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Abstract

Lionel Levine’s hat challenge has t players, each with a (very large, or infinite)
stack of hats on their head, each hat independently colored at random black or
white. The players are allowed to coordinate before the random colors are chosen,
but not after. Each player sees all hats except for those on her own head. They then
proceed to simultaneously try and each pick a black hat from their respective stacks.
They are proclaimed successful only if they are all correct. Levine’s conjecture is
that the success probability tends to zero when the number of players grows. We
prove that this success probability is strictly decreasing in the number of players,
and present some connections to problems in graph theory: relating the size of the
largest independent set in a graph and in a random induced subgraph of it, and
bounding the size of a set of vertices intersecting every maximum-size independent
set in a graph.

1 Introduction

The following question proposed by Lionel Levine, arose in the context of his work with
Friedrich [9]. It gained considerable popularity after being presented in Tanya Kho-
vanova’s blog [12] in 2011. Consider t players, each with a stack of n hats on her head,
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where the hats are chosen independently at random to be either black or white with
probability 1/2. Each player sees the hats of every other player, but not her own. Then,
simultaneously, all players pick a hat from their respective stacks. The collective of play-
ers wins if every single player points to a black hat, else, if even a single player errs, the
collective fails. Let p(t, n) be the maximal success probability over all possible strategies
that the players can apply. Let p(t) be the limit of p(t, n) as n tends to infinity. The
challenge set by Levine was to prove the following conjecture.

Conjecture 1.1: p(t) tends to 0 as t grows.

Our first result in this paper is the following.

Theorem 1.2: p(t+ 1) < p(t) for all t ≥ 1.

While preparing this paper we were sent a draft of a comprehensive hat-related paper
by Buhler, Freiling, Graham, Kariv, Roche, Tiefenbruck, Van Alten and Yeroshkin [5],
where Theorem 1.2 is also proven, along with other interesting results and bounds. We
refer to their paper as an excellent source for background on the state of the art for this
problem. The most prominent landmarks mentioned in their paper are

0.35 ≤ p(2) ≤ 0.361607

and
p(t) = Ω(1/ log(t)),

where the bounds on p(2) are due to them, and the 1/ log(t) probably due to Peter
Winkler. The fact that p(2) ≤ 3/8 is well known folklore in the hatter community. The
first author and Gabor Tardos had an approach to improve it, but not to as tight a bound
as 0.362.

In this paper, we also present some generalizations of Levine’s conjecture, relating it to
questions regarding independent sets in Hamming products of graphs, and independent
sets in random induced subgraphs. In this context we prove that for every graph G
on n vertices with independence number (1/4 + ε)n, the average independence number
of an induced subgraph of G on a uniform random subset of the vertices is at most
(1/4 + ε− Ω(ε2))n.

The proof of our main theorem leads naturally to the question of bounding the size of
a set which intersects all large maximal (with respect to containment) independent sets,
or all maximum-size independent sets in a graph, and is related to a conjecture regarding
this by Bollobás, Erdős and Tuza. We give a construction yielding a bound related to
this conjecture - an infinite family of graphs Gn, where Gn has n vertices, independence
number at least n/4, and no set of less than

√
n/2 vertices intersects all its maximum

independent sets.
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2 General setting, strategies and winning sets

Let us start by defining a general setting that includes the hats game as a special case.
Let B be a fixed ground set, and letW a family of subsets of B, that we will call winning
sets. In the corresponding game there are t ≥ 1 players, each is assigned a point at
random from B, and each player sees the points the other players were assigned, but not
her own point (which is “on her forehead”). Then, simultaneously, each player chooses a
winning set, and the collective of players succeeds if every player named a set containing
her point.

Let us now define what a strategy is for Bt (“the game for t players”), and what a
winning set is for such a strategy. For t = 1 a winning set is any of the sets in W , and a
strategy is a choice of one winning set, namely, a function f : {∅} → W , so the winning
set for the strategy f is f(∅).) For the t-player game a strategy is a t-tuple of functions,
(f1, . . . , ft), where fi : Bt−1 → W . For a t-tuple x = (x1, . . . , xt) ∈ Bt let x−i denote
the (t − 1)-tuple obtained from x by deleting the i’th coordinate. The winning set for
(f1, . . . , ft) is the set of all x = (x1, . . . , xt) such that for all i it holds that xi ∈ fi(x−i).
Let S(t) be the set of all strategies for the t player game, andW(t) be the set of all winning
sets (note that W(1) =W).

