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Abstract

A family of subsets of an n–set is k–locally thin if for every k of its member
sets the ground set has at least one element contained in exactly 1 of them. We
derive new asymptotic upper bounds for the maximum cardinality of locally thin
set families for every even k. This improves on previous results of two of us with
Monti.
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1 Introduction

Let F be a family of subsets of a ground set of n elements. As usual, we can suppose
without loss of generality that our ground set is [n] = {1, 2, . . . , n}. We say that the family
is k– locally thin if for any k of its distinct member sets at least one point i ∈ [n] of the
ground set is contained in exactly one of them. We say further that a set family is thin
if it is k–locally thin for every k ≤ |F|. We are interested in finding out how large these
families can get. It is quite obvious at the outset that a thin family of subsets of [n] can
have at most n members and this is achieved by the family of all the subsets of n having a
single element. Let M(n, k) denote the maximum cardinality of a k–locally thin family of
subsets of a ground set of n elements. We are interested in the exponential asymptotics of
M(n, k) for arbitrary but fixed k. More precisely, we would like to determine the sequence

t(k) = lim sup
n→∞

1

n
logM(n, k) (1)

(All the exp’s and log’s are binary.) The above is a notoriously hard task. In particular,
one doesn’t even know whether t(3) < 1. This is one of the famous open questions about
strong ∆–systems, (cf. [3] and the recent survey [5].) Another startling lack of our
knowledge is not to be able to decide whether t(k) is monotonic in k. In this paper we
will present improvements over previously known bounds for every even value of k.

Our starting point is a recent paper of Alon, Körner and Monti in which the authors
prove that
Theorem AKM([1], Theorem 2)

1

3
(6− log 37) ≤ t(4) <

1

2

while in general,
Theorem AKM([1], Theorem 3)

t(k) ≤ log 3

2
for every k ≥ 5

Our main objective here is to improve these bounds for even values of k. The two pre-
requisites for our proof are the information–theoretic bounding technique of [7] based
on graph entropies and a theorem of Frankl and Füredi [4]. To make the present pa-
per self–contained we recall the basic information–theoretic definitions needed. Graph
entropy H(G,P ) is an information–theoretic functional of a graph G with a probability
distribution P on its vertex set, introduced in Körner [6]. It is usually defined as

H(G,P ) = min
X∈Y ∈S(G), PX=P

I(X ∧ Y ),

where S(G) denotes the family of the stable sets of vertices in G. (A subset of the vertex
set is called stable if it does not contain any edge. For the basics in information theory
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the reader is referred to the book [2]. We recall that the mutual information I(X ∧ Y ) of
the random variables X and Y equals H(X) +H(Y )−H(X, Y ), where e. g. H(X,Y ) is
the entropy of the random variable (X,Y ). Notice that the entropy of a random variable
is the entropy of its distribution.) A crucial property of H(G,P ) needed in our proof is
its sub–additivity with respect to graph union [7]; if F and G are two graphs on the same
vertex set V and F ∪G denotes the graph on V with edge set E(F ∪G) = E(F )∪E(G),
then for every P we have

H(F ∪G,P ) ≤ H(F, P ) +H(G,P ). (2)

A straightforward consequence of the definition is the lower bound (cf. [7])

H(P )− logα(G) ≤ H(G,P ), (3)

where α(G), the stability number of the graph G, is the maximum cardinality of a stable
set in the graph. We shall use the notation h(t) = −t log t − (1 − t) log t for the binary
entropy function.

We will use the following beautiful theorem.

Theorem FF([4])
Let X be an n-set and let G be a family of k-element subsets of X. Given nonnegative

integers l and l′ such that l + l′ < k, we say that G is an (n, k, l, l′)-system if, for all
distinct pairs F, F ′ ∈ G, either |F ∩ F ′| < l or |F ∩ F ′| ≥ k − l′. Let m(n, k, l, l′) be
the maximum cardinality of such a system. There exists a positive constant dk such that
m(n, k, l, l′) < dkn

max{l,l′} holds.

If k is even then, taking l = k/2, l′ = k/2− 1 we conclude:

Corollary FF
For every even k there exists a positive constant dk such that the maximum cardinality

of a family of k-subsets of an m-element set in which no two members intersect in precisely
k/2 elements is at most dkm

k/2.

These are the prerequisites to our proof. The interested reader can find a gentler
introduction to graph entropy in the survey of Simonyi [9].

