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Abstract. The paper presents several results on edge partitions
and vertex partitions of graphs into graphs with bounded size com-
ponents. We show that every graph of bounded tree-width and
bounded maximum degree admits such partitions. We also show
that an arbitrary graph of maximum degree four has a vertex par-
tition into two graphs, each of which has components on at most 57
vertices. Some generalizations of the last result are also discussed.

1. Introduction

Graphs in this paper are simple, that is, without loops or multiple
edges. The set of vertices of a graphG will be denoted by V (G), and the
set of edges of G will be denoted by E(G). An edge partition of a graph

G is a set {A1, A2, . . . , Ak} of subgraphs of G such that
⋃k
i=1 E(Ai) =

E(G). Similarly, a vertex partition of G is a set {A1, A2, . . . , Ak} of

induced subgraphs of G such that
⋃k
i=1 V (Ai) = V (G).

Observe that vertex coloring and edge coloring are special cases of
partitions. More precisely, a proper vertex k-coloring is a vertex par-
tition into k edgeless graphs, and a proper edge k-coloring is an edge
partition into k matchings. Thus an edge partition or a vertex parti-
tion {A1, A2, . . . , Ak} may be viewed as an edge or vertex k-coloring,
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and the connected components of the subgraphs Ai may be referred
to as monochromatic components. Note that a proper vertex (edge)
coloring can be described as a vertex (edge) partition into graphs with
only components of one vertex (at most two vertices). In this paper,
we investigate the existence of vertex and edge partitions into graphs
with only components of bounded size.

The degree of a vertex v of G, denoted by dG(v), is the number of
edges incident with v. The maximum vertex degree of a graph G will
be denoted by ∆(G). If X ⊆ V (G) or X ⊆ E(G), then G(X) is the
subgraph of G induced by X. If F ⊆ E(G), then G\F is the subgraph
obtained from G by deleting all edges in F . The length of a path is its
number of edges.

Let k be a positive integer. A k-tree is a graph defined inductively
as follows: A complete graph on k vertices is a k-tree. If G is a k-tree,
and K is a subgraph of G that is a complete graph on k vertices, then
a graph obtained from G by adding a new vertex and joining it by
new edges to all vertices of K is a k-tree. Any subgraph of a k-tree is
a partial k-tree. The tree-width of a graph G is zero if G is edgeless;
otherwise it is the smallest integer k such that G is a partial k-tree.
Nontrivial forests have tree-width 1, while every graph has some tree-
width.

The first result of this paper, which is presented in Section 2, deals
with graphs in which both maximum degree and tree-width are bounded.
We show that each such graph has an edge partition and a vertex par-
tition into two graphs whose components have bounded size. We also
show there that, in general, bounding just one of maximum degree and
tree-width is not sufficient to ensure the existence of such partitions.

Section 3 contains several lemmas useful later in the paper. In Sec-
tions 4 and 5, we investigate, respectively, vertex partitions and edge
partitions where both the number of parts and maximum sizes of their
components are bounded by functions of the maximum degree. In a
previous paper [7], three of the authors in collaboration with Sanders
showed that every graph of maximum degree three has an edge parti-
tion into two graph all of whose components are paths on at most seven
edges. Later, Thomassen [13] proved a stronger result by showing that
seven can be replaced by five, which is the best possible. Either of
these two results can be stated in terms of vertex partitions of certain
graphs of maximum degree four: line graphs of graphs with maximum
degree three. In Section 4, we show a generalization of these results for
all graphs with maximum degree four. More precisely, the following is
an immediate corollary of Theorem 4.1, which appears in Section 4.
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Corollary 1.1. Every graph of maximum degree four has a vertex par-
tition into two graphs each of which has only components on at most
57 vertices.

Note that, as demonstrated by K5, the components in Corollary 1.1
need not be paths. Also, we do not believe that the bound in that
corollary is the best possible.

In Section 6, we investigate partitions of planar graphs. We show
that bounding the maximum degree of planar graph by six does not
guarantee the existence of vertex or edge 2-coloring with bounded
monochromatic components. We also show that, in general, planar
graphs cannot be vertex 3-colored with all monochromatic components
having bounded size.