An alternative but equivalent way of defining strategies and winning sets for the
t-player game is the following, which will prove useful for us. (There is a canonical
isomorphism between these two definitions). We proceed to define by induction. For
t = 1 we use the previous definition. For t > 1 we view Bt as Bt−1 × B, and let
X1 = Bt−1, and X2 = B. We define a strategy and a winning set for X1 ×X2.
A strategy for X1×X2 is a pair of functions f1, f2, with f1 : X2 → S(t−1), and f2 : X1 →
S(1). The winning set for (f1, f2) is the set of all points x1, x2 such that x1 belongs to
the winning set of the strategy f1(x2) and x2 belongs to the winning set of the strategy
f2(x1).

In this paper we will concentrate on B = {0, 1}n with various choices for W(1). We
will use the uniform measure on Bt, which we denote by µ, and define

p(t, n) := max
W∈Wt

µ(W ), p(t) := lim
n→∞

p(t, n).

The three choices of W(1) that will interest us are:

• Let Wdict be the set of dictators, i.e. the set of all Wi = {x ∈ B : xi = 1}. This is
the basis for the hats game. We will henceforth use pdict(t, n) and pdict(t) for p(t, n)
and p(t), the success probabilities in this setting.

• Let W intersecting be the set of all intersecting families in {0, 1}n, i.e, the set of all
W ⊂ {0, 1}n such that if x, y ∈ W then there exists a coordinate i such that xi =
yi = 1. We will use pintersecting(t, n) and pintersecting(t) for the success probabilities
in this case.
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• Let Wmonotone be the set of all balanced monotone families in {0, 1}n, i.e, all W
containing precisely half the points in {0, 1}n such that if x ∈ W and yi ≥ xi
for all i then y ∈ W . We will use pmonotone(t, n) and pmonotone(t) for the success
probabilities in this case.

Note that every dictatorship is an intersecting family, and every maximal intersecting
family is a balanced monotone family, so

pmonotone(t, n) ≥ pintersecting(t, n) ≥ pdict(t, n)

and
pmonotone(t) ≥ pintersecting(t) ≥ pdict(t).

Thus the following two conjectures are progressively stronger than Conjecture 1.1

Conjecture 2.1: pintersecting(t) tends to 0 as t grows.

Conjecture 2.2: pmonotone(t) tends to 0 as t grows.

2.1 Winning sets as independent sets in Hamming products of
graphs

Having described the general setting we would like to point out that Conjecture 2.1 is
actually a statement in graph theory. To that end, here are some definitions.

Definition 2.3: The Kneser graph K(n) is a graph on vertex set {0, 1}n, with an edge
between x and y if x and y have disjoint supports, i.e. there is no i for which xi = yi = 1.

Definition 2.4: The Hamming product of graphs G and H has vertex set V (G)×V (H),
and an edge between (x, v) and (y, u) if either x = y and {v, u} is an edge in H, or v = u
and {x, y} is an edge in G. We denote it by G�H. There is a canonical isomorphism
between G�(H�M) and (G�H)�M , so we will treat this product as an associative
relation, and write G�t to denote the t-fold Hamming product of G with itself.

Definition 2.5: Let α(G) be the size of the largest independent set in G, and ᾱ(G) :=
α(G)
|V (G)|

Note that an independent set in G�t is a subset of (V (G))t such that its intersection
with every 1 dimensional fiber of (V (G))t is an independent set in G. Also note that an
independent set in K(n) is an intersecting family. Thus,
Observation:

pintersecting(t, n) = ᾱ(K(n)�t).

So, we may restate Conjecture 2.1 as

Conjecture 2.6:
lim
t→∞

ᾱ(K(n)�t) = 0.
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2.2 Relating the maximal winning set in Bt+1 to the maximal
winning set in a random subset of Bt

We now return to the general setting of a game on Bt and Bt+1 and proceed to express
p(t+1) as the expected measure of the largest intersection of a winning set and a random
set in Bt.

Consider the game on Bt+1 = Bt ×B and a strategy (f1, f2), with f1 : B → S(t) and
f2 : Bt → S(1). These two functions induce (for i = 1, 2) functions g1 : B → W(t) and
g2 : Bt →W(1), simply by letting gi(x) be the winning set of fi(x).

We claim that for a given f2 it is simple to describe an optimal choice of f1. Let
W(1) = {W (1)

i }ri=1, and first, note that f2 (which defines g2) induces a partition of Bt into

V1, . . . Vr, where Vi := g−1
2 (W

(1)
i ). Secondly, note that a random uniform choice of y ∈ B

induces a random subset Ry ⊆ [r] according to the winning sets that y belongs to, i.e.

Ry := {i : y ∈ W (1)
i }.

