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ABSTRACT
Suppose we have a large table T of items i, each with a
weight wi, e.g., people and their salary. In a general prepro-
cessing step for estimating arbitrary subset sums, we assign
each item a random priority depending on its weight. Sup-
pose we want to estimate the sum of an arbitrary subset
I ⊆ T . For any q > 2, considering only the q highest pri-
ority items from I, we obtain an unbiased estimator of the
sum whose relative standard deviation is O(1/

√
q). Thus

to get an expected approximation factor of 1± ε, it suffices
to consider O(1/ε2) items from I. Our estimator needs no
knowledge of the number of items in the subset I, but we can
also estimate that number if we want to estimate averages.

The above scheme performs the same role as the on-line
aggregation of Hellerstein et al. (SIGMOD’97) but it has
the advantage of having expected good performance for any
possible sequence of weights. In particular, the performance
does not deteriorate in the common case of heavy-tailed
weight distributions. This point is illustrated experimen-
tally both with real and synthetic data.

We will also show that our approach can be used to improve
Cohen’s size estimation framework (FOCS’94).

Categories and Subject Descriptors
E.1 [Data]: Data Structures; E.5 [Data]: Files; F.2 [Theory
of Computation]: Analaysis of Algorithms and Problem
Complexity; G.3 [Mathematics of Computing]: Proba-
bility and Statistics; H.3 [Information Systems]: Infor-
mation Storage and Retrieval

General Terms
Algorithms, Experimentation, Measurement, Performance,
Theory
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1. INTRODUCTION
We use “priority sampling” to preprocess a large table of
items, each of which carries a weight. For example, the
items could be people weighted by their salary. The prepro-
cessing assigns priorities to the items. After preprocessing,
we can estimate the total weight of an arbitrary subset I us-
ing only a few high priority samples from the samples I. For
example we could estimate the total salary of all individu-
als in Massachusetts of age between 30 and 32, or of people
with surname Gates. Using unit weights, we could also get
the number of people in a subset, and thus estimate aver-
ages. The basic idea of sampling for such aggregate queries
is standard (see, e.g., [4, 13, 15, 16]). What is new is that
the estimates do not deteriorate in the common case of a
heavy tailed weight distribution [5, 17]. Figure 1 illustrates
how big a difference priority sampling makes on a concrete
data set.

1.1 Priority Sampling
Our scheme relates to our recent work in [12], and we shall
return to this relationship in Section 1.6. We are given a
table T of items i each of which carries a non-negative weight
wi. In a preprocessing step, we generate for each item i
an independent uniformly distributed random number αi ∈
(0, 1), and give item i the priority qi = wi/αi.

We now want to estimate the total weight of an arbitrary
selected subset I ⊆ T of items. The selection of I should
be oblivious to the generated priorities. We collect a sample
S ⊂ I consisting of the k items with the highest priority
in I. In case of equal priorities, those with smaller number
have higher priority. Moreover, we let the threshold τ be the
(k + 1)st highest priority in I—if |I| ≤ k, there is no need
to sample I. Magically it turns out that

∑
i∈S max{τ, wi}

is an unbiased estimator of the total weight in I, that is,

E

[∑
i∈S

max{τ, wi}
]

=
∑
i∈I

wi (1)

We call the above a priority sample of size k for I, and it is
illustrated in Figure 2.

Note that if a new item j with weight wj is added to T ,
we just have to generate a random αj ∈ (0, 1) and give j
priority qj = wj/αj . This defines the role of j in any later
subset sum.

Also, note that the above scheme only works for non-negative
weights. However, we can treat items with negative weights
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Figure 1: Experiment with the 15,566 files in a unix directory. They have total size 2,139,913,858, maximal
size 78,438,400, average size 137,473, median size 2,329 and 20 files of minimal size 1. We are trying to
estimate the total size from k samples. Left: histogram of log weights. Center: relative estimation error
for priority sampling as function of sample size k, for two sample paths, Root Mean Square error over 1000
sample paths, and compared with conjectured Relative Standard Deviation envelope of 1/

√
k − 1. Right:

relative estimation error for uniform sampling without replacement.
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Figure 2: Priority sample of size 3 for a set of 10
weighted items. The sum of the shaded weight es-
timates approximates the sum of the black original
weights.

separately, negate them, and give them priorities as de-
scribed above. To estimate a subset sum, we take the es-
timate of the sum of the positive weights and subtract the
estimate of the sum of the negated negative weights. (The
relative error can, however, increase this way, as there may
be cancellations.)