2. Bounding Both Tree-Width and Maximum Degree

The main theorem of this section is based on the following result [4].
A tree-partition of a graph G is a pair (T, P ) where T is a tree and P
is a (disjoint) partition {Pt : t ∈ V (T )} of V (G) such that, for every
pair of adjacent vertices u and v of G, either they are both contained
in the same Pt, or there are two adjacent vertices s and t of T such
that u ∈ Ps and v ∈ Pt. The width of a tree-partition (T, P ) is the
maximum size of a Pt.

Proposition 2.1. Every graph of maximum vertex degree ∆ and tree-
width k admits a tree-partition of width at most 24k∆.

As a consequence of Proposition 2.1, we show that graphs of bounded
tree-width and bounded maximum vertex degree can be vertex parti-
tioned and edge partitioned into graphs whose connected components
have bounded size.

Theorem 2.2. Let k and ∆ be positive integers, and let G be a graph
whose tree-width is at most k and whose maximum vertex degree is at
most ∆. Then G admits a vertex partition {G1, G2} such that every
connected component of G1 and G2 has at most 24k∆ vertices, and G
admits an edge partition {H1, H2} such that every connected component
of H1 and H2 has at most 24k∆(∆ + 1) vertices.

Proof. By Proposition 2.1, G has a tree-partition (T, P ) of width at
most 24k∆ where P = {Pt : t ∈ V (T )}. Since T is a tree, it has a
vertex partition {T1, T2} such that neither T1 nor T2 has any edges. Let
Gi =

⋃
t∈V (Ti)

Pt for i ∈ {1, 2}. It is clear that {G1, G2} is as described
in Theorem 2.2.

Now we shall construct the edge partition {H1, H2}. Begin by choos-
ing an arbitrary vertex t0 of T . For each vertex t of T , let h(t) denote
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the set of vertices s of T such that s = t or s is a neighbor of t that
is separated from t0 by t. For each t, let H(t) denote the subgraph of
G that is induced by the edges with one endpoint in Pt and the other
endpoint in Ps, for some s ∈ h(t). Now let Hi =

⋃
t∈V (Ti)

H(t) for

i ∈ {1, 2}. Since Pt has at most 24k∆ elements, each of which has at
most ∆ neighbors, the conclusion follows.

It is natural to ask whether bounding just one of tree-width and max-
imum vertex degree suffices to ensure the existence of a vertex partition
or an edge partition into two graphs with bounded size components.
We show that, in general, the answer to this question is negative.

First, we consider graphs with bounded tree-width. Let Sn be a star
on 2n vertices, that is, a tree with 2n − 1 edges, all incident with the
same vertex. Let Fn be a fan on n2 + n + 1 vertices, that is, a graph
obtained from a path on n2 + n vertices by adding a new vertex and
joining it to all vertices of the path. Observe that, if n is a positive
integer, the tree-width of Sn is one, and the tree-width of Fn is two.
Yet it is clear that for every edge partition {G1, G2} of Sn each of G1

and G2 is a star, and at least one of them has more than n vertices.
Similarly, it is easy to show that, for every vertex partition {G1, G2}
of Fn, at least one of G1 and G2 has a connected component with
more than n vertices. It is worth noting that the above examples have
the smallest tree-width possible, for a graph of tree-width zero has no
edges, and a graph of tree-width one is a forest, and hence has a vertex
partition into two edgeless parts.

Now, we turn our attention to graphs with bounded maximum de-
gree. Our example will be based on the following result of Erdős and
Sachs [8]

Proposition 2.3. For every integer k ≥ 2 and every integer g ≥ 3,
there is a k-regular graph whose girth is g.

Let n be an integer exceeding two, and let G be a 4-regular graph
of girth n. Then |E(G)| = 2|V (G)| and hence, for every edge partition
{A1, A2} of G, at least one of A1 and A2 has a cycle. Since the girth
of G is n, the monochromatic component containing such a cycle has
at least n edges. For vertex partitions take H to be the line graph of
G. Then H is 6-regular and every vertex 2-coloring of H results in a
monochromatic component with at least n vertices.

