e.g., w(Ri) = 1

n |Ri|.
For a block B of a 0/1-matrix M and δ ≥ 0, we say that B is δ-homogeneous if

all but a δ-fraction of its values are identical. If B is δ-homogeneous we call the value
that appears in at least a 1− δ fraction of the places the δ-dominant value of B. Note
that this value is also α-dominant for any δ < α < 1/2. We say that a value is the
dominant value of B if it is simply the majority value in B.

Definition 1.5. Let P = {R1, . . . Rr′}×{C1, . . . Cr′′} be an r-partition of M , and
let δ > 0. We say that P is a (δ, r)-partition if the total weight of the δ-homogeneous
blocks is at least 1 − δ.

The key result is that an input that does not admit some (δ, r)-partition can be
rejected easily, because it will then contain many copies of every possible k×k matrix
(including the forbidden ones) as submatrices.

Lemma 1.6. Let k be fixed. For every δ > 0 and an n × n, 0/1-matrix M with
n > (k/δ)O(k), either M has a (δ, r)-partition for r = r(δ, k) ≤ (k/δ)O(k), or for every

0/1-labeled k× k matrix B, a (g(δ, k) ≥ (δ/k)O(k2))-fraction of the k× k submatrices
of M are B.

This lemma allows us to reduce the testing problem to matrices that admit a
(δ, r)-partition for certain δ, r; as for matrices that do not admit such partitions, the
lemma asserts that querying a random submatrix will find a counterexample with suf-
ficiently high probability. We note that the lemma is essentially a conditional version
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of Szemerédi’s regularity lemma ([19]; see also [7, Chapter 7]), as a (δ, r)-partition is in
particular a regular partition in the sense of Szemerédi of the corresponding bipartite
graph. The improvement over directly using the regularity lemma is achieved because
of this conditioning. The proof of the lemma will be presented in section 4.

We then construct a test for matrices admitting a (δ, r)-partition. This test will
be very similar to the 2-sided boolean matrix poset test in [11]. However, the situation
in the poset test is that the partition can be fixed in advance, while in our case there
is the problem of “learning” enough of the partition by sampling. The main tool for
doing so is Lemma 2.3 below. For stating it we need some more definitions, which are
described in section 2 along with the framework of the proof of Theorem 1.3.

The plan of the paper is as follows. Section 2 includes some preliminaries, as well
as a proof of Theorem 1.3 from two main lemmas—Lemma 1.6 above and Lemma
2.3 which is stated there. The lemmas themselves are proven in sections 4 and 3,
respectively. We then turn to proving Theorem 1.4. This is done in two stages. First,
a special case is proven in section 5, and then this case is used as a lemma in section
6 to prove the full result. In both stages we need the main tool that was used in the
proof of Theorem 1.3, namely, Lemma 1.6. Finally, section 7 contains some concluding
open problems.

2. Partitions, signatures, and Theorem 1.3. Assume that M has a (δ, r)-
partition. We have no hope, of course, of finding it using O(1) many queries, as we
cannot even sample a single point from every matrix row. Hence, we will need to
define the “high-level features” of the (δ, r)-partitions of M that can be detected by
sampling.

In the following, whenever we refer to a δ-fraction of the members of a weighted
set Q, we mean a subset Q′, the total weight of whose members is δ (where we assume
that the total weight of the members of Q is normalized to be 1). Let M be a matrix
with a (δ, r)-partition P defined by the row partition {R1, . . . , Rs} and the column
partition {C1, . . . , Ct}, s, t ≤ r. Then P naturally defines a high-level pattern which
is an s× t matrix of the dominant labels of the blocks.

Definition 2.1. Let P be a partition as above, and let P be a 0/1-labeled, s× t
matrix. A block Ri ×Cj is called δ-good with respect to P if it is δ-homogeneous and
its dominant label is Pi,j. P is called a δ-pattern of P if all but at most a δ-fraction
of the weighted blocks in P are δ-good with respect to P .

It is immediate from the definition that if a partition has a δ-good pattern of
size s× t, then it is a (δ, r)-partition with r = max{s, t}. Conversely, if P is a (δ, r)-
partition, then it has an r × r δ-pattern (by possibly introducing empty blocks). As
the block sizes of a (δ, r)-partition need not be fixed, we will also need information
about the weights of Ri and Cj , (i, j) ∈ [s] × [t].

Definition 2.2. Let M be an n×n matrix with a (δ, r)-partition P defined by the
row partition {R1, . . . , Rs} and the column partition {C1, . . . , Ct}. Then a δ-signature
of P is an s × t, 0/1-labeled matrix P and two sequences {αi}s1, {βi}t1, where P is a

δ-pattern of P, and in addition
∑s

i=1 |
|Ri|
n − αi| ≤ δ and

∑t
j=1 |

|Rj |
n − βj | ≤ δ.

Note that the signature of a partition is closed under permutations of rows and
columns; namely, any row/column permutation of P with the respective permutations
of {αi}s1 and {βi}t1 is also a δ-signature of any matrix for which P is a δ-signature.
Moreover, a signature of M is also a signature of all row/column permutations of M .

The signature of a partition has sufficient properties for constructing a test as
we shall see in the proof of Theorem 1.3. The following also asserts that it can be
approximated by sampling.
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Lemma 2.3. Let δ < 1/81 and assume that an n × n, 0/1-matrix M has a
(δ, r)-partition. By making q = (r/δ)O(1) many queries, a 26δ1/6-signature of a
(16δ1/6, 10r2/(4δ1/3) + 1)-partition can be found, with success probability 3

4 .

We note that a test for a much closer approximation of the original (δ, r)-partition
can also be deduced from [14], with exponentially worse running time and query
complexity. The proof of Lemma 2.3 is given in section 3. We end the discussion by
showing that together with Lemma 1.6 this indeed implies a 2-sided error test.

Proof of Theorem 1.3. Assume that we want to ε-test M for a permutation-
invariant collection of forbidden induced k×k submatrices. Blocks will now correspond
to partition-blocks: Let δ = ( ε

300 )6, and let g = g(δ, k), r = r(δ, k) be those of Lemma

1.6. For 4/g = (k/ε)O(k2) iterations, independently, we choose k random rows and
k random columns of M and query all k2 points in the k × k matrix that is defined
by them. If we find a counterexample in the queried points we answer “No” and
terminate the algorithm, and otherwise we continue. Let E1 denote the event that
M has no (δ, r)-partition and yet the algorithm continues. For inputs with a (δ, r)-
partition, this event (by definition) never happens, while for other inputs, by Lemma
1.6, the probability of this event is bounded by 1

12 .

