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Abstract

We present a new efficient sampling method for approximat-
ing r-dimensional Maximum Constraint Satisfaction Prob-
lems, MAX-rCSP, on n variables up to an additive error εnr.
We prove a new general paradigm in that it suffices, for a given
set of constraints, to pick a small uniformly random subset of
its variables, and the optimum value of the subsystem induced
on these variables gives (after a direct normalization and with
high probability) an approximation to the optimum of the
whole system up to an additive error of εnr. Our method
gives for the first time a polynomial in ε−1 bound on the
sample size necessary to carry out the above approximation.
Moreover, this bound is independent in the exponent on the
dimension r. The above method gives a completely uniform
sampling technique for all the MAX-rCSP problems, and im-
proves the best known sample bounds for the low dimensional
problems, like MAX-CUT.

The method of solution depends on a new result on the cut
norm of random subarrays, and a new sampling technique for
high dimensional linear programs. This method could be also
of independent interest.
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1 Introduction

Suppose r is a fixed integer. In the MAX-rSAT problem, we
are given a Conjunctive Normal Form Boolean formula on n
variables, with each clause being the OR of precisely r literals.
The objective is to maximize the number of clauses satisfied
by an assignment to the n variables. The exact problem is
NP-hard for r ≥ 2. This paper has two main results - the first
concerns general r, and the second the special case of r = 2.
The first result is that for any ε > 0, there is a positive integer
q ∈ O(log(1/ε)/ε12) such that if we pick at random a subset
of q variables (among the n) and solve the “induced” prob-
lem on the q variables (maximize the number of clauses sat-
isfied among those containing only those variables and their
negations), then the answer multiplied by nr/qr is, with high
probability, within an additive factor εnr of the optimal an-
swer for the n variable problem. The q needed here will be
called the “(vertex) sample complexity” of the problem for
obvious reasons.

In fact, we show the same result for all MAX-rCSP problems.
(MAX-rCSP problems, also called MAX-rFUNCTION-SAT,
are equivalent to MAX-SNP [3]). We note that while, nor-
mally, sampling is used to estimate certain specific quanti-
ties, here the result actually says that the sample estimates
an optimal solution value well. We do not know of any such
optimizing results in statistics prior to this work.

The MAX-rSAT and other MAX-rCSP problems all admit
fixed factor relative approximation algorithms which run in
polynomial time. For some MAX-SNP problems, there have
been major breakthroughs in achieving better factors using
semi-definite programming and other techniques [9]. More
relevant to our paper is the line of work started with the
paper of Arora, Karger and Karpinski [3] which introduced
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the technique of smooth programs, and designed the first
polynomial time algorithms for solving MAX-SNP problems
(of arity r) to within additive error guarantee εnr, for each
fixed ε > 0. Frieze and Kannan [7] proved an efficient ver-
sion of Szémeredi’s Regularity Lemma and used it to get a
uniform framework to solve all MAX-SNP and some other
problems in polynomial time with the same additive error.
In [8], they introduced a new way of approximating matri-
ces and more generally r-dimensional arrays, called the “cut-
decomposition” and using those, proved a result somewhat
similar to the main result here (for each fixed r), but with
two important differences - (i) the sample complexity was ex-
ponential in 1/ε and (ii) their result did not relate the optimal
solution value of the whole problem to the optimal solution of
the random sub-problems in their original setting; instead it
related it to a complicated computational quantity associated
with the random sub-problem. We will make central use of
cut-decompositions in this paper.

For the special case of r = 2, Goldreich, Goldwasser and Ron
[10] designed algorithms, where the sample complexity was
polynomial in 1/ε; indeed, by exploiting the special structure
of individual problems like the MAX-CUT problem they im-
proved the polynomial dependence. Their results relate the
optimal solution value of the whole problem to a complicated
function of the random sub-problems like [7] (see also [7], [5]
and [2] for higher dimensional cases, or for cases in which
our only objective is to decide if we can satisfy almost all
constraints). Thus they differ from our new uniform method.