The following question remains open.

Question 2.4. Is there a number n such that every graph of maxi-
mum degree five can be vertex 2-colored so that each monochromatic
component has at most n vertices?



PARTITIONING AND SMALL COMPONENTS 5

3. Lemmas

We start with a lemma from [9], which is an improved version of a
result of [1] (see also [2], page 61).

Lemma 3.1. Let (V1, V2, . . . , Vn) be a partition of V (G). Suppose
|Vi| ≥ 2∆(G), for all i. Then there is an independent set W of vertices
such that W ∩ Vi 6= ∅, for all i.

The following is the key lemma, which will be used in proving the
main results.

Lemma 3.2. Let d be an integer exceeding two and let G be a graph
with ∆(G) ≤ d. Let {A,B} be a partition of V (G) and let {B1, B2, . . . , Bt}
be a partition of B. Suppose

(i) ∆(G(A)) ≤ 1;
(ii) ∆(G(B)) ≤ d− 2;

(iii) each G(Bi) is either a cycle or a path; and
(iv) there is a number r ≥ 1 such that for each i ∈ {1, 2, . . . , t} and

each v ∈ Bi with dG(Bi)(v) = 2, there are at most r components
of G(A) that contain neighbors of v.

Then there is a set W ⊆ B such that every component of G(Bi −W ),
where 1 ≤ i ≤ t, and every component of G(A ∪ W ) has at most
K = (12r + 6)d− (18r + 27) vertices.

Proof. For each component C of G(A), let N(C) be the set of ver-
tices that are not in C but are adjacent to some vertices in C. From
(i) it is clear that C has at most two vertices and thus |N(C)| ≤
max{∆(G), 2∆(G)− 2} ≤ 2d− 2.

Without loss of generality, we may assume that |Bi| > K for i = 1,
2, . . . , s, and |Bi| ≤ K for all other i not exceeding t. We will use
Lemma 3.1 to break each Bi, for i ∈ {1, 2, . . . , s} into paths.

Let k = (2r + 1)d − (3r + 4). Then d > 2 and r ≥ 1 imply that
K > 2k > 0. For each i ≤ s, let B′i be the set of vertices v of Bi with
dG(Bi)(v) = 2. Since 2k > 0, each |B′i| can be expressed as 2kpi + qi,
where pi and qi are nonnegative integers and qi < 2k. From (iii) we
know that |B′i| ≥ |Bi| − 2, which implies |B′i| ≥ K − 1 ≥ 2k and thus
pi > 0. Choose mutually disjoint subsets Vi1, Vi2, . . . , Vipi of B′i such
that each G(Vij) is a path on 2k vertices. Let U be the union of Vij for
all j ≤ pi and i ≤ s. Then define a graph H on U such that two vertices
are adjacent if either they both belong to N(C) for some component C
of G(A), or they are adjacent in G and they are not contained in the
same Bi. We will refer the two kinds of edges as, respectively, the first
and second type.
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We first show that ∆(H) ≤ k. Let u ∈ U . From (iv) it is clear that
u is contained in at most r sets N(C). Since |N(C)| ≤ 2d − 2, for all
C, we conclude that u is incident in H with at most r(2d− 3) edges of
the first type. In addition, from (ii) it follows that u is incident in H
with at most (d− 2)− 2 = d− 4 edges of the second type. Therefore,
∆(H) ≤ r(2d− 3) + (d− 4) = k.