Finally, note that our scheme works for arbitrary subsets. If
the subsets were restricted in some specific way,

1.2 Storing the Table
In this paper, we assume that items from the table T are
stored so that items from a selected subset I can be retrieved
in order of decreasing priority. We do not specify how this
is to happen. We assume that whatever method is used
to retrieve items from selected subsets, the same method is

augmented to retrieve items in order of decreasing priority.

As the most primitive example, if the table T was just a
flat file that we would scan for a selected elements, then
our preprocessing sorts the items in T in order of decreasing
priority. The ones of higher priority can be put in faster
memory or we can rely on the caching hierarchy to improve
their access time. Now, to get a good estimate of the total
salary of people with surname ending ‘son’, we scan the
sorted table until we have found, say, 102 such people. The
last gives the threshold for the sample of the first 101 and
we get an estimate of the total wealth using (1). As we shall
see in Section 1.4, we expect an error of about 10% for any
distribution of salaries.

A more advanced alternative is to store the table in a data
base indexing attributes such as name, state, and age. To
support priority sampling, each index should now support
retrieval in order of decreasing priority. Algorithms for such
priority observing indexing in external memory are described
in [2, 3].

1.3 Selecting Arbitrary Subsets
To illustrate the significance of arbitrary subsets, suppose
a large retailer with many stores saved all their sales in
records containing information such as item, location, time,
and price. (Wal-Mart, for example, has 3,600 stores in the
US, and roughly 100 million customers each week; see [14].)
They might ask questions like how many days of rain does
it take before we get a boom in the sale of rain gear. Know-
ing this would tell them how long they would need to order
and disperse the gear if the weather report promised a long
period of rain. Now, the weather information was not part
of the sales records, but if they had a data base with histor-
ical weather information, they could look up each sampled
sales record with rain gear, and check how many days it had
rained at that location before the sale. The point in this ex-
ample is that selection can be based on external information
not even imagined relevant at the time when measurements
are made.



1.4 How Many Samples?
A fundamental question is how many samples we need to
ensure a small variability in our estimate. Since our estimate
is unbiased, we use the relative standard deviation of the
estimate as a measure of its variability. More precisely, let W

be the total weight in a subset I and let Ŵ be our estimate of

W . Thus, with our previous notation, W =
∑

i∈I wi, Ŵ =
∑

i∈S max{wi, τ}, and E
[
Ŵ

]
= W . The relative standard

deviation (Rsd) is then

Rsd
[
Ŵ

]
=

√
Var

[
Ŵ

]
/W

=

√√√√E

[(
Ŵ −W

W

)2]
≥ E

[
|Ŵ −W |

W

]

The last inequality states that the relative standard devia-
tion is an upper-bound on the expected relative error.

Conjecture 1. With a priority sample of size k, the rel-
ative standard deviation is less than 1/

√
k − 1.

The experiment shown in Figure 1 conforms nicely with
our conjecture. For n unit weights, Mathematica (or a

simple computation) tell that the variance is Var(Ŵ ) =

n(n−k)/(k−1), hence that Rsd(Ŵ ) =
√

(1− k/n)/(k − 1),
so the conjecture is true for unit weights, and tight for
n →∞.

Our conjecture is based on the intuition that our estimates
benefit from skew, hence that identical weights form a worst-
case distribution. For example, we note that the more dom-
inant an item i is, the more likely it is to be sampled, and
this generally reduces variance. Moreover, if item i is not
sampled, it is because τ ≥ qi > wi and all sampled items
have weight estimate at least τ . Thus dominant items are
guaranteed a direct or indirect contribution to the estimated
total. We will present experimental evidence supporting our
intuition that skew decreases the variance.