We now work under the assumption that M has a (δ, r)-partition and use the
algorithm given in Lemma 2.3 to try finding an ε

8 -signature of an ( ε
8 , 10r2/4( ε

300 )2+1)-

partition by sampling (r/δ)O(1) = (k/ε)O(k) queries. Let P with {αi}s1 and {βi}t1 be
the signature obtained by the algorithm, and let E2 be the event that it is not an
ε
8 -signature of an ( ε

8 , 10r2/4( ε
300 )2 + 1)-partition of M . If M in fact did not have a

(δ, r)-partition, then this event has the same probability as E1 (which is bounded by
1
12 ), and otherwise by Lemma 2.3 the probability of E2 is bounded by 1

4 .

We now form an n × n matrix MQ that represents our knowledge of M : We
partition the rows of MQ into s parts of weights {αi}s1 and the columns into t parts
of weights {βi}t1. For every block of P , we set every entry of the corresponding block
of MQ to have the same label as in P . Now, let MQ,ε be the set of all matrices that
can be obtained from MQ by changing at most εn2/2 entries in any possible way.
We check if any of the members of MQ,ε has the property SF . If there is such a
member, the algorithm answers “Yes.” Otherwise, if every member MQ,ε contains a
permutation of a forbidden submatrix, then the answer is “No.” Note that this last
phase of the algorithm involves no additional queries and is just a computation phase.

To see that the algorithm is correct we first note that if a counterexample is found
in the first phase of the algorithm, then the input M does not have the property with
probability 1. Hence the algorithm can err only in the second phase.

We claim that unless E2 happened the following hold: (a) some row/column
permutation of M is a member of MQ,ε, and (b) every two members of MQ,ε are of
distance at most εn2. Indeed, assume that the signature that has been found is an ε

8 -
signature of an ( ε

8 , 10r2/4( ε
300 )2 + 1)-partition of M . Then MQ can be obtained from

M by changing at most an ε
8 -fraction of the entries in each ε

8 -good block, followed by
changing any of the entries in the non– ε

8 -homogeneous blocks, and finally changing
entries that are in strips around every block to compensate for the inaccuracy of the
size sequences of the signature (whose sizes sum up to no more than ε

8 for the rows and
ε
8 for the columns). The first two types of changes contribute at most an ε

8 -fraction of
changes to the whole matrix each, and the last type contributes at most an ε

4 -fraction
of changes. Thus M is at most εn2/2-far from MQ, and, in particular, M is in MQ,ε.
This proves (a), while (b) follows automatically from the definition of MQ,ε and the
triangle inequality.
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Hence, we may assume that with probability at least 3
4 (which is the lower bound

on E2 not happening), the ε
8 -signature is computed correctly and (a) and (b) above

are satisfied. We conclude that if M has the property then certainly some member
of MQ,ε will have the property (as M itself is such a member by (a)), and thus the
algorithm will accept. On the other hand, if M is more than εn2-far from having the
property, then no member of MQ,ε can have the property by (b).

Clearly the query complexity of the test is O(k/ε)O(k2), which for a fixed family
F (and hence a fixed k) is polynomial in ε.

The above test, while using only a constant number of queries, has a bad depen-
dence of the calculation time on the input size (this can be alleviated somewhat, but
in light of the following we omit the details). Unfortunately, this dependence is such
that the automatic conversion by Alon of 2-sided tests to 1-sided ones, described in
[15, Appendix D], will not work here. Instead we will go on a different route to show
that a (δ, r)-partition of the matrix not only contains the necessary information about
its farness from our property, but also implies the existence of many witnesses. But
first, we turn back to the proofs of Lemmas 2.3 and 1.6.

3. (δ, r)-partitions, row similarity, and the proof of Lemma 2.3. Our goal
here is to show that by sampling (r/δ)O(1) entries in M , one can detect the signature
of a (δ′, r′)-partition, if a (δ, r)-partition exists. For this we need a representation of
a partition in a “local” way, which is asserted by Claims 3.2 and 3.3. To do this, we
relate the notion of a (δ, r)-partition to relative distances between rows and columns.
For the rest of this section we assume that δ is smaller than 1/81.

For two vectors u, v ∈ {0, 1}m let μ(u, v) = 1
m |{i| ui �= vi}|; namely, μ(u, v) is

the normalized Hamming distance between the two vectors. We will use the following
definitions.

Definition 3.1. Let M be an n × n matrix. We set ER(μ(ri, rj)) to be the
expected value of μ(ri, rj), where ri, rj are two rows of M chosen at random. Similarly
let EC(μ(ci, cj)) denote the respective quantity where ci, cj are two columns chosen at
random.

Given a set of vectors V (usually either the set of rows or the set of columns of
M) and a partition V0, . . . , Vs of V , we say that the partition is a (δ, r)-clustering of
V if s ≤ r, |V0| ≤ δ|V |, and for every 1 ≤ i ≤ r and u, v ∈ Vi we have μ(u, v) ≤ δ.

Finally, for a partition block B and a row u that intersects B, let u|B be the
restriction of u to the columns in B.

There is a close correlation between (δ, r)-partitions of M and (δ, r)-clusterings
of its rows and columns, as the following two claims show.

Claim 3.2. Let M be a 0/1, m × m matrix, and assume that M has a (δ, r)-
partition. Then there exist a (4δ1/3, r)-clustering of the rows of M as well as a
(4δ1/3, r)-clustering of the columns of M .

Claim 3.3. Let M be a 0/1, m ×m matrix, and assume that {R0, . . . , Rs} and
{C0, . . . , Ct} are (δ2, r)-clusterings, for r = max{s, t}, of the set of rows and the set
of columns, respectively. Then these clusterings also form a (4δ, r+1)-partition of M .

Moreover, for the above R0, . . . , Rs and C0, . . . , Ct, a 4δ-signature for the partition
is given by the sequences αi = w(Ri), i = 0, . . . , s, βi = w(Ci), i = 0, . . . , t, and the
s × t matrix P , where the (i, j) entry of P corresponds to the block Ri × Cj and its
label is the dominant label of this block.

Before we prove the two claims we need two simple observations that in some
sense correspond to the case “r = 1” of the claims.
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Observation 3.4. Let A be a 0/1 matrix. If A is δ-homogeneous, then
ER(μ(ri, rj)) ≤ 2δ and EC(μ(ri, rj)) ≤ 2δ.