Now, from Lemma 3.1 we deduce that H has an independent set W
that meets every Vij. Without loss of generality, we may assume that
each Vij contains precisely one vertex in W . We need to show that W
satisfies the conclusion of Lemma 3.2. It is clear from the construction
of H that every edge of G(W ) is an edge of some G(B′i), which means
every component of G(W ) is a subgraph of some G(B′i). Since each
G(Vij) is a path on 2k ≥ 2 vertices and |W ∩Vij| = 1, we conclude from
(iii) that each component of G(W ) may have at most two vertices. We
also observe from the construction of H that N(C) ∩W has at most
one vertex, for every component C of G(A). Thus each component of
G(A ∪W ) consists of at most two vertices in W and, by (iv), at most
2r components of G(A). It follows that each component of G(A ∪W )
has at most 4r + 2 ≤ K vertices, as d > 2 and r ≥ 1. For each i ≤ s,
the graph G(Bi−W ) may have only two kinds of components: a path
P that is cut off from G(Bi) by two vertices w1, w2 ∈ W (say w1 ∈ Vi1
and w2 ∈ Vi2), or a path P that is cut off from G(Bi), when G(Bi)
is a path, by a single vertex w ∈ W (say w ∈ Vi1). In the first case,
|V (P )| ≤ (|Vi1| − 1) + qi + (|Vi2| − 1) ≤ 3(2k − 1) = K. In the second
case, |V (P )| ≤ qi+(|Vi1|−1) ≤ 2(2k−1) ≤ K. The lemma follows.

4. Vertex partitions

Our first main result of this paper is the following theorem. Let
f(0) = 1, let f(1) = f(2) = 2, and let f(∆) = 12∆2 − 36∆ + 9 for all
∆ ≥ 3.

Theorem 4.1. Every graph with maximum degree ∆ can be vertex
d(∆ + 2)/3e-colored such that each monochromatic component has at
most f(∆) vertices.

In order to prove this theorem, we need the following result of Lovász
[11].

Lemma 4.2. Let G be a graph and let k1, k2, . . . , km be nonnegative
integers with k1 + k2 + · · · + km ≥ ∆(G) − m + 1. Then V (G) can
be partitioned into V1, V2, . . . , Vm so that ∆(G(Vi)) ≤ ki, for all i ∈
{1, 2, . . . ,m}.
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Proof of Theorem 4.1. The result is clear when ∆ ≤ 2. Thus we may
assume that ∆ > 2. Let h = d(∆ + 2)/3e. Then ∆ ≤ 3h − 2. By
taking k1 = 1, k2 = ∆ − 2, and m = 2, we deduce from Lemma 4.2
that V (G) can be partitioned into A and B such that ∆(G(A)) ≤ 1
and ∆(G(B)) ≤ ∆− 2. Next, by taking k1 = k2 = · · · = kh−1 = 2 and
m = h− 1 we deduce from Lemma 4.2 that B can be partitioned into
V1, V2, . . . , Vh−1 such that ∆(G(Vi)) ≤ 2 for all i. Let C1, C2, . . . , Ct
be all components of G(V1), G(V2), . . . , and G(Vh−1). Clearly, each Ci
is either a cycle or a path. Let Bi = V (Ci) for all i. Then G,A,B, and
Bi, where 1 ≤ i ≤ t, satisfy the assumptions of Lemma 3.2 with d = ∆
and r = ∆ − 2. Let W ⊆ B be chosen as in Lemma 3.2. Observe
that, for each i, every component of G(Vi−W ) is a component of some
Cj−W . Therefore, the h-coloring (A∪W,V1−W,V2−W, . . . , Vh−1−W )
satisfies the conclusion of Theorem 4.1.

The next theorem says that if we can use a few more colors, then
we can make the size of the monochromatic components independent
of ∆.

Theorem 4.3. For any positive ε < 3, there is a number Nε for which
every graph G can be vertex d(∆(G) + 2)/(3− ε)e-colored so that each
monochromatic component has at most Nε vertices.