In this paper, we establish Conjecture 1 asymptotically, prov-
ing

Theorem 1. With a priority sample of size k ≥ 2, the
relative standard deviation is O(1/

√
k). For the expected

relative error, this bound holds when k ≥ 1.

In particular it follows that to get an expected approxima-
tion factor of 1±ε, it suffices to use a priority sample of size
O(1/ε2).

An objection to priority sampling could be that after the
preprocessing, we cannot make independent priority sam-
ples. However, we note that both with the conjecture and
with the theorem, we get slightly better bounds if we use
a priority sample of size 2k than if we took the mean of
two independent priority samples of size k. More precisely,
for the priority sample of size 2k, we consider 2k + 1 items,
and with our conjecture, we get a relative standard devi-
ation bound of 1/

√
2k − 1. However, for two independent

priority samples of size k, we consider 2(k + 2) items, and
for their mean, we get relative standard deviation bound of
(1/
√

k − 1))/
√

2 = 1/
√

2k − 2 > 1/
√

2k − 1. Thus we are
better off increasing the priority sample size than we would
be averaging over independent samples.

Instead of looking at the standard deviation, we can bound
the probability that the relative error exceeds a certain value.
More precisely, we show 1

Theorem 2. For ε ≤ 1, the probability that the relative

error |Ŵ−W |
W

exceeds ε is bounded by exp(−Ω(ε2k)).

Thus, for a target error probability of perror, it suffices to
take O(−(log perror)/ε2) samples.

1.5 Alternatives
We will now compare our scheme with what can be done
using standard probabilistic techniques.

1.5.1 Uniform Sampling
The most basic idea is to make a random permutation of the
n items in the table T . Let T consist of the first pn items.
Now, each item is in T with probability p, so by linearity of
expectation,

E

(
1

p

∑
i∈I∩T

wi

)
=

∑
i∈I

wi (2)

This estimator is equivalent to the one used in [15]. Priority
sampling is compared with this uniform sampling scheme
in Figure 1. The main caveat of uniform sampling is that
each item is picked with the same probability, and that is
not good for heavy tailed distributions. In [15, Eq. (1)],
the problem shows up in their deviation bound which is
proportional to the difference between the maximum and
minimum weight.

Another caveat of the uniform sampling scheme is that it
doesn’t quite have the right format. More precisely, sup-
pose we retrieve the k first items from the subset I in the
permuted table T . How do we get an unbiased estimator of
the sum of the subset? If we knew that the kth item from
I was item number q in the permuted table T , we would
like to apply (2) with p = q/n, but this would not be an
unbiased estimator since p now depends on the distribution
of the items from I among all the items in T . It is easy
to see that this gives a bias toward bigger estimates. This
caveat of uniform sampling is bypassed in Figure 1 where
we consider the special case of I = T .

1.5.2 Dividing Weights into Levels
One standard idea to accommodate heavy tailed weight dis-
tributions is to divide items into levels J` with weights in
[2`, 2`+1). Within each level, the items have similar weights,
and then we can use uniform sampling as in Section 1.5.1.
Now, if r is the ratio of the biggest weight over the small-
est weight, we need log2 r levels. In our salary example, we
would need to make independent samples on more than 20

1For fn, gn > 0, fn = Ω(gn) iff gn = O(fn)



levels (220 ≈ 1, 000, 000, which is, at least, the ratio of salary
in the world today). We can reduce the number of levels by
increasing the ratio of the largest and smallest element in
each level from 2 to some higher value, but that will increase
the relative standard deviation in each level. By contrast,
priority sampling gives a clean and efficient mix of big and
small weights without any need for division into levels.

1.5.3 Weighted Sampling with Replacement
Another idea for dealing with skewed weight distributions
is to make a list of the items where each element is an item
picked with probability proportional to its weight. Then
each list segment forms a sample with replacement. In the
presence of heavy tails, the list is expected to have many
duplicates. Also, since we want to represent all subsets,
including subsets with a single item of small weight, we have
to keep sampling for the list till all items have been included
at least once. Instead of a permutation of length n, with
many small items, we need a list of length 2

Θ

( ∑
i∈T wi

mini∈T wi
log n

)
.