Proof. As A is δ-homogeneous, we may assume without loss of generality that A
contains less than a δ fraction of 0’s. Hence, choosing two rows at random and picking
a random place i in both, the probability that they are not both “1” in this place is
at most 2δ. Thus the expectation of the fraction of the number of places where they
differ is bounded by 2δ, and this expectation is exactly ER(μ(ri, rj)). The proof for
EC(μ(ri, rj)) is analogous.

Observation 3.5. If A is a 0/1 matrix such that ER(μ(ri, rj)) < δ and EC(μ(ci,
cj)) < δ, then A is 4δ-homogeneous.

Proof. Assume on the contrary that A is not 4δ-homogeneous. This implies
that when choosing two points from A independently and uniformly at random, with
probability at least 4δ, they will not have the same label. This is also a lower bound
on the fraction of the 2 × 2 submatrices that contain both 0’s and 1’s, as any two
points with different labels can be extended to such a submatrix. On the other hand,
if ER(μ(ri, rj)) < δ, then with probability more than 1− 2δ both rows of a uniformly
random 2 × 2 submatrix are identical, as this matrix can be expressed as choosing
two random places from two random rows. By the same token, if ER(μ(ci, cj)) < δ,
then with probability more than 1−2δ the two columns of a random 2×2 matrix are
identical. Together these would have implied that less than a 4δ fraction of the 2× 2
submatrices have both 0’s and 1’s, which is a contradiction.

Proof of Claim 3.2. Assume that M has a (δ, r)-partition defined by the row
partition R1, . . . , Rs and the column partition C1, . . . , Ct, s, t ≤ r. Assume that
B is a δ-homogeneous block that contains the rows of Ri. Then by Observation 3.4,
ER(u|B , v|B) ≤ 2δ for two rows chosen at random from Ri. For a non– δ-homogeneous
block, this expression is at most 1. Let wi = w(Ri) = |Ri|/m, i = 1, . . . , s, and let
Ei(μ(u, v)) be the expectation of μ(u, v), where u, v are two rows chosen uniformly at
random from Ri. Then the above implies that Σr

i=1wiEi(μ(u, v)) ≤ (1− δ)2δ+ δ ·1 ≤
3δ, as this sum goes over all blocks and there is at least a (1−δ) fraction of 0/1-blocks
contributing at most 2δ each.

Now this implies that the total weight of the Ri’s for which Ei(μ(u, v)) ≥ δ2/3 is
at most 3δ1/3. Let R0 be the union of all these Ri’s. Let R1, . . . , Rr′ be all other Ri’s,
after renumbering. For every i = 1, . . . , r′, by our assumption, Ei(μ(u, v)) < δ2/3

for randomly chosen u, v, so there is an ri ∈ Ri for which for at least a (1 − δ1/3)
fraction of the v’s in Ri, μ(ri, v) < δ1/3. Hence if we define for 1 ≤ i ≤ r′ the set

R′
i = {v ∈ Ri|μ(v, ri) < δ1/3} and then define R′

0 =
⋃r′

i=1(Ri \ R′
i) ∪ R0, we obtain

that R′
0, . . . , R

′
r′ is indeed a (4δ1/3, r)-clustering for the rows of M . The proof for the

existence of a clustering of the columns is analogous.

Proof of Claim 3.3. By the assumptions of the claim, |R0| < δ2n. Also, for any
i ≥ 1 and any two rows u, v ∈ Ri, μ(u, v) ≤ δ2. Thus for i = 1, . . . , s, Ei(μ(u, v)) ≤
δ2, where Ei is the expectation when u, v are chosen at random from Ri. Hence

for the above partition into rows, Σs
i=0

|Ri|
m Ei(μ(u, v)) ≤ 2δ2 (as for each i > 1 the

corresponding term in this average is at most δ2, and for i = 0 the weight of the term
is at most δ2). Similarly we get the analogous inequality for columns. Let P be the
partition of M into blocks that is defined by the cross product of the two partitions
above.

Recall that |Ri|
m , |Ci|

m are the weights w(Ri), w(Ci) of the corresponding sets. Also,
for a block B, let ER(μ(u|B , v|B)), respectively, EC(μ(u|B , v|B)), be the expectation
of μ(·, ·) for two rows u, v, respectively, columns, chosen at random from B. By the
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law of complete probability, Σs
i=0w(Ri) ·Ei(μ(u, v)) = EB(ER(μ(u|B , v|B))), where in

the right-hand side the outer expectation is on blocks of P chosen according to their
weights, and the inner expectation is on rows chosen at random in the block. Hence,
the fact that Σs

i=0w(Ri)Ei(μ(u, v)) ≤ 2δ2 implies that the total weight of all blocks
B for which ER(μ(u|B , v|B)) > δ is bounded by 2δ. By the same argument, for at
most a 2δ fraction of the blocks EC(μ(u|B , v|B)) > δ. Hence, for at least a 1 − 4δ
fraction of the blocks (weighted by the block weights), both ER(μ(u|B , v|B)) ≤ δ
and EC(μ(u|B , v|B)) ≤ δ. However, by Observation 3.5 above, each such block is 4δ-
homogeneous, and hence at most a 4δ fraction of the blocks (measured by weights) are
not 4δ-homogeneous. This implies that P is a (4δ, r+1)-partition. Also, by definition,
a pattern for this partition is any one that has, for each block, the (1− 4δ)-dominant
label of this block if there is one, or an arbitrary value otherwise. Moreover, as αi, βi

are the exact weights of the parts in the partition, we get a 4δ-signature for it by
definition.

We are now ready to present the testing algorithm that yields Lemma 2.3. We
start with a trivial observation about approximating distances.

Claim 3.6. Let u, v ∈ {0, 1}n, γ < 1. Choose randomly and independently (with
repetitions) m elements of [n], naming the resulting (multi)set L = {l1, . . . , lm}. Let
μ̃(u, v) = 1

m

∑m
k=1 |u(lk)− v(lk)|, where u(i) and v(i) are the ith coordinates of u and

v, respectively. Then |μ(u, v)− μ̃(u, v)| ≤ γ with probability at least 1− 2exp(−γ2m).

Proof. The proof is immediate by a Chernoff-type inequality (see, e.g., [5, Corol-
lary A.1.7]).

We next construct a testing algorithm for an approximate notion of clustering.
Testing algorithms for clustering were already investigated in [2]; here we will use a
simple self-contained proof for an algorithm that gives an approximation in a very
weak sense.

Lemma 3.7. There exists an approximate oracle algorithm that makes (r/δ)O(1)

bit queries (queries of one coordinate of one vector) to a set V of vectors over {0, 1}n,
such that if V has a (δ, r)-clustering then the algorithm provides a (4δ, 10r2/δ)-
clustering of V as follows.