Now, given f2, and a fixed x2 ∈ B, how best to define f1(x2)? Well, observe that a
necessary condition for (x1, x2) to be contained in a winning set is for x2 ∈ g2(x1) which
means that x2 ∈ Vi for some i ∈ Rx2 . Therefore, the best choice for f1(x2) is such that

the winning set g1(x2) is the winning set W
(t)
j that maximizes the probability that a

random choice of x1 ∈ Bt lands in W
(t)
j ∩

⋃
i∈Rx2

Vi. This implies

Lemma 2.7:

p(t+ 1) = max
Bt=∪ri=1Vi

Ex2∈B

 max
W∈W(t)

µ(W ∩
⋃
i∈Rx2

Vi)

 .
Here the first maximum is over all partitions of Bt, (each corresponding to a choice of
f2), and the second maximum represents the success probability for the optimal choice
of f1(x2), given x2 ∈ B,.

2.3 A special case: maximal indepedent sets in random subsets
of hamming powers of the Kneser graph

We can use Lemma 2.7 to find an upper bound for pintersecting(t + 1, n) (and hence for
pdict(t+ 1, n)) in graph theoretic terms. LetW =Wintersecting = {Wi}ri=1 be the family of
maximal independent sets in K(n), or, in other words, the family of maximal intersecting
sets in {0, 1}n. A choice of a random vertex v in K(n) induces a choice of a random set
Rv ⊆ [r], consisting of all indices i such that v belongs to Wi,

Rv := {i : v ∈ Wi}.
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Each W ∈ W has measure 1/2, so the marginal probability of each i belonging to Rv is
precisely 1/2. Due to positive correlation of increasing events (see, e.g., Harris’s inequality
[11]) these events are non-negatively correlated, i.e., for every i ∈ [r], J ⊆ [r]

Pr[i ∈ Rv|J ⊆ Rv] ≥ 1/2.

Let D = ∪rDr denote the set of all such distributions (for all values of r). We have, then,
the following corollary of Lemma 2.7.

pintersecting(t+ 1, n) ≤ max
r,D∈Dr,(K(n))�t=∪ri=1Vi

ER∼D

[
max
W∈W

µ(W ∩
⋃
i∈R

Vi)

]
. (1)

Remarks:

• Equation (1) bounds the size of the maximal independent set in the (t + 1)’th
Hamming power of the Kneser graph in terms of the maximal independent set
contained in a random subset of the vertices of the t’th power. We will expand
below on this theme, and raise some conjectures regarding this setting in general
graphs.

• Recalling that pintersecting(t, n) ≥ pdictator(t, n) makes this approach relevant to solv-
ing the hats problem

• A similar inequality holds for pmonotone(t+1, n), since monotone increasing subsets,
like intersecting fmailies, are positively correlated.

2.4 Maximal independent sets in random subgraphs

We would like to make a general conjecture regarding independent sets in random sub-
graphs, that if true, using (1), would imply that ᾱ(K(n)�t) tends to 0 as t grows, and
thus also prove Levine’s conjecture regarding the hats problem, Conjecture 1.1.
First let us recall some definitions, and make some new ones.
For any graph G let µ denote the uniform measure on V (G).
Let I(G) be the family of all independent sets in G.
Let ᾱ(G) = maxI∈I(G) µ(I)
Let D = ∪rDr denote all distributions on subsets R of some finite set [r], such that
every i ∈ [r] belongs to R independently with probability 1/2, and all these events are
positively correlated.
Let α∗(G) = maxr,D∈Dr,V (G)=

⋃r
i=1 Vi

ER∼D[maxI∈I(G) µ(I ∩ (∪i∈RVi))].
Let α∗∗(G) = EW [maxI∈I(G) µ(I ∩W )], where W is chosen uniformly over all subsets of
V (G).
Let ε∗(α) = infG:ᾱ(G)≥α{ᾱ(G)− α∗(G)}
Let ε∗∗(α) = infG:ᾱ(G)≥α{ᾱ(G)− α∗∗(G)}
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Conjecture 2.8: ε∗(α) > 0 for all α ∈ (0, 1/2).

This conjecture would imply Conjecture 2.6 (or, equivalently,Conjecture 2.1) as follows.
Assume, by way of contradiction, that ᾱ(K(n)�t) does not tend to 0. Since it is monotone
non-increasing in t (this is easy to see, e.g. the success probability of the corresponding
game cannot increase with the number of players), and bounded from below, it must
tend from above to a limit, say α. For large enough t we would have

α ≤ ᾱ(K(n)�t) < α + ε∗(α)

and hence, using (1), and Conjecture 2.8

ᾱ(K(n)�t+1) ≤ α∗(K(n)�t) =

= ᾱ(K(n)�t)− ε∗(ᾱ(K(n)�t)) < α + ε∗(α)− ε∗(ᾱ(K(n)�t)) ≤ α,

(because ε(α) is non-decreasing. ) So ᾱ(K(n)�t+1 < α, contradiction.