We note that with a heavy tailed distribution, the expected
length is unbounded because the expected ratio of the sum of
all weights to the smallest weight is infinite. For the concrete
data set from Figure 1, we expect a list length in the order
of 10, 000, 000, 000, which is unattractive compared with our
priority determined permutation of length 15, 566.

In addition to the length problem, we have the same format
problems as in Section 1.5.1, that is, if we consider the first
k items from a given subset I in the list, it is not clear how
we get an unbiased estimator of the total weight in I.

1.5.4 Splitting Weights into Units
Assuming integer weights, we can split each item i into wi

subitems of unit weight. We now have a table of
∑

i∈T wi

items. Essentially, this becomes like weighted sampling but
with an upper-bound wi on how many copies we can get of
item i.

Supposing that we had an upper bound kmax on how many
samples we would ever consider, we would at most need the
kmax highest priority unit subitems from each original item
i, giving us a combined bound of max{kmax, wi}. However,
just to get down to an expected 1% error, even if we believe
the strong bound in Conjecture 1, we would need kmax =
10, 001. Moreover, typically, we do not want to limit k at
all, as the estimate precision is something that should be
determined independently for each subset sum query.

If the weights are non-integers or the minimum weight is not

1, we can use the same idea but with
⌊ ∑

i∈T wi

mini∈T wi

⌋
subitems

with weights in [1, 2]. We note that this is a better bound

on the sequence length than the Θ
( ∑

i∈T wi

mini∈T wi
log n

)
bound

we had with standard weighted sampling with replacement,
yet it is much larger than n if the weight distribution is
heavy tailed. Taking the example from Figure1, we now get
a permutation of 2,139,913,858 unit subitems as opposed to
our priority permutation of the 15,566 original items.

2fn = Θ(gn) iff fn = O(gn) and fn = Ω(gn)

1.5.5 Weighted Sampling without Replacement
One might instead try weighted sampling without replace-
ment to avoid the duplicates with replacement. The book
[7] mentions 50 such schemes, but none of these provides es-
timates of sums. The basic problem is that the probability
that a given item is included in the sample is a compli-
cated function of all the involved weights. The dependence
between weights is implicit in priority sampling where the
ordering encodes information about all the weights.

1.5.6 Cohen’s Size-estimation Framework
We now compare our scheme with Cohen’s size-estimation
framework [8] which has many similarities with our frame-
work. Like us, she considers n weighted items and gives
each item i a randomized priority correlated with its weight
wi. To estimate the total weight of a given subset I, she
considers the lowest priority item from I. This way she gets
an unbiased estimator based on a single sampled item. To
control the variance, she repeats the experiment k times in-
dependently. Averaging the resulting estimators, she gets
one with smaller variance. For the averaged estimator, she
proves error bounds similar to those we presented in Theo-
rems 1 and 2.

For contrast, we get our k samples from a single set of pri-
orities. Thus, from our perspective, the caveat in Cohen’s
scheme is that it requires not one but kmax randomized pri-
orities for each item. As discussed previously, we should
think of kmax as at least 10,000, and really, we do not want
any limit on kmax. Thus, storing kmax sets of n independent
priorities would be a major problem in space.

It should be noted that in Cohen’s applications, the selected
sets are known in advance as the reachability sets of vertices
in a graph. She can then generate one set of priorities at
the time, find the estimators of all selected subsets, and
then reuse the space for the next set of priorities. In such
applications, she only uses linear space, but she still has a
disadvantage of using kn random numbers where we only
need n (in both schemes it can be seen that we expect to
use log2 n bits per number). Thus we reduce the need for
randomness in Cohen’s work.

At the end of [8] Cohen hints at a variant of her scheme
that like ours is based on a single priority ordering. She
is not very specific about the exact estimator and its prop-
erties, but based on personal communication with her, we
believe that such a variant would be more complicated than
ours, and that it would not work as well for heavy-tailed
distributions.