The algorithm makes (r/δ)O(1) queries in a preprocessing step, and with prob-
ability at least 0.9 provides a clustering oracle for V in the following sense: There
exists a (4δ, 10r2/δ)-clustering V ′

0 , . . . , V
′
t of V , such that for every specified v ∈ V

the algorithm can make (r/δ)O(1) additional queries to provide an index 0 ≤ iv ≤ t,
where it is guaranteed that for at least a (1 − 4δ) fraction of the vectors v ∈ V the
provided iv will satisfy v ∈ Viv .

Proof. Suppose that V0, . . . , Vs is a (δ, r)-clustering of V . The algorithm starts
by selecting uniformly at random r′ = 10r2/δ vectors v1, . . . , vr′ from V . With prob-
ability at least 0.95 (assuming that r is large enough) the situation is that for every
1 ≤ i ≤ r for which |Vi| ≥ δ|V |/r, we have picked at least one vector from Vi.

We now pick uniformly at random (with repetitions) l = (10r′ log r′)/δ coordi-
nates from 1, . . . , n, and let μ̃(·, ·) denote the corresponding approximated distance.
Claim 3.6 implies that for every v, v′ ∈ V , the probability for |μ(v, v′)− μ̃(v, v′)| > 1

2δ
is bounded by δ/20r′, and so with probability at least 0.95 the situation is that for
at least a (1 − δ) fraction of the vectors v ∈ V , |μ(v, vi) − μ̃(v, vi)| ≤ 1

2δ for every
1 ≤ i ≤ r′.

Assuming that both of the above events occurred (which is the case with proba-
bility at least 0.9), we define V ′

0 , . . . , V
′
r′ as follows. Every vector v that belongs to V0,

or that belongs to a Vi of size |Vi| < δ/r, or such that there exists some vi for which
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|μ(v, vi)− μ̃(v, vi)| > 1
2δ, is placed in V ′

0 . For every other vector we let i be the index
for which μ̃(v, vi) is minimal (or the smallest such index if there exist several values
that minimize μ̃(v, vi)), and define v to be in V ′

i .

We claim that V ′
0 , . . . , V

′
r′ is indeed a (4δ, r′)-clustering. First, it is easy to see that

|V ′
0 | ≤ 3δ|V | < 4δ|V | from the assumption on the size of V0, and the guarantee that

we have on the number of vectors for which the distance was not well approximated.
Now, if u, v ∈ V ′

i for some 1 ≤ i ≤ r′, then we first note that μ(u, vi) ≤ 2δ. This
is because if we denote by 1 ≤ j ≤ r the index for which u ∈ Vj , then we have
μ(u, vi) ≤ μ̃(u, vi) + 1

2δ ≤ μ̃(u, vj) + 1
2δ ≤ μ(u, vj) + δ ≤ 2δ. The same goes for

proving that μ(v, vi) ≤ 2δ, and so by the triangle inequality μ(u, v) ≤ 4δ. This
concludes the claim about V ′

0 , . . . , V
′
r′ .

We now describe the remainder of the algorithm: After choosing v1, . . . , vr′ and
the l coordinates as above, the algorithm now queries each of these coordinates from
each vi, and by this concludes the preprocessing stage. For the oracle stage, given
a vector v ∈ V the algorithm queries all the l chosen coordinates of v, and then
calculates μ̃(v, vi) for every i. The algorithm then outputs the index i that minimizes
this, or the smallest such index in case there is more than one. It is clear that the
algorithm gives the correct index for every vector that is not in V ′

0 , whose size is
bounded by 4δ, concluding the proof.

We note here that we could also use the above to find an approximate oracle for a
(4δ, r)-clustering (instead of a (4δ, 10r2/δ)-clustering), by trying to get from the set of
queried vectors a subset V ′ for which all but at most a 3δ fraction of the members of
V are δ-close to a member of V ′ (and verifying the validity of V ′ using a polynomial
number of additional queries). This would also improve the dependencies in Lemma
2.3, but we omit it as our proofs already ensure the polynomial dependence on ε
without this improvement.

We are now ready to describe the algorithm that proves Lemma 2.3, by finding
with probability 3

4 a signature of a (16δ1/6, 10r2/(4δ1/3)+1)-partition of M , if M has
a (δ, r)-partition.

Algorithm Sig.

• By Claim 3.2, there exists a (4δ1/3, r)-clustering of the rows. We perform
the preprocessing stage of the algorithm provided by Lemma 3.7 to obtain an
approximate oracle for a (16δ1/3, 10r2/(4δ1/3))-clustering of the set of rows
of M ; we denote it by R′

0, . . . , R
′
r′ for r′ = 10r2/(4δ1/3). Similarly, we obtain

an approximate oracle for a (16δ1/3, r′)-clustering C ′
0, . . . , C

′
r′ of the columns.

• We now choose uniformly and independently at random (with repetitions) a
(multi)set R of l = (100r′ log r′)/δ rows of M , and for each of these we use the
clustering oracle for R′

0, . . . , R
′
r′ . For 1 ≤ i ≤ r′, we set αi to be the number

of rows from R for which the oracle answered “i,” divided by l. We do the
analogous operation for a set C of l columns M that were uniformly and
independently chosen (this time with respect to the oracle for C ′

0, . . . , C
′
r′),

and use it to set βi for 1 ≤ i ≤ r′. Both α0 and β0 are set to 0, as the above
oracles never correctly detect that a row is in R′

0 or a column is in C ′
0.

• Finally, for every 1 ≤ i ≤ r′ and 1 ≤ j ≤ r′ we look at the intersections of all
the rows in R which the oracle located in R′

i, and all the columns in C which
the oracle located in C ′

j . We query the entries of M at the intersections of
the set of sampled rows R and the set of sampled columns C, and we set Pi,j

to be the value (0 or 1) that has the majority of appearances in these queries.

We now claim that this algorithm satisfies the assertion of Lemma 2.3. First, we
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note that with probability at least 0.8, the oracles for both the clustering of the rows
and the clustering of the columns are valid, as guaranteed by Lemma 3.7. In turn this
guarantees that R′

0, . . . , R
′
r′ and C ′

0, . . . , C
′
r′ form a (16δ1/6, r′ +1)-partition of M , by

Claim 3.3. Also, each of the following occurs with probability at least 0.99:
• The difference between every αi and the total fraction of the rows of M

for which the oracle would output “i” is at most δ/r′. This implies that
∑r′

i=0 |
|R′

i|
n − αi| ≤ 2 · 16δ1/3 + r′ · δ/r′ < 33δ1/3.