We do not know that Conjecture 2.8 is true even in the special cases where the
distribution of I is simply binomial (i.e. all i belong to I independently with probability
1/2), or in the even more restricted case where each Vi consists of a single vertex. Let us
state this last case as a separate conjecture, as it is seems like a fundamental problem in
the study of independent sets in graphs.

Conjecture 2.9: ε∗∗(α) > 0 for all α ∈ (0, 1/2). In other words:
There exists a monotone non-decreasing function ε∗∗ : (0, 1/2) → (0, 1/2) such that the
following holds (where the point is that ε∗∗ > 0). If G is a graph on n vertices with
maximum independent set of size αn, W is a binomial random subset of V (G), and IW
is the maximal independent set contained in W , then

α∗∗(G) = EW [|IW |/n] ≤ α− ε∗∗(α).

So far, we are able to prove this conjecture for α > 1/4, and in the special case of regular
graphs, for α > 1/8.

Theorem 2.10: Let G = (V,E) be a graph with n vertices and independence number
α(G) = (1/4 + τ)n, where τ > 0 satisfies τ < 1/4. Then α∗∗(G) ≤ 1/4 + τ − τ 2/3.

Theorem 2.11: For any τ > 0 there is some g(τ) > 0 so that the following holds.
Let G = (V,E) be a regular graph with n vertices and independence number α(G) =
(1/8 + τ)n. Then α∗∗(G) ≤ 1/8 + τ − g(τ).

The best upper bound that we know for ε∗∗ comes fromG(n, p), with n = Θ(α log(1/α)),
and a careful choice of a constant p giving

ε∗∗(α) < α2−Ω( 1
α

).

The following subsection contains the proofs of Theorems 2.10 and 2.11.
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2.5 Proofs of theorems 2.10 and 2.11

All logarithms in what follows are in base 2, unless otherwise specified. To simplify the
presentation we omit all floor and ceiling signs whenever these are not crucial.

We will be using an old result of Hajnal [10] (see also [14]), relevant for us in the case
where there exist independent sets containing at least half of the vertices in the graph.

Proposition 2.12 : [10] For every graph G the cardinality of the intersection of all
maximum independent sets plus the cardinality of the union of all these sets is at least
2α(G).
Consequently, if α(G) = αn where α > 1/2 and n is the number of vertices of G, then
there is a set of at least (2α− 1)n vertices contained in all maximum independent sets.

Using Hajnal’s result we next describe the proof of Theorem 2.10.

Proof of Theorem 2.10: Without loss of generality we may assume that n is arbitrarily
large, as we can replace G by a union of many vertex disjoint copies of itself and use
linearity of expectation. Assuming n is large, almost every random subset of vertices
is of cardinality (1/2 + o(1))n, hence it suffices to show that for almost every set W of
m = (1/2 + o(1))n vertices, the independence number of the induced subgraph of G on
W is smaller than (1/4 + ε− ε2/2)n. Construct the random set W of size m by removing
from G vertices, one by one. Starting with V = V0, let Vi+1 be the set obtained from Vi by
removing a uniform random vertex of Vi. The set W is thus Vn−m. Let Gi be the induced
subgraph of G on Vi. Call a step i, 1 ≤ i ≤ n−m of the random process above successful
if either the independence number of Gi−1 is already smaller than (1/4 + ε− ε2/2)n (note
that in this case this will surely be the case in the final graph Gn−m), or the independence
number of Gi is strictly smaller than that of Gi−1. Put i0 = (1/2− ε)n and consider the
graph Gi0 . For any i > i0, the number of vertices of Gi−1 is at most (1/2 + ε)n. If its
independence number is smaller than (1/4+ ε− ε2/2)n then, by definition, step number i
is successful. Otherwise, by the result of Hajnal mentioned above, the number of vertices
of Gi−1 that lie in all the maximum independent sets in it is at least (ε − ε2)n. Since
ε < 1/4 this is a fraction of at least ε of the vertices of Gi−1. Therefore, in this case, the
probability that the next chosen vertex lies in all maximum independent sets of Gi−1 is
at least ε. We have thus shown that for every i satisfying i0 < i ≤ n−m the probability
that step number i is successful is at least ε. Therefore, the probability that there are
at least ε2n/2 successful steps during the n −m − i0 = (ε − o(1))n steps starting with
Gi0 until we reach Gn−m is at least the probability that a binomial random variable with
parameters (ε− o(1))n and ε is at least ε2n/2. This probability is 1− o(1) for any fixed
positive ε as n tends to infinity. Since having that many successful steps ensures that the
independence number of the induced subgraph of G on W is at most (1/4 + ε− ε2/2)n,
this completes the proof. �
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2.5.1 Regular graphs

In the proofs of Theorem 2.11 and later Proposition 4.4 we apply the following early
version of the container theorem of [4] and [15].