Proof. Let ∆ = ∆(G) and h = d(∆ + 2)/(3− ε)e. Then ∆ ≤ (3−ε)h−
2. Let p = d1/εe and let Nε = f(3p − 2). Since f is a non-decreasing
function, we have

f(t) ≤ Nε, for all t ≤ 3p− 2.(1)

Consequently, by Theorem 4.1, the result holds when ∆ ≤ 3p−2. Next,
we consider the case when ∆ ≥ 3p − 1. Since h > 0, we may assume
h = px+y for some nonnegative integers x and y with 1 ≤ y ≤ p. Then
∆−(x+1)+1 ≤ [(3−1/p)(px+y)−2]−x < (3p−2)x+(3y−2). It follows
from Lemma 4.2 that V (G) can be partitioned into V1, V2, . . . , Vx+1

such that ∆(G(Vi)) ≤ 3p − 2, for i ≤ x, and ∆(G(Vx+1)) ≤ 3y − 2.
Let hi = p, when i ≤ x, and hx+1 = y. By Theorem 4.1, each G(Vi)
can be vertex hi-colored so that its monochromatic components have
size at most f(3hi− 2), which, by (1), is at most Nε. Therefore, G can
be vertex h-colored, where h = h1 + h2 + · · · + hx+1 = px + y and all
monochromatic components have size at most Nε.

5. Edge partitions

For line graphs, both Theorem 4.1 and Theorem 4.3 can be improved.
These improvements, which are stated in terms of edge partitions, ap-
pear as Theorem 5.1 and Theorem 5.5 below. The following is an
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improvement of Theorem 4.1 for line graphs. Let us define g(0) = 0,
g(1) = 1, and g(∆) = 60∆− 63 for all ∆ ≥ 2.

Theorem 5.1. Every loopless graph G with maximum degree ∆ can be
edge d(∆ + 1)/2e-colored so that each monochromatic component has at
most g(∆) edges.

We first present two lemmas, which will play the role that Lemma 4.2
had for vertex partitions. The first of these, which is stated below, is
an easy consequence of Lemma 1 in [3].

Lemma 5.2. Every loopless graph G has a set A of edges such that
∆(G\A) < ∆(G) and each component of G(A) is a path of length at
most two.

The next lemma is a reformulation of a well-known result of Petersen
[4], which states that every even regular graph has a 2-factor.

Lemma 5.3. Let d be an integer and let G be a loopless graph with
∆(G) ≤ 2d. Then E(G) can be partition into F1, F2, . . . , Fd such that
∆(G(Fi)) ≤ 2 for all i.

Proof. It is well known that G has a 2d-regular supergraph H. Then
the lemma follows from repeatedly applying Petersen’s result to H.

Proof of Theorem 5.1. Let H be the line graph of G. We prove the
theorem by applying Lemma 3.2 to H. Let h = d(∆ + 1)/2e. Then
2h− 2 ≤ ∆ ≤ 2h− 1. Consequently, ∆(H) ≤ 4h− 4. Let d = 4h− 4.
We first examine the case when d ≤ 2. Clearly, d ≤ 2 implies h ≤ 1,
which in turn implies ∆ ≤ 1 and thus every component of G is either
K1 or K2. In this case, the theorem obviously holds because E(G) can
be d(∆ + 1)/2e = 1 colored and each monochromatic component of G
has at most ∆ = g(∆) edges.

Now, we assume that d > 2. Let A ⊆ E(G) be chosen as in
Lemma 5.2 and let B = E(G) − A. Then ∆(G(B)) ≤ 2h − 2. It
follows that ∆(H(A)) ≤ 1 and ∆(H(B)) ≤ 2(2h−3) = d−2. Next, by
applying Lemma 5.3 to G(B), we conclude that B can be partitioned
into F1, F2, . . . , Fh−1 such that ∆(G(Fi)) ≤ 2 for all i. Let C1, C2,
. . . , Ct be all components of G(F1), G(F2), . . . , G(Fh−1). Then each
Ci is either a cycle or a path. Let Bi = V (Ci), for all i. It follows
that (B1, B2, . . . , Bh−1) is a partition of B and each H(Bi) is either
a cycle or a path. Since a line graph does not have induced K1,3, we
conclude that each x ∈ B can be adjacent in H to vertices in at most
two components of H(A). Therefore, G, A,B, Bi (1 ≤ i ≤ h − 1)
satisfy the assumptions of Lemma 3.2 with r = 2.
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Let W ⊆ B be chosen as in Lemma 3.2. Notice that, for any X ⊆
E(G), the graph G(X) is connected if and only if H(X) is connected.
In addition, for each i, every component of G(Fi−W ) is a component of
some Cj−W . It follows that each component of G(A∪W ) and G(Fi−
W ) (1 ≤ i ≤ h−1) has at most 30d−63 = 60(2h−2)−63 ≤ 60∆−63
edges. Therefore, the h-coloring (A∪W,F1−W,F2−W, . . . , Fh−1−W )
satisfies the conclusion of Theorem 5.1.