• Similarly to the above,
∑r′

i=0 |
|C′

i|
n − βi| < 33δ1/3. With the previous item

this means that for all but at most a 10δ1/6 fraction of the pairs (i, j), both

| |R
′
i|

n − αi| ≤ 7δ1/6 and | |C
′
j |
n − βj | ≤ 7δ1/6.

• The fraction of appearances of “1” in the values taken under consideration
when calculating Pi,j differs from the fraction of appearances in the inter-
sections of all rows assigned to “i” and all columns assigned to “j” (by the
oracles) by no more than δ. In addition, by the previous item for all but at
most a 10δ1/6 fraction of the pairs (i, j), the above fraction differs by no more
than 14δ1/6 from the fraction of appearances of “1” in R′

i×C ′
j , and so (if δ is

small enough) for the 16δ1/6-homogeneous blocks among these, Pi,j will get
the correct value. Hence, the (weighted) fraction of wrong Pi,j labels is no
more than 16δ1/6 + 10δ1/6 = 26δ1/6.

Therefore, with probability at least 3
4 all the above occurs (including the two

oracles being valid), and a 26δ1/6-signature of a 16δ1/6-partition is obtained.
As a final remark, the proof of Lemma 1.6, given in the next section, also uses an

interim lemma about clusterings, Lemma 4.1 below. One could save further on the
number of queries in the main theorem if the notion of (δ, r)-clustering would be used
throughout instead of the notion of (δ, r)-partitions, but it would still be polynomial
(not linear) in ε. However, the notion of (δ, r)-partitions is more intuitive and could
have applications outside the scope of this work, so we use it instead.

4. Proof of Lemma 1.6. We use the same definition of a (δ, r)-clustering (for
sets of rows or columns) as we used in the previous section. Claim 3.3, which was
proved above, implies that if A has a (δ2/16, t)-clustering for both its rows and its
columns, then A admits a (δ, t+1)-partition. Therefore, the following lemma immedi-
ately implies Lemma 1.6. Moreover, it follows that Lemma 1.6 is true even if we insist
on the forbidden submatrices also obeying the order of the rows and the columns of
the input matrix (which is ignored for our use of a matrix as representing a bipartite
graph).

Lemma 4.1. Let k be a fixed integer and let δ > 0 be a small real. For every
n × n, 0/1-matrix A, with n > (k/δ)O(k), either A admits (δ, r)-clusterings for both
the rows and columns with r ≤ (k/δ)O(k), or for every k × k, 0/1 matrix F , at least

a (δ/k)O(k2) fraction of the k × k (ordered) submatrices of A are copies of F .
We should also note that the above estimate is essentially tight, as shown by

a random n × n matrix A, where each entry is independently chosen to be 1 with
probability 2δ, and 0 with probability 1 − 2δ. The expected number of copies of the
k × k all 1 matrix in such a matrix is only a (2δ)k

2

fraction of the total number of
k × k submatrices, and it is not difficult to check that with high probability A does
not have a (δ, o(n))-clustering for either its rows or its columns.

We will prove the lemma only for the clustering of the columns, because the proof
for rows is virtually identical. We make no attempt to optimize the absolute constants
and omit all floor and ceiling signs to simplify the presentation. In order to prove the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

TESTING OF BIPARTITE GRAPH PROPERTIES 969

above lemma, we first need the following simple corollary of Sauer’s lemma [18, 20].

Lemma 4.2. For every t > 10k, every t × t2k−1 binary matrix M with no two
identical columns contains every possible k × k binary matrix as a submatrix.

Proof. By Sauer’s lemma [18, 20], every set of s = 1 +
∑k−1

i=0

(
t
i

)
consecutive

columns of M contains a k × 2k submatrix that has no two identical columns (and
so contains all 2k possible binary vectors as columns). Note that s < tk−1 and
s(1 + (k + 1)

(
t
k

)
) ≤ t2k−1. Thus M can be partitioned into at least 1 + (k + 1)

(
t
k

)

blocks of size t × s, each consisting of s consecutive columns. Considering these
1 + (k + 1) ·

(
t
k

)
pairwise disjoint consecutive blocks, we now find in each of them a

k × 2k submatrix with no identical columns. Considering now the set of k rows in
each such submatrix, we obtain by the pigeonhole principle k such submatrices of size
k × 2k, all having the same set of rows, such that their column sets are contained in
disjoint intervals (according to the column order of M), one following the other. This
implies the desired result, as we can choose from each of the submatrices a desired
column and thus construct any given k × k matrix.

We now turn to the proof of Lemma 4.1. Fix δ and k, and suppose that n is large
enough (as a function of δ and k, to be chosen later). Let t be the smallest integer
for which (1 − 1

2δ)
tt4k−2 < 0.1. A simple computation shows that t = O(kδ log(kδ )).

Define T = t2k−1 and suppose that A is an n× n matrix with 0/1 entries which does
not have a δ-clustering of the columns of size T . We have to show that in this case A
must contain many copies of every k × k matrix F .

Indeed, let S be a random set of columns of A obtained by choosing, randomly,
uniformly, and independently (with repetitions) τ = 5T/δ columns of A. We assume
that n > 10( 5T

δ )2. Note that, in particular, for such an n, with probability at least
9/10 no column is chosen more than once.

Claim 4.3. With probability at least 0.9, S contains a subset S′ of T columns so
that the Hamming distance between any pair of them is at least 1

2δn.

Proof. Let us choose the members of S one by one and construct, greedily, a
subset S′ of S consisting of columns so that the Hamming distance between any pair
of them is at least 1

2δn as follows. The first member of S belongs to S′, and for
all i > 1, the ith chosen column of S is added to S′ if its Hamming distance from
every previous member of S′ is at least 1

2δn. Since, by assumption, there is no (δ, T )-
clustering of the columns of A, as long as the cardinality of S′ is smaller than T , the
probability that the next chosen member of S will be added to S′ is at least δ (given
any history of the previous choices); otherwise it would mean that the balls of radius
1
2δn around the members of S′ form a δ-clustering. It thus follows that the probability
that by the end of the procedure the cardinality of S′ will still be smaller than T is
at most the probability that a binomial random variable with parameters 5T/δ and
δ will have value at most T . Hence this probability is smaller than 0.1, which implies
the assertion of the claim.

The usefulness of S′ as above is shown by the following claim.