Theorem 2.13: [c.f. [3], Theorem 1.6.1] Let G = (V,E) be a d-regular graph on n
vertices and let δ > 0 be a positive real. Then there is a collection C of subsets of V of
cardinality

|C| ≤
∑
i≤n/δd

(
n

i

)
so that each C ∈ C is of size at most n

δd
+ n

2−δ and every independent set in G is fully
contained in a member C ∈ C.

Proof of Theorem 2.11: Let G = (V,E) be as in the theorem, where |V | = n. As
before we may assume without loss of generality that n is sufficiently large as a function
of ε. Without trying to optimize the function g(ε), let d denote the degree of regularity
of G. Note that G contains a set S of at least n/(d2 + 1) vertices no two of which are
adjacent or have a common neighbor. Let W be a uniform random set of vertices of
G. If the complement of W fully contains the closed neighborhoods of s vertices of S,
then the independence number of the induced subgraph of G on W is at most α(G)− s.
The random variable counting the above number s is a Binomial random variable with
expectation |S|/2d+1 ≥ n

(d2+1)2d+1 . Thus if, say, d is at most 50/ε4 we get that the expected
independence number of an induced subgraph of G on a uniform random set of vertices
is at most

α(G)− n

(d2 + 1)2d+1

supplying a lower bound (of the form 2−Θ(ε−4)) for g(ε). We thus may and will assume
that d ≥ 50

ε4
. By Theorem 2.13 with δ = ε there is a collection C of subsets of V , satisfying

|C| ≤
∑

i≤ε3n/50

(
n

i

)
≤ 2H(ε3/50)n,

where H(x) = −x log x− (1−x) log(1−x) is the binary entropy function. Each member
C of C is of size at most

n

δd
+

n

2− δ
≤ ε3n

50
+

n

2− ε
< (

1

2
+ ε)n

and every independent set of G is contained in a member C ∈ C.
As in the proof of Theorem 2.10 we can generate a random subset W of V by omitting

vertices one by one, starting with V . Since n is large almost all sets W are of size
n/2 + o(n). Moreover, for almost all of them the size of W ∩ C deviates from |C|/2
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by at most, say, ε
100
n for all C ∈ C, provided ε is sufficiently small. It suffices to show

that with high probability the independence number of the induced subgraph on W is
at most, say, α(G) − 2g(ε)n. Since every independent set is contained in at least one
of the members C of C it suffices to show that with high probability the independence
number of the induced subgraph of G on W ∩ C is at most α(G) − 2g(ε)n for every
C ∈ C. Fix C ∈ C. Without loss of generality its size is at least n/8 (since otherwise
it cannot contain a large independent set at all). Recall that |C| ≤ (1/2 + ε)n. If the
independence number of the induced subgraph of G on C is smaller than (1/4 + ε)|C|
then so is the independence number of the induced subgraph on W ∩ C, and this is
smaller than α(G) − 0.1εn, implying the desired result. Otherwise, as in the proof of
Theorem 2.10, in the random process that omits vertices of C one by one to get W ∩C,
the number of times the independence number drops dominates stochastically a binomial
random variable with parameters ε

2
|C| and ε. By the standard estimates for Binomial

distributions (c.f., e.g., [3], Theorem A.1.13), the probability this variable is less than
half its expectation is at most

e−ε
2|C|/16 ≤ e−ε

2n/128.

By the union bound over all C ∈ C the probability this happens even for a single C ∈ C
is at most

2H(ε3/50)n · e−ε2n/128

which, for small ε, tends to 0 as n tends to infinity. This shows that in this case (d ≥ 50
ε4

),
with high probability the independence number of the induced subgraph of G on W ∩C
is smaller than α(G) by at least, say, ε2n/40, completing the proof of the proposition. �

3 Blockers and proof of Theorem 1.2

3.1 Bounding p(t+ 1) using blockers

We now focus on the hats game, i.e. consider B = {0, 1}n, with winning sets Wi = {x ∈
B : xi = 1} for i = 1...n. Let µ denote the uniform measure on B, and by abuse of
notation, also on Bt. Call a subset of Bt a winning set, if it is the winning set of any
strategy for the corresponding game. Write p(t, n) and p(t) for short for pdict(t, n) and
pdict(t)

Definition 3.1: A blocker A ⊂ Bt is a set of points that intersects every winning set.