2 Locally thin families

Our goal in this section is to prove

Theorem 1 For every even k > 2 we have

t(k) ≤ 2

k
max
p∈[0,1]

1−
k∑

j=k/2+2

(
k

j

)
pj(1− p)k−j

h
 ∑dk/4e

t=0

(
k
2t

)
p2t(1− p)k−2t

1−∑k
j=k/2+2

(
k
j

)
pj(1− p)k−j

 (4)
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Proof.
Let us fix a (large) n and an arbitrary family G achieving M(n, k) with k = 2l. We

consider the graph G whose vertices are all the k–tuples of different sets from the family
G, i. e., we define V (G) =

(
G
k

)
. Given an element i ∈ [n] and a family A ⊆ 2[n] of subsets

of [n] we denote by χ(i, A) the number of those sets in the family A that contain i. We
draw an edge between two vertices, A and B in G if

|A ∩B| = l (5)

By hypothesis, since the symmetric difference of such sets, A4B, has cardinality k, there
exists at least one point i ∈ [n] for which

χ(i, A4B) = 1 (6)

We define, for every i ∈ [n] the graph Gi by setting V (Gi) = V (G) and by drawing an
edge between two vertices A and B of Gi if they are adjacent in G and furthermore, the
point i ∈ [n] satisfies (6). This implies that each of the n graphs Gi is a subgraph of G.
Further, more importantly, we have

G =
n⋃
i=1

Gi (7)

Then, by virtue of the sub–additivity (2) of graph entropy for the equidistribution P
on V (G) the graph relation (7) implies

H(G,P ) ≤
n∑
i=1

H(Gi, P ). (8)

Let ki be the number of different sets in G that contain i ∈ [n]. We set

pi =
ki
n

Let us consider the graph F with vertex set {0, 1, . . . , k} and edge set consisting of the
unordered pairs {j, j + 1} of vertices for every j with 0 ≤ j ≤ k

2
. Consider further the

function fi : V (G)→ V (F ) defined by setting

fi(A) = χ(i, A)

for every A ∈ V (G). By our hypothesis, if {A,B} ∈ E(Gi), we must have

|χ(i, A)− χ(i, B)| = 1

and

χ(i, A) ≤ k

2
+ 1, χ(i, B) ≤ k

2
+ 1

3



implying that fi acts on
(
V (G)

2

)
in an edge–preserving manner. Let Qi denote the proba-

bility distribution generated on V (F ) by fi and P. Clearly, the k
2

+2 non–isolated vertices
of the graph F form a path and the rest consists of k

2
− 1 isolated points. We have, (up

to an asymptotically negligible correcting factor compensating the effect of not allowing
for repetitions in forming the k–sets),

Qi(j) =

(
k

j

)
pji (1− pi)k−j (9)

In this graph the total probability of the non–isolated points is

1−
k∑

j=k/2+2

(
k

j

)
pji (1− pi)k−j

These constitute a unique path along which they have an alternating parity and therefore
can be partitioned into two stable sets, one consisting of odd vertices and the other
consisting of the even ones. Hence, as an easy consequence of the very definition of graph
entropy (or else cf. [7] for more detail), we obtain

H(Gi, P ) ≤

1−
k∑

j=k/2+2

(
k

j

)
pji (1− pi)k−j

h
 ∑dk/4e

t=0

(
k
2t

)
p2t
i (1− pi)k−2t

1−∑k
j=k/2+2

(
k
j

)
pji (1− pi)k−j

 (10)

Thus, (8) and (10) imply

H(G,P ) ≤ n max
p∈[0,1]

1−
k∑

j=k/2+2

(
k

j

)
pj(1− p)k−j

h
 ∑dk/4e

t=0

(
k
2t

)
p2t(1− p)k−2t

1−∑k
j=k/2+2

(
k
j

)
pj(1− p)k−j


(11)

We turn to lower bounding the entropy H(G,P ). In the previous development we
have kept n fixed. Let G(n) now stand for the family hitherto denoted simply by G,
and let G(n) stand for the corresponding graph, etc. Let S(n) be a stable set of G(n)
having maximum size α(G(n)). Clearly, the vertices of S(n) form a family of k-element
subfamilies of G satisfying the condition of Corollary FF, and thus we have

|S(n)| ≤ dk|G|k/2 (12)

for some positive constant dk. Substituting the last inequality into (3) and observing that
P is the equidistribution on V (G), we obtain

H(G(n), P ) ≥ log |V (G(n))| − log |S(n)| =

= log

(
|G|
k

)
− k

2
log |G| − log dk
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implying that
1

n
H(G,P ) ≥ k

2n
log |G| − εn(k) (13)

for some εn(k)→ 0. Comparing this with (11) results in

k

2n
log |G| ≤ max

p∈[0,1]

1−
k∑

j=k/2+2

(
k

j

)
pj(1− p)k−j

h
 ∑dk/4e

t=0

(
k
2t

)
p2t(1− p)k−2t

1−∑k
j=k/2+2

(
k
j

)
pj(1− p)k−j

+εn(k)

whence we conclude that 1
n

logM(n, k) has the upper bound

2

k
max
p∈[0,1]

1−
k∑

j=k/2+2

(
k

j

)
pj(1− p)k−j

h
 ∑dk/4e

t=0

(
k
2t

)
p2t(1− p)k−2t

1−∑k
j=k/2+2

(
k
j

)
pj(1− p)k−j

+ εn(k) (14)

which, passing to the limit in n concludes the proof.
2

3 Comments

Our theorem gives a complicated looking upper bound on t(k). One immediately sees
however that

Corollary 1 For every even value of k > 2

t(k) <
2

k

In particular,
t(4) < 0.4968, t(6) < 0.3328

Proof.
Notice that

[
1−∑k

j=k/2+2

(
k
j

)
pj(1− p)k−j

]
≤ 1 with equality only if p = 0. In this

case we have, however that

h

 ∑dk/4e
t=0

(
k
2t

)
p2t(1− p)k−2t

1−∑k
j=k/2+2

(
k
j

)
pj(1− p)k−j

 = 0.