Claim 4.4. Let S′ be a fixed set of T columns of A for which the pairwise
Hamming distance is at least 1

2δn. Then, if we choose a random set R of t rows of
A by choosing them independently and uniformly at random, with probability at least
0.9 all the projections of the members of S′ on the rows in R are distinct.

Proof. Let S′ be a fixed set of T columns of A so that the Hamming distance
between every pair is at least 1

2δn. For any two fixed columns c1, c2 ∈ S′ and a
random row r we have that the probability that c1[r] = c2[r] is at most 1− 1

2δ, where
c[j] denotes the jth coordinate of c. Hence, the expected number of pairs of members
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of S′ whose projections on R are identical is at most
(
T
2

)
(1 − 1

2δ)
t < 0.1, where the

last inequality follows from the choice of t. The desired result follows.
We can now conclude the proof of Lemma 4.1 as follows. Fix F to be any k × k,

0/1 matrix. Choosing a random t× τ submatrix C of A is just like choosing a set R
of t random rows and a set S of τ random columns. By Claim 4.3, with probability
at least 0.9, the set S of τ columns contains a subset of the columns S′ of size T
that has pairwise distances at least 1

2δn. Given that this happens, by Claim 4.4 with
probability 0.9 all the t projections of S′ on the t rows of C are distinct. Hence
with probability at least 0.8 (the probability that both events above hold) Lemma 4.2
ensures that C contains F as a submatrix.

Now choosing a random k × k submatrix of A can be viewed as first choosing a
random t×τ matrix C as above and then choosing a random subset of k columns and
k rows in C. Hence the probability that such a random k× k matrix will be identical
to F is at least 0.8/(

(
t
k

)(
τ
k

)
) = ( δ

k )O(k2).

5. Unfoldable graphs and 1-sided testing. To construct a 1-sided test that
is polynomial in ε, one would like to use the following scheme. First, the case where
there is no (δ, r)-partition (for the appropriate parameters) is covered also for 1-sided
algorithms by Lemma 1.6. Now, assuming that M is ε-far from SF and has a (δ, r)-
partition, using Lemma 2.3, we can find a submatrix Q that has a (δ′, r)-partition
with a signature similar to a (δ′, r)-partition of M . We would like to show that in
this case Q contains a member of F which will provide a witness for rejecting M .

However, having a Q with the same signature as a matrix M that is ε-far from
SF still does not imply that Q contains a member of F , because some of the partition
blocks of Q may not be homogeneous and so their behavior may depend on n (this
was circumvented in the 2-sided algorithm by checking all n × n matrices that are
compatible with the signature). One way to solve this would be to use a Ramsey-like
lemma like the one used in [11] to get rid of nonhomogeneous blocks, but this would
create an exponential blow-up in the number of queries.

Here we take a different approach. First, in this section we prove the existence
of the test only for the case where it is enough for Q to have only one row and one
column from every cluster of the partition of M , and so the issue of homogeneity
becomes moot. Later, we will use this special case as a lemma to prove the general
case.

Definition 5.1. A matrix M is called unfoldable if it contains no two identical
rows and no two identical columns. Equivalently, an unfoldable bipartite graph is one
that has no two vertices (on the same side) with exactly the same set of neighbors.

A family F of matrices is called unfoldable if all its members are unfoldable.
The main lemma that we will prove in this section essentially states that properties

definable by unfoldable matrices are testable.
Lemma 5.2. For every ε, k, and a family F of unfoldable k×k or smaller matri-

ces, there exists δ = (ε/k)O(k2) such that if an n× n matrix M , where n > (k/ε)O(k),
is ε-far from the property SF , then M contains at least δn2k distinct submatrices
containing members of F (up to permutations).

What we will need to use for the general case is the following corollary. In the
next section we will use it on the signature of M to avoid dealing at all with blocks
of M that are not homogeneous.

Corollary 5.3. For every ε, k, and a family F of unfoldable k × k or smaller
matrices, there exists δ = (ε/k)O(k2) such that if an n × n matrix M , where n >
(k/ε)O(k), is ε-far from the property SF , then for every set X of δn2 entries, M
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contains a member of F (up to permutations) that does not include any entry from
X.

Proof. Every set X can clearly intersect at most |X| ·
(
n−1
k−1

)2
< |X|n2k−2 subma-

trices of M . Hence, if |X| < δn2, then Lemma 5.2 implies that, in particular, there
exists a copy of a forbidden submatrix which does not intersect X.

To prove Lemma 5.2, and also for the next section, it is more convenient to work
with partitions into equally sized blocks.

Definition 5.4. An r-partition of an n×n matrix M is called an r-equipartition
if the size of all the sets Ri and Cj lie between 	n/r
 and �n/r�. In an analogous
manner we define a (δ, r)-equipartition.

Note that for (δ, r)-equipartitions, a δ-signature essentially holds no more informa-
tion than the δ-pattern it includes. The conditional existence of (δ′, r′)-equipartitions
follows from that of (δ, r)-partitions by the following simple lemma.

Lemma 5.5. For δ < 1
4 , if a matrix M admits a (δ, r)-partition, then it admits

also a (
√
δ + 3δ, r/δ)-equipartition.

Proof. For simplicity we assume that l = δn/r is an integer. We repartition the
original (δ, r)-partition of M in the following manner. From every Ri whose size is
at least l we randomly and uniformly pick s = 	|Ri|/l
 disjoint subsets Ri,1, . . . , Ri,s

of size l. We call the matrix rows not picked for any Ri,x by this procedure leftover
rows. We now arbitrarily partition the set of leftover rows into disjoint sets of size l.
We then perform the analogous procedure for the columns of the matrix M .

Now for every i and j such that Ri×Cj was δ-homogeneous, every block Ri,p×Cj,t

will be
√
δ-homogeneous with probability at least 1−

√
δ. To see this assume without

loss of generality that Ri×Cj has at most a δ-fraction of 1’s. Then, for any fixed p, t,
a random submatrix Ri,p ×Cj,t of Ri ×Cj has the same expected average value of its
entries as the average value for Ri × Cj , which is at most δ. Hence, by the Markov

inequality, the probability that Ri,p ×Cj,t will have more than a
√
δ fraction of 1’s is

at most
√
δ. This probability is, however, the failure probability of Ri,p × Cj,t being√

δ-homogeneous.

Thus, there is a choice of the repartitions above for which the number of blocks
Ri,p × Cj,t that come from δ-homogeneous blocks Ri × Cj but are not themselves√
δ-homogeneous is not more than

√
δ(n/l)2.