1.5.7 Summary of Advantages
Summing up, the advantage of our new scheme is that it
combines all of the following qualities:

• It works well for arbitrary sequences of weights, unlike
uniform sampling.

• It uses linear space, unlike weighted sampling with re-
placement, weight splitting, and Cohen’s original scheme.

• It provides simple unbiased weight estimators, unlike



previous schemes for weighted sampling without re-
placement.

• Both sampling and estimation are simple to imple-
ment.

1.6 Our Previous Streaming Scheme
The idea for this paper grew out of work on a streaming type
problem [12]. At a high speed Internet router, we collected
flows of different byte sizes. We created one priority sam-
ple for these flows, and used it to estimate arbitrary subset
sums.

More precisely, let I be the set of these flows. As flow i ∈ I
of size wi streams by, we generate αi ∈ (0, 1) and the priority
qi = wi/αi. Using a priority queue, we maintain the k + 1
flows of highest priority. The k highest form the sample
set S and the (k + 1)st highest is the threshold τ . With
this scenario, we can view the sampling of S as a weight-
sensitive version of reservoir sampling [19]. In contrast to
the weighted reservoir sampling in [9], our scheme is without
replacement so that we do not get any duplicates.

Now, let H ⊆ I be a subset of flows, e.g., those from
a given source to a given destination IP address. To es-
timate the total size of flows in H, i.e., the total traffic
from the source to the destination, we can use the estimator∑

i∈S∩H max{τ, wi}, which we showed was unbiased, i.e.,

E

( ∑
i∈S∩H

max{τ, wi}
)

=
∑
i∈H

wi (3)

In [12], we summed over all items in S∩H. If S is large, this
may be a lot of work, and if S is small, too much information
may be lost on smaller subsets.

1.6.1 What’s (not) New?
First we note that (1) follows from (3) with H = I, so
the unbiasedness of our estimator follows from our original
work on priority sampling [12]. In this paper we suggest
organizing a large table so as to provide priority samples of
arbitrary selected subsets. Similar organizations for other
sampling schemes were used in [8, 15].

The fundamental discovery of this paper is that the errors
of our estimates are bounded in terms of the sample size
for any distribution of weights. We conjectured the worst-
case behavior in Conjecture 1 which we will support with
experiments. Moreover, we will prove the tight asymptotic
bounds from Theorem 1 and 2. We note that bounds in
terms of the sample size were not as relevant to our previous
work [12], for such bounds only tell us that the priority
sample S from I gives a good estimate of the total weight
in I. However, they do not tell us how well S can be used
to estimate the total weight of an arbitrary subset H ⊆ I.
That quality depends on the specifics of the distribution of
H in I.

1.6.2 Combining Old and New
For a very large data set I, it may be worthwhile using our
old and new schemes in tandem. First we compress I to a
priority sample T of I. We then give each item i ∈ T a new
weight w′i = max{wi, γ} where γ is the threshold of T . Next

we use T as a compressed input table for our new scheme,
generating a new independent priority for each i ∈ T . To
estimate the weight of a subset J ⊆ I, we generate a priority
sample S of J ∩ T , and return

∑
i∈S max{w′i, τ} where τ is

the threshold of T . From (1) and (3) it follows that this is
an unbiased estimator of

∑
i∈J wi.

2. BOUNDING THE ERROR PROBABILITY
In this section, we prove Theorem 2, bounding the prob-
ability of a certain relative error in our weight estimate.

More precisely, with W =
∑

i∈I wi the weight and Ŵ =∑
i∈I ŵi the estimated weight of the set I, the relative error

is |Ŵ−W |
W

. For ε ≤ 1, we will show that

Pr

[
|Ŵ −W |

W
> ε

]
< 2 exp(−kε2/6) (4)

To prove this, we first note that our weight estimate is de-
termined exclusively by the threshold τ . More precisely, we
know that we will include all items i with wi > τ . Any
other sampled items has weight estimate of τ , and the to-
tal number of sampled items is k. Hence, with W∆(τ) =∑

wi>τ (wi − τ), our weight estimate becomes

Ŵ (τ) = τk + W∆(τ).