Lemma 3.2: If there exist disjoint blockers A1, . . . , Ar ⊂ Bt, such that

1. |Ai| = k for all i.
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2. µ(
⋃
Ai) = β

Then p(t+ 1) ≤ p(t)− 2−kβ/k.

Proof : By Lemma 2.7 we know that p(t + 1) is bounded by the expectation of the
maximal intersection of any winning set in Bt with V , a random binomial union of
subsets of Bt. Now, if a blocker A is disjoint from V this means that in every winning
set W there is at least one point from A (hence not in V ), 1 point being 1/k of the
measure of A. If the union of all the blockers missed by V has measure τ this means
every winning set contains a set of measure at least τ/k that’s disjoint from V . Now,
since every blocker is missed with probability at least 2−k, the expected proportion of
missed blockers is 2−k , contributing 2−kβ to the expected measure of the union of missed
blockers, which contributes at least 2−kβ/k to the expected measure-loss of the maximum
that defines p(t+ 1).

3.2 Constructing blockers for the hats game

In this subsection we consider the hats game, and construct, for every t, by induction on
t, a set of blockers for Bt. This, together with Lemma 3.2, will prove the main claim of
this paper, Theorem 1.2

Lemma 3.3: Let k(1) = 2, β(1) = 1, and for d ≥ 1 define k(d+ 1) := k(d)
(

2k(d)
k(d)

)
. (So

k grows as a tower function of d), and β(d + 1) = β(d)(2
(

2k(d)
k(d)

)
)−1. Then, for every d

there exist a family of blockers A1, . . . , Ar ⊂ Bd with

1. |Ai| = k(d) for all i.

2. µ(
⋃
Ai) ≥ β(d).

Corollary 3.4: For all d > 1

p(d+ 1) ≤ p(d)− 2−k(d)β(d)/k(d) < p(d).

Proof of Lemma We will build the family of blockers for Bd inductively. For d = 1 the
set of blockers for B is the set of all pairs {x, x̄}. Every dictator must contain precisely
one element from each pair. Now, assume we have a family of blockers of size k(d) for
Bd as desired. Let ` :=

(
2k(d)
k(d)

)
. We will choose randomly (in a manner to be described

below) a series of disjoint unordered `-tuples Y (j) = {y(j)
1 , y

(j)
2 , . . . , y

(j)
` }, with y

(j)
i ∈ B,

for j = 1, 2, . . . until the measure of the union of these `-tuples in B exceeds 1
2`

. The
new blockers for Bd+1 will be all cartesian products of the form b × Y (j) where b is one
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of the blockers we designed for Bd. The claims regarding the size of the blockers and
the measure of their union are immediate. We must check two things. First, that the
product b× Y (j) is indeed a blocker for Bd+1, secondly, that one can choose the desired
number of disjoint `-tuples.
To this end, let us describe how the `-tuples are formed. We take a random partition
of the n coordinates of B into 2d(k) sets S1, . . . , S2d(k), uniformly over all such (ordered)
partitions. For every I := {i1, . . . , id(k)} ⊂ [2d(k)], let yI ∈ B be the vector whose 1-
support is precisely Si1 ∪ Si2 ∪ . . . ∪ Sid(k) . This defines ` different vectors corresponding
to the specific partition. We proceed to choose such `-tuples sequentially at random,
and discard any `-tuple that is not disjoint from all its predecessors. Note that the
marginal distribution of every YI is uniform, hence if the union of all predecessors of
Y (j) has measure ε then with probability at least 1 − `ε it will be disjoint from its
predecessors, so we may, as claimed, continue until the measure of the union of all `-
tuples is 1

`
(1 − o(1)). Finally, we prove that b × Y (j) is a blocker for Bd × B, where

Y (j) is an `-tuple corresponding to some partition, and b = {x1, . . . , xk(d)} is a blocker
for Bd. Let (f1, f2) be a strategy for Bd × B, and (g1, g2) the corresponding functions
such that gi(z) is the winning set for the strategy fi(z). For every x ∈ Bd, g2 picks a
dictatorship g2(x) = Wi, so define t1, . . . , tk(d) by g(xi) = Wti . These are, respectively,
the dictators that the second player guesses when she sees one of the x’s from b on the
first player’s forehead. For i = 1, . . . , k(d) let Sri be the part of the partition of [n] (used
to define Y (j)) that contains ti, and let I = {ir1 , . . . , irk(d)} (or an arbitrary set of size

k(d) containing it if the elements in it are not distinct). So the `-tuple Y (j) contains a
vector yI for which all the coordinates t1, . . . , tk(d) are equal to 1, meaning that if the
second player has yI on her forehead she will make a correct guess if the first player has
any of the x’s in b on her forehead, i.e.