One of the authors, in collaboration with others, proved in [3] the
following:

Theorem 5.4. There is an absolute constant c > 0 such that for every
∆-regular graph G and every

√
∆ > k ≥ 2 the edges of G can be colored

with (k + 1)∆/(2k) + c
√
k∆ log ∆ colors so that each monochromatic

component is a path of length at most k.

Theorem 5.4 has the following corollary, which may be viewed as an
improvement of Theorem 4.3 for line graphs.

Theorem 5.5. For any ε > 0 there is a number Nε for which every
loopless graph G with maximum degree ∆ can be edge d((1 + ε)∆ + 1)/2e-
colored such that each monochromatic component has at most Nε edges.

Proof. Let c be the number from Theorem 5.4, let G be a graph with
maximum degree ∆, let ε be a positive number, and let ε0 be a positive
number satisfying ε0 ≤ ε, ε0 ≤ 1/2, and ε0

√
log(1/ε0) ≤ ε/(8c). With-

out loss of generality, we may assume that G is ∆-regular, since every
graph of maximum degree ∆ is a (not necessarily spanning) subgraph
of a ∆-regular graph. Let Nε = g(ε−4

0 ) where g is the function defined
immediately before Theorem 5.1. If ∆ ≤ ε−4

0 , then the conclusion fol-
lows from Theorem 5.1; hence we may assume that ∆ > ε−4

0 . Upon
applying Theorem 5.4 with k = ε−2

0 , we conclude that the edges of
G can be colored using at most ∆/2 + ∆ε20/2 + cε0

√
∆ log ∆ colors so

that each monochromatic component is a path on at most ε−2
0 edges.

Clearly, the size of the monochromatic components satisfies the con-
clusion of the theorem. The following computation gives the desired
bound on the number of colors used. Note that the first inequality uses
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the fact that (log x)/x is decreasing when x > e.

(k + 1)∆

2k
+ c
√
k∆ log ∆ =

∆

2
+

∆ε20
2

+ cε−1
0 ∆

√
log ∆

∆

≤ ∆

2
+ ∆

(
ε20
2

+ 2cε0

√
log

1

ε0

)
≤ ∆

2
+ ∆

( ε
4

+
ε

4

)
≤ (1 + ε)∆ + 1

2
.

We note that Theorem 5.5 cannot be strengthened to allow ε = 0.
More precisely, we have the following:

Remark 5.6. For each integer n there is a graph G such that every
edge d(∆(G) + 1)/2e-coloring of G results in a monochromatic compo-
nent with more than n vertices.

Proof. Let ∆ = 2n+ 1, and let G be a ∆-regular graph of girth n+ 1,
whose existence is guaranteed by Proposition 2.3. Suppose that G1,
G2, . . . , Gm is an edge partition of G such that m ≤ d(∆(G) + 1)/2e
and every monochromatic component has at most n edges. Since the
girth of G exceeds n, each monochromatic component is acyclic and
has at most n+ 1 vertices. Hence, the number of components of Gi is
at least |V (Gi)|/(n+ 1) and so |E(Gi)| ≤ |V (Gi)| − |V (Gi)|/(n+ 1) ≤
|V (Gi)|(1− 1/(n+ 1)). Therefore

|E(G)| ≤
⌈

∆ + 1

2

⌉
|V (G)| n

n+ 1

= (n+ 1)|V (G)| n

n+ 1

< |V (G)|∆
2
.

This is impossible since G is ∆-regular.