Our second main result is a reduction of the sample com-
plexity for all MAX-2CSP problems to O(1/ε4). We must
remark here that both our main results are derived by gen-
eral arguments about approximating multi- (and 2-) dimen-
sional arrays by some simple arrays and then using Linear
Programming arguments. Unlike previous papers, we do not
use problem-specific arguments which dwelve into the special
structure of individual problems. The MAX-CUT problem (a
special MAX-2CSP problem) has received much attention in
this context. Indeed, independently of the papers so far cited,
Fernandez de la Vega [6] developed a different algorithm for
this problem which within polynomial time, produced a solu-
tion with additive error εn2. [10] used the special structure
of the problem to derive an algorithm with the best up to
now sample complexity O(1/ε5) (in the sense of (ii) above).
Our improved sample complexity argument uses a tightened
cut-decomposition argument as well as a better Linear Pro-
gramming argument.

The global view of our method is the following. We represent
MAX-rCSP problems by r-dimensional arrays. In the first
stage we use the main result of Section 3 on cut norm of ran-
dom subarrrays to transfer a cut decomposition of the whole

array to a random sample. We use then a cut decomposition
of a sample to approximate the value of the objective func-
tion. Then, in the second stage, we use linear programs to
relate it to the value of the objective function on the whole
array by using the main result of Section 4.

For arbitrary dimension r, the sample size for the first stage
is O

(
1
ε6

)
, whereas the sample size for the second stage is

O
(

log( 1
ε )

ε12

)
.

We notice, that in order to approximate any problem from
MAX-rCSP, it is enough to give a good absolute approximation
to the optimum of an induced random subsystem. As a conse-
quence, our sample bound above gives, by a direct application
of an approximation method of [3], the running times 2Õ( 1

ε2 )

for approximating all MAX-rCSP problems. This improves
on the best known up to date bound of the form 2Õ( 1

ε2r−2 )

for the problems of dimension r ([8]).

The paper is organized as follows. Section 2 proves the exis-
tence of a Cut Decomposition for arrays of dimension r ≥ 2.
Section 3 gives the basic result on the Cut Decomposition
induced on a random sub-array. In Section 4 we derive an
upper bound for the sample size using Linear Programming.

1.1 Notation

We consider r−dimensional arrays, where r ≥ 2. [The r = 2
case gives us matrices.] If V1, V2, . . . Vr are (not necessarily
distinct) finite sets, an r−dimensional array A on V1, V2, . . . Vr
is a function A : V1×V2× . . . Vr −→ R. For each i1 ∈ V1, i2 ∈
V2, . . . ir ∈ Vr, we call A(i1, i2, . . . ir) an entry of A. We let
||A||F be the square root of the sum of squares of all the
entries. [This is sometimes called the Frobenius norm, hence
the subscript F .] For any S1 ⊆ V1, S2 ⊆ V2 . . . Sr ⊆ Vr we let
A(S1, S2, . . . Sr) =

∑
(i1,i2,...ir)∈S1×S2×...Sr A(i1, i2, . . . ir) and

then define another norm ||A||C (called the cut norm) :

A+ = max
S1⊆V1,S2⊆V2,...Sr⊆Vr

A(S1, S2, . . . Sr)

and ||A||C = max(A+, (−A)+).

The cut norm was defined and studied by [8].

For any S1, S2, . . . Sr, and real value d we define the Cut Array
C = CUT (S1, S2, . . . Sr; d) by

C(i1, i2, . . . ir) =
{
d if (i1, i2, . . . ir) ∈ S1 × S2 . . . Sr,
0 otherwise.

The real number d is called the coefficient of the cut array.

We use one other piece of notation : for any Q ⊆ V2×V3 . . . Vr,
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we define
P (Q) = {z ∈ V1 : A(z,Q) =∑

(z,i2,i3,...ir):(i2,i3,...ir)∈Q

A(z, i2, i3, . . . ir) > 0}.

Note that P is with reference to an array A. It will be clear
from context which array P is in reference to.