yI ∈ ∩k(d)
i=1Wti = ∩xi∈bg2(xi)

Now, let g1(yI) be the corresponding winning set in Bd that the first player guesses when
seeing yI . By the fact that b is a blocker there exists xi ∈ b that belongs to g1(yI), (and,
as mentioned, yI belongs to the winning set g2(xi)), so the pair (xi, yI) belongs to the
winning set of (f1, f2) - i.e. we have proven that b× Y (j) intersects every winning set for
Bd ×B

�

4 Blockers (hitting sets) in graphs

In light of the partial success in the previous section, a tempting approach to conjecture
2.8 is to try and prove the existence of a family of disjoint blockers (to the family of
maximal independent sets of almost maximum size) in any graph G, where their size
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and the measure of their union is a function of ᾱ(G). However, this conjecture, which
constitutes a radical strengthening of a conjecture of Bollobás, Erdős and Tuza, (see
below), is too good to be true, as shown by the two (families of) examples in this section,
where every blocker has size which tends to infinity as the size of the graph in the example
grows. In the example of Theorem 4.2 the maximum-size independent sets are of size
n/4, and the smallest set intersecting all maximum independent sets is of size Θ(

√
n). In

the example of theorem 4.3 the maximum-size independent sets are of size n(1/2− o(1))
and the smallest set intersecting all maximum independent sets has size Θ(log(n)).

For a graph G = (V,E) let h(G) denote the minimum cardinality of a set of vertices
that intersects every maximum independent set of G. Bollobás, Erdős and Tuza (see [8],
page 224, or [6], page 52) raised the following conjecture.

Conjecture 4.1: [[8], [6]] For any positive α, if the size α(G) of a maximum independent
set in an n-vertex graph G is at least αn, then h(G) = o(n).

Our examples, related to this conjecture, are as follows. As we will see, in the case of
regular graphs, the first example gives an almost tight bound for its parameter range.

Theorem 4.2: For every positive integer k there is a graph G = Gk with n = 2k(2k−1)
vertices, independence number α(G) = k2(> n/4), and h(G) = k + 1(>

√
n/2).

Theorem 4.3: For any positive integers m and t, where m is even and 4t2 ≤ m, there
is a graph G = Gm,t on n = 2m vertices with independence number α(G) =

∑m/2−t
i=0

(
m
i

)
and h(G) = Θ(t2).

Theorems 4.2 and 4.3 are proven in subsection 4.1 below.

We remark that Theorem 4.3 settles the final open problem raised by Dong and Wu
in [7].

The graphs establishing the assertion of Theorem 4.2 are regular. It turns out that
for regular graphs (of any degree) the estimates in this theorem are nearly tight, as stated
in the next proposition.

Proposition 4.4: For any fixed ε > 0 and any regular graph G with n > n0(ε) vertices
satisfying α(G) ≥ (1/4 + ε)n, the parameter h(G) satisfies h(G) < (1/ε)

√
n log n+ 1.

Proof of Proposition 4.4: Let G = (V,E) be a d-regular graph on n vertices with
independence number at least (1

4
+ε)n, and assume that n is sufficiently large as a function

of ε. The closed neighborhood of any vertex of G intersects every maximum independent
set of G, implying that h(G) ≤ d+1. If d ≤ (1/ε)

√
n log n this implies the desired result,
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hence we may and will assume that d is larger. By Theorem 2.13 with δ = ε there is a
collection C of at most ∑

i≤
√
n/
√

logn

(
n

i

)
≤ 2

√
n logn

subsets of V , each of size at most

n√
n log n

+
n

2− ε
< (

1

2
+ ε)n

so that every independent set of G is fully contained in one of them.

Let X be a random set of 1
ε

√
n log n vertices chosen uniformly (with repetitions)

among all vertices of G. Fix a container C ∈ C. By Hajnal’s result, Proposition 2.12,
there are at least εn vertices contained in all maximum independent sets of G that are
contained in C. The probability that X does not contain any of these vertices is at most

(1− ε)
1
ε

√
n logn ≤ e−

√
n logn.