6. Planar graphs

In Section 2, we showed that for every integer n, there is a 4-regular
graph G and a 6-regular graph H such that every edge 2-coloring of G
and every vertex 2-coloring of H results in a monochromatic component
containing a cycle of length at least n. However, graphs G and H are
nonplanar whenever n > 3. In the first part of this section, we show
that for every integer n there is a planar graph G of maximum degree
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six such that every edge 2-coloring and every vertex 2-coloring results
in a monochromatic component with at least n vertices.

A graph is a near-triangulation if it is a plane graph whose every
face, except possibly for the infinite face, is a triangle. For a positive
integer n, let Tn be the graph whose vertices are the triples of nonnega-
tive integers summing to n, with an edge connecting two triples if they
agree in one coordinate and differ by one in each of the other two coor-
dinates. The graph Tn may be viewed as embedded in the plane whose
equation in R3 is x + y + z = n where the name of each vertex forms
its coordinates, and edges are straight line segments. The graph T5 is
illustrated in Figure 1. It is clear that each Tn is a near-triangulation
with no vertices of degree exceeding six. The next theorem states that
it is impossible to find a vertex partition or an edge partition of Tn
into two graphs neither of which has connected components with more
than n vertices.

Theorem 6.1. If {G1, G2} is a vertex partition or an edge partition
of Tn, then at least one of G1 and G2 has a connected component with
more than n vertices.

Before addressing the proof of the theorem, we need a few definitions.
Let G be a near-triangulation and let v1, v2, and v3 be three distinct
vertices in the cycle C that bounds the infinite face. Then v1, v2,
and v3 induce a partition of C into paths P1, P2, and P3 such that,
for each i ∈ {1, 2, 3}, Pi avoids vi and has the other two members of
{v1, v2, v3} as endvertices. A connector of G with respect to {v1, v2, v3}
is a connected subgraph H of G such that, for each i ∈ {1, 2, 3}, the
set V (H) ∩ V (Pi) is not empty.

The part of Theorem 6.1 that speaks of vertex partitions follows
immediately from the following two results of [10].

Figure 1. T5

Proposition 6.2. Let G be a near-triangulation and let v1, v2, and v3

be distinct vertices in the cycle bounding the infinite face of G. For
every vertex partition {G1, G2} of G there is a connector H of G with
respect to {v1, v2, v3} that is a subgraph of G1 or of G2.

Proposition 6.3. If H is a connector of Tn with respect to (0, 0, n),
(0, n, 0), and (n, 0, 0), then H has more than n vertices.

The part of Theorem 6.1 on edge partitions follows immediately from
Proposition 6.3 and the edge version of Proposition 6.2, which is stated
and proved below.
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Proposition 6.4. Let G be a near-triangulation and let v1, v2, and v3

be distinct vertices in the cycle bounding the infinite face of G. For
every edge partition {G1, G2} of G there is a connector H of G with
respect to {v1, v2, v3} that is a subgraph of G1 or of G2.

Proof. We will apply Proposition 6.2 to the graph G′ obtained from G
in the following process. Let the vertex set of G′ be V (G)∪E(G) with
two such vertices being joined by an edge if and only if one of them is
an edge e and the other is either a vertex of G incident with e, or an
edge of G that shares a common vertex and a common finite face with
e. Alternatively, G′ may be viewed as obtained from G by subdividing
each of its edges once, and adding new edges incident with the new
vertices so that each of the finite faces of G becomes subdivided into
four triangular faces. For example, if G = Tn, then G′ is isomorphic to
T2n.

Note that each of v1, v2, and v3 lies in the cycle bounding the infinite
face of G′. For each i ∈ {1, 2}, let Vi = V (G) ∪ E(Gi) and let G′i be
the subgraph of G′ induced by Vi. Then {G′1, G′2} is a vertex partition
of G′. Upon applying Proposition 6.2 to G′, we conclude that there is
a connector H ′ of G′ with respect to v1, v2, and v3 that is a subgraph
of G′1 or of G′2. Without loss of generality, we may assume that H ′ is
a connected component of G′1. Let H be a subgraph of G induced by
those vertices of H ′ that are also vertices of G. We shall prove that H
is a connector of G with respect to v1, v2, and v3. Let P1, P2, and P3

be the paths that partition the cycle bounding the infinite face of G as
described in the definition immediately preceding Proposition 6.2, and
let P ′1, P ′2, and P ′3 be the corresponding paths in G′. Then, for each
i ∈ {1, 2, 3}, the vertex set of P ′i is the union of V (Pi) and E(Pi).