We note that there can be at most k items bigger than τ ,

and this puts a lower bound on τ and Ŵ (τ). Otherwise

Ŵ (τ) is a continuously increasing function of τ .

2.1 Underestimates
We will now bound the probability that the weight estimate
is too small, that is,

Ŵ < (1− ε)W

Define τ− such that Ŵ (τ−) = (1− ε)W ; if this is not possi-
ble, the event is impossible. We are asking for the probabil-
ity that the measured threshold τ is less than τ−, but this
is the case if and only if we have less than k +1 items i with
priority qi ≥ τ−. The expected number of priorities above
τ− is

µ =
∑
i∈I

Pr
[
qi ≥ τ−

]

=
∑
i∈I

Pr
[
αi ≤ wi/τ−

]

=
∑
i∈I

(min{τ−, wi}/τ−)

= (W −W∆(τ−))/τ−

On the other hand, we have

(1− ε)W = Ŵ (τ−) = τ−k + W∆(τ−)

so

k = (W −W∆(τ−)− εW )/τ−

In particular, it follows that

k ≤ (1− ε)µ

Now standard Chernoff bounds (see, e.g., [1]) show that the
probability of getting at most k priorities qi ≥ τ− is at most

exp(−µε2/2) < exp(−kε2/2)



2.2 Overestimates
Next we consider the probability that the weight estimate is
too large, that is,

Ŵ > (1 + ε)W.

The analysis is very similar to that for underestimates. We

define τ+ such that Ŵ (τ+) = (1 + ε)W . We are asking
for the probability that the measured threshold τ is bigger
than τ+, but this is the case if and only if we have at least
k + 1 items i with priority qi > τ+. The expected number
of priorities qi > τ+ is

µ+ = (W −W∆(τ+))/τ+.

while

k = (W −W∆(τ+) + εW )/τ+

In particular, it follows that

k + 1 > k ≥ (1 + ε)µ+.

Using standard Chernoff bounds, the probability of getting
at least k + 1 priorities qi > τ+ grows with the expected
number µ+ which we for an upper bound can replace by
µ∗ = (k + 1)/(1 + ε) > µ+. Then the probability of an
overestimate is bounded by

[
eε

(1 + ε)(1+ε)

]µ∗

=

[
eε/(1+ε)

(1 + ε)

]k+1

. (5)

For ε ≤ 1, we use the simpler bound

exp(−µ∗ε2/3) ≤ exp(−kε2/6)

Together with the underestimate bound, this completes the
proof of (4).

Note that for ε ≥ 1, our probability bound is of the form
Ω(1/(1 + ε))k+1. Thus, for fixed k, the probability only
decreases polynomially in the factor (1+ε) that the estimate
is bigger than the true total weight.

3. THE RELATIVE STANDARD DEVIATION
We will now bound the relative variance (Rvar) which is the

square of the relative standard deviation, that is, Rvar
[
Ŵ

]
=

Var
[
Ŵ

]
/W 2 = E

[(
Ŵ−W

W

)2
]

= Rsd
[
Ŵ

]2

. To prove The-

orem 1, for k > 1 samples, we show that

Rvar
[
Ŵ

]
= O(1/k)

Let R[a,b] denote the contribution to the relative variance
when the relative error |Ŵ−W |

W
is in the interval [a, b]. Thus

Rvar
[
Ŵ

]
= R[0,∞).

First we note that if the relative error is less than 1/
√

k, the
contribution to the relative variance is less than 1/k, that
is,

R[0,1/
√

k] < 1/k.

Next suppose the relative error is between 1/
√

k and 1. We
are going to consider exponentially increasing intervals for
the relative error and use (4) to bound the probability of

being in that interval.