Also, since the original partition was δ-homogeneous, there are no more than
δ(n/l)2 blocks Ri,p ×Cj,t that come from blocks of the original partition that are not
δ-homogeneous. Finally, there are the blocks that are related to leftover rows and
columns. From the procedure it follows that there are no more than lr ≤ δn leftover
rows and no more than lr leftover columns. Thus the total number of such blocks is
no more than 2δ(n/l)2.

Counting all the above we obtain a total of not more than (
√
δ+3δ)(n/l)2 blocks

that are not
√
δ-homogeneous, and so the same bound holds also for non-(

√
δ + 3δ)-

homogeneous blocks.

Lemma 5.6. Let k be fixed. For every 0 < δ < 1
4 and any n× n, 0/1-matrix M ,

with n > (k/δ)O(k), either M has a (δ, t)-equipartition for t = t(δ, k) ≤ (k/δ)O(k), or

for every 0/1-labeled k × k matrix B, an h(δ, k) ≥ (δ/k)O(k2) fraction of the k × k
submatrices of M are B.

Proof. We set h(δ, k) = g(δ2/16, k) and t(δ, k) = 16r(δ, k)/δ2, where g and r are
the functions of Lemma 1.6. If M does not contain an h fraction of k×k submatrices
that are identical to B, then it admits a (δ2/16, r)-partition as per Lemma 1.6. But
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then this implies that M admits a (δ, t)-equipartition by Lemma 5.5.

The following lemma is the main technical tool, showing that the existence of a
(δ, r)-partition (for the appropriate parameters) implies a dichotomy between being
close to SF and containing many forbidden matrices from F .

Lemma 5.7. Let F be an unfoldable family of k × k or smaller matrices. Fur-
thermore, let M be a matrix, and let P be an ε/8-pattern of an (ε/8, t)-equipartition
of M for t > 4k2. If P is ε/2-close to SF , then M itself is ε-close to SF , while if P is
ε/2-far from SF , then M contains at least Ω(n/t)2k distinct k×k matrices containing
members of F (up to permutations).

Proof. Let R1, . . . , Rt and C1, . . . , Ct be the (ε/8, t)-equipartition of M , and let
P be the corresponding (ε/8)-pattern. If P is indeed ε/2-close to SF , then let P ′ be
the ε/2-close matrix containing no members of F . Now modify M by setting every
entry of M to be identical to the entry of P ′ corresponding to its block in the (ε/8, t)-
equipartition. Denote the modified matrix by M ′. M ′ is ε-close to M , because the
modified entries can only correspond to either entries where P and P ′ differed (a
total of at most ε/2n2 entries), or entries that correspond to blocks that are not good
with respect to P (at most ε/8n2), or entries that correspond to good blocks (at most
ε/8n2, as in every good block the corresponding entry of P is ε/8-dominant). Now
since F is unfoldable, M ′ cannot contain members of F unless all their rows are in
distinct Ri and all their columns are in distinct Cj . But then because P ′ contains no
member of F , neither does M ′.

We now assume that P is ε/2-far from containing no member of F , and calculate
the probability that a uniformly random k × k submatrix A of M is not a member
of F . For simplicity we assume that t divides n. Recalling that t > 4k2 we first note
that with probability at least 1

2 this matrix has no two rows in the same Ri and no
two columns in the same Cj . Now, we condition the distribution of A on this event
and note that it is identical to the one resulting from the following procedure: First
choose uniformly, randomly, and independently a row ri ∈ Ri for every 1 ≤ i ≤ t and
a column cj ∈ Cj for every 1 ≤ j ≤ t. Denoting this matrix by Q, now let A be a
uniformly random k × k submatrix of Q.

Because P is an (ε/8)-pattern of the equipartition, no more than an ε/8 fraction
of the entries of M that make up Q come from blocks which are not ε/8-good with
respect to P . For an entry Qi,j of Q that does come from an ε/8-good block Ri ×Cj ,
with probability at least 1−ε/8 the value of Qi,j is identical to Pi,j . This implies that
for the random set of entries of M that makes up Q, the expectation of the fraction of
entries Qi,j that are consistent with the corresponding Pi,j is at least 1− ε/4. Hence,
with probability at least 1

2 the matrix Q is ε/2-close to P , and so contains a member
of F . Now conditioned on this event, the probability that A contains the forbidden
submatrix is at least t−2k. Putting all the above together using Bayes’s law, the
unconditional probability that a uniformly random A contains a forbidden submatrix
is at least t−2k/4, completing the proof.

We can now put together the proof of Lemma 5.2 that concludes this section.

Proof of Lemma 5.2. If M is ε-far from SF (where F is unfoldable), then there
are two possible cases for M . Either it contains an (ε/8, t)-equipartition for t(ε/8, k)
as in Lemma 5.6, or M does not contain such an equipartition.

In the second case, Lemma 5.6 ensures that an (ε/k)O(k2) fraction of the k × k
matrices are identical to an arbitrary member of F , so we are done.

In the first case, let P be an ε/8-pattern of the equipartition of M . By Lemma
5.7 P itself cannot be ε/2-close to SF (as this would contradict the assumption that
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M is ε-far from SF ), and so P is ε/2-far from SF . But then Lemma 5.7 implies that

there is at least an Ω(t−2k) = (ε/k)O(k2) fraction of the k× k submatrices of M , such
that each of these k × k submatrices contains members from F , as required.

6. 1-sided testing for general bipartite graphs. Given a family F of for-
bidden submatrices that may contain foldable ones, we will first construct a family F̃
that is related to F and is unfoldable.

Definition 6.1. For a matrix A, we define the folding of A as the matrix Ã
resulting from A after removing all duplicate rows and columns, keeping only one of
each.1

For a family of matrices F , we define the folding of F as the family F̃ consisting
of all the foldings of the members of A.

The main technical tool here is proven similarly to Lemma 5.7, but here we
actually use Corollary 5.3 for the signature first, to address the possibility of having
some nonhomogeneous blocks in our equipartition.

Lemma 6.2. Let F be a family of k × k or smaller matrices, and let F̃ be the
folding of F . Furthermore, let M be a matrix, and let P be a δ-pattern of a (δ, t)-

equipartition of M , for t ≥ (k/ε)O(k) and δ = (ε/k)O(k2). If P is ε/2-close to SF̃ ,
then M itself is ε-close to SF , while if P is ε/2-far from SF̃ , then M contains at least
Ω(n/kt)2k distinct k × k matrices containing members of F (up to permutations).