If p > 0, the latter expression, as a binary entropy, is still upper bounded by 1. For small
values of k the maximum of the above function in p is easily calculated giving the claimed
values.

2

Beyond that of determining the precise value of t(k) many less specific open questions
seem challenging. One of these is to decide whether t(k) is monotonically decreasing in
k. It is not hard to see that
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Proposition 1
t(k + l) ≤ max{t(k), t(l)}

Proof.
Suppose, to the contrary, that t(k + l) > max{t(k), t(l)} and let Fn be a sequence of

k + l–thin set families with F ⊆ 2[n]. Divide Fn into nearly equal parts, Fn(k) and Fn(l)
so that both

lim sup
n→∞

1

n
log |Fn(k)| > max{t(k), t(l)}

lim sup
n→∞

1

n
log |Fn(l)| > max{t(k), t(l)}

This means that for n sufficiently large Fn(k) will contain k sets forming a subfamily
which is not locally k–thin and likewise Fn(l) will have a subfamily of l sets which is not
locally l–thin. Then, however, the union of these families will be a family of k+l members
which is not locally k + l–thin; a contradiction.

2

4 Further Bounds for M(n, k)

So far we have said nothing on M(n, k) for odd values of k. We obtain the following
asymptotic result on t(k).

Theorem 2 There are two absolute positive constants c1, c2 such that for every k > 2

c1
1

k
≤ t(k) ≤ c2

log k

k
.

Proof. The lower bound is by a simple probabilistic construction, which is left to the
reader. The upper bound for even values of k follows from the assertion of Theorem 1,
and by choosing c2 appropriately it is trivial for, say, k < 9. It thus remains to prove it
for k = 2s + 3, s ≥ 3. It is convenient to define M ′(n, k) as the maximum length of a
sequence of (not necessarily distinct) subsets of [n], such that for every k members of the
sequence there is an i ∈ [n] that lies in exactly one of them, and to call a sequence of
this type k-thin. Trivially M ′(n, k) ≥ M(n, k). Therefore, to prove the desired result it
suffices to prove the following.
Claim: Suppose k = 2s+ 3, s ≥ 3, and let α ≤ 1/2 be a positive real satisfying

2−h(α)s <
α

2
, (15)

where h(α) is the binary entropy of α. Then, for all n ≥ 1,

M ′(n, k) < 2k · 2h(α)n. (16)
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It is easy to check that there is an α satisfying (15) for which α = O(1/k), and hence the
assertion of the claim implies the desired upper bound. We also note that the constant 2
in the right-hand-side of (15) can be improved, but we make no attempt to optimize the
absolute constants here.

To prove the claim we apply induction on n. The result is trivial for n = 1, since every
sequence of at least 2k subsets of [1] contains either the empty set or the set {1} itself k
times, and hence cannot be k-thin. Let, now, F be a sequence of at least 2k ·2h(α)n subsets
of [n], where n > 1, and suppose the assertion of the claim holds for n − 1. If there is
some i ∈ [n] that does not belong to at least 2−h(α)|F| members of F , then the collection
of all these members is a sequence of at least 2k · 2h(α)(n−1) subsets of an (n− 1)-element
set, and hence is not k-thin, by the induction hypothesis.

We can thus assume that for every i ∈ [n] the number of members of F that do not
contain i is smaller than 2−h(α)|F|. This implies that for every i ∈ [n] the probability
that the union of a set of s randomly chosen members of F does not contain i is at most
2−h(α)s < α/2. Let us choose, randomly, a collection of m = 2d2h(α)ne subsets S1, . . . , Sm
of F , each consisting of precisely s members of F , where the chosen collections are pairwise
disjoint. (This can be done, for example, by randomly permuting all elements of F , and
by splitting the first sm elements in this permutation into m pairwise disjoint blocks,
each consisting of s consecutive elements.) By linearity of expectation, for each fixed
1 ≤ j ≤ m, the expected number of elements in [n] that do not lie in the union ∪F∈SjF
is at most αn/2. Therefore, using again linearity of expectation, there is a choice for the
sets Sj such that at least m/2 of these unions are of cardinality at least n − nα. Since
the total number of subsets of cardinality at most αn in an n-element set is smaller than
m/2 = d2h(α)ne, this implies that there are two such unions that coincide. This gives a
collection of 2s members of F , such that each element in their union is covered at least
twice, and their union is of size at least n− αn. By the pigeonhole principle there are 3
additional members of F whose intersections with the complement of the above mentioned
union are identical. These 3 members together with the previous 2s ones show that F is
not k-thin and hence complete the proof.

2
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