R[1/
√

k,1)

=

blog
√

kc∑
i=0

R[2i/
√

k,2i+1/
√

k)

<

blog
√

kc∑
i=0

(
Pr

[
|Ŵ−W |

W
∈ [2i/

√
k, 2i+1/

√
k]

]

×(2i+1/
√

k)2

)

<

blog
√

kc∑
i=0

(
2 exp(−(2i/

√
k)2k/6)22i+2/k

)

=

blog
√

kc∑
i=0

(
2 exp(−(22i/6)22i+2/k

)

= O(1/k).

Finally we consider the overestimate case where the rela-
tive error is more than 1. Again we consider exponentially
increasing intervals, but this time bounding the probability
with (5).

R[1,∞)

=

∞∑
i=0

R[2i,2i+1)

<

∞∑
i=0

(
Pr

[
|Ŵ −W |

W
∈ [2i, 2i+1

]
(2i+1)2

)

<

∞∑
i=0




[
e2i/(1+2i)

1 + 2i

]k+1

22i+2




=

∞∑
i=0

O

([ √
e

1 + 2i

]k−1
)

< O

([√
e

2

]k−1
)

= O(1/k).

Above, the sum is dominated by its first term because the
exponent k − 1 is positive for k ≥ 2. Thus, for k ≥ 2, we

have bounded by relative variance as Rvar
[
Ŵ

]
= R[0,∞) =

R[0,1/
√

k) + R[1/
√

k,1) + R[1,∞) = O(1/k). In particular, it

follows that Rsd
[
Ŵ

]
=

√
Rvar

[
Ŵ

]
= O(1/

√
k), as desired.

3.1 The Expected Relative Error
The expected relative error is bounded by the relative stan-
dard deviation, but for k = 1, the relative standard devi-
ation is infinite. However, the infinite contribution to the
relative variance was in the sum bounding R[1,∞). For the
expected relative error, the corresponding sum is

∞∑
i=0




[
e2i/(1+2i)

1 + 2i

]k+1

2i+1


 =

∞∑
i=0

O

([ √
e

1 + 2i

]k
)

.

Thus, our exponent is increased from k − 1 to k. In par-
ticular, the exponent is 1 for k = 1, and then the whole
sum is bounded by a constant. Thus, we conclude that the
expected relative error is constant for k = 1. Combined



with the standard deviation bound this implies that the ex-
pected relative error is bounded by O(1/

√
k) for any sample

size k ≥ 1. This completes the proof of Theorem 1.

4. EXPERIMENTAL PERFORMANCE
In this section we demonstrate the performance of our sam-
pling technique in two ways. The results are presented in
Figures 1, 3–6. Each figure is based on a different set of
weights displayed in the left hand plot. The plot is a his-
togram of the discrete logarithms of the weights, with expo-
nentially growing bin widths, replotted on a log scale.

In the center plots, we tested priority sampling, calculating

the relative error (Ŵk −W )/W as a function of the sample
size k. Two sample paths, SP 1 and SP 2 are presented.
Each sample path is generated from a single set of random
αi and priorities qi; if separate random variables were used
for each value of k the curves would be noticeably more
jagged. We also present the root mean square (RMS) of
the relative error over 1000 sample paths. We note that
the RMS is more sensitive to big errors than the regular
mean would have been. The RMS is our measured relative

standard deviation

√
E

[
(Ŵk −W )/W

]
. By Conjecture 1,

the relative standard deviation is bounded by 1/
√

k − 1 for
all weight distributions, and we include this envelope for
comparison.

The right plots display the same quantities for uniform sam-
pling without replacement as used in [15].

In Figure 1 we considered files in a Unix directory. As syn-
thetic data we use Pareto distributions displaying different
degrees of heavy-tailedness. We consider Pareto(β) Distri-
butions with β = 0.5, 1.0, 1.5, 2.5 in Figures 3–6. The Pareto
distribution of a random variable X has complementary cu-
mulative distribution function P [X > x] = x−β for x greater
than some x0. The distribution has infinite variance for
β ≤ 2 and infinite mean for β ≤ 1. The smaller β, the more
heavy tailed the distribution is. We note that Pareto-like
distributions are common in real life [5], often with β close
to 1. For example, for the Internet flow sizes studied in [11],
we found β ≈ 1.05.