The desired result follows by applying the union bound over all C ∈ C. �

4.1 Constructions

Proof of Theorem 4.2: The graph G = Gk is the shift graph described as follows. Put
K = {1, 2, .., 2k}. The set of vertices of Gk is the set of all ordered pairs (i, j) with i 6= j
and i, j ∈ K. Thus the number of vertices is n = 2k(2k−1). Two vertices (a, b) and (c, d)
are adjacent if b = c or d = a. Note that the vertices can be viewed as all directed edges
of the complete directed graph on K, where two are adjacent iff they form a (possibly
closed) directed path of length 2. It is easy to check that the maximum independent
sets of this graph are of size k2. Indeed, for every partition of K into two disjoint parts
S and T of equal cardinality, the set of all pairs (s, t) with s ∈ S, t ∈ T is a maximum
independent set, and these are all the maximum independent sets. Any set H of at most
k vertices of G can be viewed as k directed edges of the complete graph on K. Let S be
a set of k points in K that does not contain the head of any of these k directed edges,
and put T = K − S. Then the maximum independent set consisting of all pairs (s, t)
with s ∈ S, t ∈ T does not intersect H. Therefore h(G) ≥ k + 1. This is tight as shown
by a set of pairs forming a directed cycle of length k + 1 in the complete directed graph
on K. �

Proof of Theorem 4.3: Let G = Gm,t be the graph whose vertices are all binary
vectors of length m, where two are adjacent iff the Hamming distance between them
exceeds m − 2t. Note that this is the Cayley graph of Zm

2 with respect to the set of
all vectors of Hamming weight at least m − 2t + 1. This graph contains as an induced
subgraph the Kneser graph K(m,m/2 + 1 − t). By an old result of Kleitman [13], the
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independence number of this graph is exactly
∑m/2−t

i=0

(
m
i

)
. The maximum independent

sets are the 2m Hamming balls of radius m/2− t centered at the vertices of G. Any set
of vertices that hits all these independent sets forms a covering code of radius m/2− t in
Zm

2 . By using known results about covering codes in this range of the parameters it is not
difficult to prove that the minimum possible size of such a set is Ω(t2). Indeed, viewing
the vectors of the covering code as vectors with {−1, 1} coordinates, if their number is T
then by a known result in Discrepancy Theory (see, e.g., [3], Corollary 13.3.4), there is
a {−1, 1} vector whose inner product with all members of the code is in absolute value
at most 12

√
T . If 12

√
T < 2t this gives a vector whose Hamming distance from any

codeword is larger than m/2− t, contradicting the assumption. This shows that the size
of the code is at least Ω(t2). This is tight up to the hidden constant in the Ω-notation as
can be shown by a random construction of vectors of length Θ(t2), extending each such
vector in two complementary ways on the remaining coordinates, or by taking the rows
of a Hadamard matrix of order Θ(t2) and their inverses, extending them in the same
way. Note that the fact that the Kneser graph K(m,m/2 + 1 − t) is a subgraph of G
also implies a lower bound of 2t for the size of the hitting set (as the Hamming balls
of radius m/2 − t centered in the points of the hitting set cover all points, providing a
proper coloring of the Kneser graph), but the bound obtained this way is weaker than
the tight Θ(t2) bound. �

5 Remarks and a conjecture

• Conjecture 4.1 remains open for n-vertex graphs with independence number at most
n/2 and for such regular graphs of independence number at most n/4. Similarly,
Conjecture 2.9 remains open for n-vertex graphs with independence number at most
n/4 and for such regular graphs with independence number at most n/8. Both
conjectures appear to be significantly more difficult for graphs with independence
number βn when β > 0 is a fixed small positive real.

• As shown by the two constructions in the previous section, one cannot hope to prove
Conjecture 2.9 by constructing a large family of bounded-size blockers, as in the
proof of Theorem 1.2. However, in these two examples, where the minimal size of a
blocker (hitting set) is large, the number of maximum independent sets is very small.
In the shift graph, where the blockers are of size Θ(

√
n) the number of maximum

independent sets is of order 2Θ(
√
n). In the second example the number of maximum

independent sets is only n. This leads to the following conjecture, asserting that
the family of independent sets may be partitioned into a small number of parts,
where for each part the maximal independent sets of almost maximum-size may be
blocked by a large family of disjoint blockers of bounded size. This would suffice
to imply Conjecture 2.9.

Conjecture 5.1: For every α > 0 there exists a positive integer B and τ > 0
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and τ4−B > δ > 0, and ε > 0 such that the following holds for sufficiently large n.
Let G be a graph on n vertices, where the maximum independent sets are of size
αn, and let I be the family of all maximal independent sets in G of size at least
(α− ε)n. Then I can be partitioned into at most 2δn parts, where for each part Ij
there exists a family of τn pairwise disjoint sets of size B that each intersect every
element in Ij .

• A conjecture raised by the first author more than ten years ago motivated by some
of the results in [2] is that the chromatic number of the graph Gm,t described in
the proof of Theorem 4.3, where 4t2 ≤ m, is Θ(t2). This has been mentioned in
several lectures, see, for example, [1]. By the arguments described in the proof of
Theorem 4.3 this chromatic number is at least 2t and at most O(t2).
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