Proof. Let R1, . . . , Rt and C1, . . . , Ct be the (δ, t)-equipartition of M . If P is
indeed ε/2-close to SF̃ , then let P ′ be the ε/2-close matrix containing no members

of F̃ . Now modify M by setting every entry of M to be identical to the entry of P ′

corresponding to its block in the (δ, t)-equipartition. Denote the modified matrix by
M ′. As in the proof of Lemma 5.7, it is not hard to see that M ′ is ε-close to M . Now
M ′ cannot contain a member of F (up to permutations) unless P ′ contains a folding
of this member, which is a contradiction as F̃ is the folding of F .

We now assume that P is ε/2-far from containing no member of F̃ and calculate
the probability that a uniformly random k × k submatrix A of M is not a member
of F . For simplicity we assume that t divides n. We note that the distribution of
picking a uniformly random k × k submatrix A is identical to the distribution of the
following procedure: First choose uniformly, randomly, and independently k distinct
rows ri,1, . . . , ri,k ∈ Ri for every 1 ≤ i ≤ t, and k distinct columns cj,1, . . . , cj,k ∈ Cj

for every 1 ≤ j ≤ t. Denoting this matrix by Q, we now let A be a uniformly random
k × k submatrix of Q.

Since P is a δ-pattern of the equipartition, the probability that a random entry
x in M is equal to Pi,j given that x ∈ Ri × Cj and that Ri × Cj is δ-good is at least
1 − δ. Thus, for a δ-good block, with probability at most δ its intersection with Q
is not a k × k matrix whose entries are all identical to the corresponding label of P .
Because P is a δ-pattern of the equipartition, the expectation of the number of blocks
Ri × Cj for which their intersection with Q is not a k × k matrix whose entries are
all identical to the corresponding label of P is no more than 2k2δt2. We let X denote
the set of entries of P corresponding to all such bad blocks. Let E be the event that
|X| ≤ 8k2δt2. Clearly E occurs with probability at least 3/4.

By Corollary 5.3, for X as above and the matrix P , there is a member of F̃
in P whose entries are disjoint from X (for an appropriate choice of the coefficient

1Note that if we remove one of two or more identical rows, the identity relations between columns
remain exactly the same, and conversely the identity relations between rows remain exactly the same
if we remove duplicate columns. Hence, the order in which we remove duplicates does not affect Ã
apart from a possible permutation in its rows and columns.
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in the O notation in the expression of δ, and in the lower bound condition on t).
However, if P contains a copy of a member B̃ of F̃ whose entries are disjoint from
X, then Q contains the member B of F whose folding is B̃. Now conditioned on the
event E, the probability that A contains the forbidden submatrix is at least (kt)−2k.
Putting all of the above together using Bayes’s law, the unconditional probability
that a uniformly random A contains a forbidden submatrix is at least (kt)−2k/4,
completing the proof.

This allows us to conclude with the lemma yielding the 1-sided test.
Lemma 6.3. For every ε and k there exists η = (ε/k)O(k4) such that if an n× n

matrix M where n > (k/ε)O(k3) is ε-far from the property SF , where F is a family
of k × k or smaller matrices, then M contains at least ηn2k distinct submatrices
containing members of F (up to permutations).

Proof. We set δ = (ε/k)O(k2) as required from Lemma 6.2 and set t = t(δ, k) =

(k/ε)O(k3) as per Lemma 5.6. Now if M is ε-far from SF , then either M contains a
(δ, t)-equipartition or it does not.

In the second case, Lemma 5.6 ensures that there is a (δ/k)O(k2) = (ε/k)O(k4)

fraction of the k × k matrices, such that each of these matrices is identical to an
arbitrary member of F , so we are done.

In the first case, let P be a δ-pattern of the equipartition of M . By Lemma 6.2
P itself cannot be ε/2-close to SF̃ (as this would contradict the assumption that M
is ε-far from SF ), and so P is ε/2-far from SF̃ . But then Lemma 6.2 implies that M

contains at least an Ω((tk)−2k) ≥ (ε/k)O(k4) fraction of the k × k submatrices of M
that contain members from F , as required.

Corollary 6.4. The property SF is ε-testable with (ε/k)O(k4) many queries.
Proof. Using the η of Lemma 6.3, select independently 3/η uniformly random

k × k submatrices of M , and for each of them, check whether it contains a member
of F .

7. Open problems.

More general combinatorial structures. A long standing question in graph
property testing is that of whether there exists a test for the property of a (general)
graph being triangle-free, whose number of queries is less than a tower function in ε.
Noting the “conditional regularity” nature of Lemma 1.6 here, one would hope for an
analogue that will work for triangles. However, formulating such an analogue is not
as simple as it seems: Gowers [12] constructed a bipartite (hence triangle-free) graph
in which there is a tower lower bound on the size of the smallest regular partition.
Hence, the only hope would be of finding a partition in which most of the nonregular
pairs are somehow labeled as “irrelevant” for the existence of a triangle in the graph.
This still remains open; we already know, however, by [1] that, unlike the case of
bipartite graphs, a polynomial dependency (in 1/ε) is not possible for this case.

Another interesting open question would be to formulate a lemma in the spirit
of Lemma 1.6 for higher dimensional matrices that would in turn correspond to r-
partite r-uniform hypergraphs. Here too there is probably no avoiding the existence
of “irrelevant” portions for which there is no regularity. Take, for example, any 3-
dimensional matrix which is constant along the last dimension; it does not contain,
for example, the 2 × 2 × 2 matrix that is all zero apart from exactly one entry, while
it may still not admit any relatively small regular partition.

Matrices with row and column order. This direction seems at the moment
more accessible than those outlined above. It would be interesting to test a matrix
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for the property of not containing a member of a forbidden family of submatrices,
with the same row and column orders (i.e., containing a nontrivial row or column
permutation of a forbidden matrix is now allowed). Lemma 1.6 also holds for this
framework, so the missing part would be “untangling” the sets of rows and columns
in the resulting partition, in order to prove from this partition that one need only
consider a set of possible input matrices that can be calculated from a small sample
(as in the proof of Theorem 1.3).

Nonbinary matrices. It would also be interesting to prove the result for matri-
ces that are not binary. It is enough to look at matrices with a fixed finite alphabet,
because one does not need to distinguish between the different labels that do not
appear in the finite set of forbidden matrices F .

Again “full conditional regularity” cannot be guaranteed, but this problem might
be a little more accessible (though perhaps with a no longer polynomial dependence
of the number of queries on ε). A possible course of attack could be to start by
partitioning into blocks, each containing less than the full set of labels, and continue
by recursively classifying each block as either “repartitionable” or “homogeneous” in
a way somewhat reminiscent of what was done (more easily) in [11, 10] for poset
properties.
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