We summarize the experiments as follows. Firstly, with pri-
ority sampling, the relative error is generally smaller for the
more heavy-tailed distributions and the RMS stays nicely
within the bound of Conjecture 1. In particular, priority
sampling does very well in the presence of a very large weight
like in Figure 3. Priority sampling will always include such
a large weight, either directly as a sample, or indirectly be-
cause the threshold exceeds the weight and then all weight
estimates are larger. Analytically, we know that the bound
of Conjecture 1 holds and is tight in case of unit weights.
Thus we see our experiments as a good indication that the
conjecture holds true.

Second we see that uniform sampling does somewhat better
in the beginning in the least heavy-tailed distribution in
Figure 6 but much worse in the more heavy-tailed cases in
Figures 1, 3, and 5. The difference is particularly evident
in Figure 3, where one large weight is sampled well by
priority sampling, but leads to wildly inaccurate estimates

in uniform sampling. More precisely, in the regular sample
paths, a large weight mostly leads to underestimates because
it is not sampled. However, with some small probability it
is sampled early with a very large estimate and this has a
strong impact on the RMS.

When comparing uniform and priority sampling, it is not
just a question of uniform doing better without heavy tails
and priority sampling doing better with heavy tails. The sig-
nificant point is that priority sampling is always expected to
do well with a reasonable number of samples. For example,
in our experimental sample paths, we see that priority sam-
pling always got the answer within a 50% error in 10 sam-
ples. For contrast, with uniform sampling and heavy tails,
it is not until most of the 10,000 items are sampled that we
start getting good convergence. Since the underlying weight
distribution may not be known and since heavy-tailed dis-
tributions are common in practice [5], it is crucial to have
a scheme like priority sampling that can be trusted for any
underlying weight distribution.

5. EXTENSIONS
In this section, we briefly sketch how our approach can be
used to generate some other types of estimates.

5.1 Secondary Weights
Suppose our items have a secondary weight xi that we want
to estimate. For sampled items we can use x̂i = xi max{τ, wi}/wi

as an unbiased estimator of xi. This way we can view the
weight wi as the importance attached to the item i. Note
that we do not provide any error bounds for x̂i as they de-
pend on the correlation between xi and wi.

5.2 Identifying Small Sums
Suppose we do not have direct access to items from a se-
lection H but that they are contained in a larger set I that
we can scan in priority order. After scanning many items
from I without seeing H, we would like to conclude that H
constitutes a small fraction of the weight in I.

As described in Section 1.6, we can use a priority sample of
I to estimate the total weight of any subset H of I. Gener-
alizing Theorem 2, one can show that if our sample size is
k and the weight of H is a fraction f of the weight of I, the
probability that the relative error of estimating H exceeds
ε is bounded by exp(−Ω(ε2fk)). Getting no samples from
a non-empty H corresponds to ε = 1, so the probability of
this event is bounded by exp(−Ω(fk)).

6. CONCLUDING REMARKS
We have presented a scheme for estimation of selection sums
based on samples which does not degenerate with skewed
weight distribution. In Conjecture 1 we suggested that with
k samples, the relative standard deviation is bounded by
1/
√

k − 1. We proved this bound asymptotically and sup-
ported it by experiments. Very recently Szegedy [18] an-
nounced a proof of Conjecture 1.
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Figure 3: 10,000 Weights from Pareto(0.5) Distribution. Total = 2.83×108, Max = 1.34×108, Mean = 2.83×104,
Median 3.97, Min = 1.00.
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Figure 4: 10,000 Weights from Pareto(1.0) Distribution. Total = 1.41×105, Max = 2.56×104, Mean = 14.1,
Median = 2.00, Min = 1.00
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Figure 5: 10,000 Weights from Pareto(1.5) Distribution. Total = 2.82×104, Max = 351., Mean = 2.82, Median
= 1.59, Min = 1.00
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Figure 6: 10,000 Weights from Pareto(2.5) Distribution. Total = 1.66×104, Max = 40.9, Mean = 1.66, Median
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