Suppose H avoids one of the paths Pi for some i ∈ {1, 2, 3}. But
H ′, being a connector, has a vertex e in P ′i , which must be an edge
of Pi. Let v be a vertex that is incident in G with e. Then, clearly,
v ∈ V (Pi). Since all vertices of G are in V1, which induces G′1, and H ′

is a connected component of G′1, we conclude that v is a vertex of H ′,
and hence also of Pi ∩H; a contradiction.

It remains to show that H is connected. Let u and v be two vertices
of H. Then, as H ′ is connected, it contains a path P from u to v. Take
the list of consecutive vertices of P and modify it as follows: Between
every two consecutive vertices of P that are both edges of G insert
the vertex of G that is incident with both edges. Since V1 contains
all vertices of G, and G′1 is induced by V1, the modified list consists
of vertices of H ′. The same list, when interpreted in G, alternates
vertices and edges with two consecutive entries being incident. Since
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all vertices of G that appear in the list are in H ′, and hence in H, the
list forms a walk in H that begins in u and ends in v. It follows that
H is a connector of G with respect to v1, v2, and v3, as required.

Finally, we address vertex partitions of arbitrary planar graphs. The
well-known Four Color Theorem states that every planar graph has a
vertex 4-coloring so that all monochromatic components have exactly
one vertex. Theorem 6.1 implies that the size of monochromatic com-
ponents cannot be bounded if only two colors are used for coloring a
planar graph. The following natural question arises:

Question 6.5. Is there a number c such that every planar graph has a
vertex 3-coloring so that each monochromatic components has at most
c vertices?

Next, we show that the answer to this question is negative. For a
positive integer n, let Un be the graph consisting of n pairwise disjoint
copies of Fn, which was defined in Section 2 as a fan on n2 + n + 1
vertices, and let U ′n be the graph obtained from Un by adding one
vertex and joining it to all other vertices.

Theorem 6.6. Let n be a positive integer and let {A1, A2, A3} be a
vertex partition of U ′n. Then at least one of A1, A2, and A3 has a
component with more than n vertices.

Proof. Let v denote a vertex of U ′n that is adjacent to all other vertices.
Without loss of generality, we may assume that v ∈ V (A3). If A3 meets
each component of Un, then the conclusion follows. Hence we may
assume that some component of Un, which is a fan Fn, meets only A1

and A2. The conclusion follows from the discussion in Section 2.

Note that the maximum degree of the graphs U ′n grows with n. In-
deed, we do not know whether the graphs U ′n in Theorem 6.6 can be
replaced by graphs whose maximum degree is bounded by a universal
constant.

We close the paper with analogs of some results and questions for the
class of planar graphs to larger classes of graphs. A graph G is a minor
of graph H if G can be obtained from a subgraph of H by contracting
edges. A class G of graphs is minor-closed if for every member H of G
all minors of H are also in G. It is clear that the class of planar graphs
is minor-closed. The following theorem speaks of vertex 4-coloring of
graphs in minor-closed classes.

Theorem 6.7. Let G be a minor-closed class of graphs other than the
class of all graphs, and let ∆ be a positive integer. Then there is a
number c depending only on G and ∆ such that every graph G in G
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with maximum degree at most ∆ admits a vertex 4-coloring with each
monochromatic component having at most c vertices.

Proof. It is shown in [5] that there is a number a, depending only on
G, such that every graph in G can be vertex 2-colored so that each
monochromatic subgraph has tree-width at most a. This, together
with Proposition 2.1, easily implies the conclusion.

Note that Theorem 6.6 implies that the number of colors in The-
orem 6.7 cannot be reduced from four to three, even for the class of
planar graphs. However, it is not known whether the number c in
Theorem 6.7 can depend only on G.
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