1.2 Main Results

We formulate now the main results of the paper. We de-
note by MAX-rCSP the class of all r-ary (r-dimensional)
Maximum Constraint Satisfaction Problems (i.e. the prob-
lems defined by the collections of r-ary boolean functions
f : {0, 1}r → {0, 1} for r given variables out of the set of
n variables with the objective to construct an assignment
s ∈ {0, 1}n which maximizes the number of satisfied con-
straints, cf., e.g., [12]). Given a problem P from MAX-rCSP
for a given dimension r ≥ 2, we call a (randomized) al-
gorithm A an (absolute) εnr- approximation algorithm for
P , if for any instance I of P with n variables, the value
c(A(I)) produced by A on I satisfies, with high probabil-
ity, |OPT (I)− c(A(I))| ≤ εnr, where OPT (I) is the value
of the optimum. The sample complexity of an r-dimensional
εnr-approximation algorithm (defined for all ε > 0 ) is the
number of variables (nodes) in a random sample required by
the algorithm as a function of 1

ε . We are interested in cases in
which this complexity is independent of the size of the input
size, and is bounded by a function of 1

ε only; when this is not
the case we say that the the sample complexity is infinite. We
call a sample complexity fully polynomial if it is ( 1

ε )0(1).

For a fixed dimension r, a problem P from MAX-rCSP is
said to have (an absolute) fully polynomial sample complexity
S =

(
1
ε

)0(1), if for every fixed ε > 0, there exists a constant
time εnr-approximation algorithm for P with a sample com-
plexity S. A class of problems X will be said to have a sample
complexity S if all problems P in X have sample complexity
S.

We formulate now our main results.

Theorem 1. For every dimension r, and every fixed ε > 0,
MAX-rCSP has a constant time εnr-approximation algorithm
with fully polynomial sample complexity O

(
log( 1

ε )

ε12

)
.

Theorem 2. For every fixed ε > 0, MAX-2CSP has a con-
stant time εn2-approximation algorithm with a sample com-
plexity O

(
1
ε4

)
.

The rest of the paper is devoted to the proofs of the above
results.

1.3 Constant Time Bounds

We show now that the fully polynomial sample size bounds of
Theorem 1 (and more explicitly of Theorem 8) entail the ex-
istence of εnr-approximation algorithms for arbitrary MAX-
rCSP problems running, for any fixed ε > 0, in time 2Õ( 1

ε2 )

and using sample size O
(

log( 1
ε )

ε12

)
. This improves on the best

known so far running time bounds for approximating those
problems which were of the form 2Õ( 1

ε2r−2 ) for r the dimen-
sion of a problem [8], and making them asymptotically equal
to that of the MAX-CUT. The argument used in the proof
of the following theorem is based on a technique of smooth
programs and the approximation result of Arora, Karger and
Karpinski [3]. The crucial point here is the independence of
the exponent of

(
1
ε

)
in the running times of smooth programs

approximations, on a dimension r.

Theorem 3. For every fixed dimension r, and every ε >
0, MAX-rCSP has εnr-approximation algorithms running in
time 2Õ( 1

ε2 ) and having sample complexity O
(

log( 1
ε )

ε12

)
.

Proof. Let P be a problem on n variables from MAX-
rCSP for a given r. We denote by OPT its optimum value.
We consider subsystem S of constraints of P induced by a
random sample of its variables of size q = Θ

(
log( 1

ε )

ε12

)
. We

denote by OPTS the optimum value of a subsystem S. We
have, by Theorem 8, w.h.p., the following inequality

|OPT − nr

qr
OPTS | ≤ εnr. (1)

We consider now only a new problem defined by a random
subsystem S, and represent it, by using a standard “arith-
metization”, as a degree-r Smooth Integer Program, see for
details [3]. We apply now Theorem 1.10 of [3] to get an ε′qr-
approximation algorithm A for an induced subproblem com-
puting a solution Y which satisfies OPTS−ε′qr ≤ Y ≤ OPTS
for arbitrary ε′ > 0. The running time of A is qO

(
1

(ε′)2

)
=

2Õ
(

1
(ε′)2

)
, with an explicit constant hidden in our O-notation

upstairs depending polynomially on a dimension r, see [3].

By (1) we have, for all ε, ε′ > 0,

OPT ≤ nr

qr
(Y + ε′qr) + εnr,

and

OPT ≤ nr

qr
Y + (ε+ ε′)nr.
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We have also

OPT ≥ nr

qr
Y − εnr ≥

≥ nr

qr
Y − (ε+ ε′)nr.

Thus, we have

|OPT − nr

qr
Y | ≤ (ε+ ε′)nr

for arbitrary ε, ε′ > 0.

Therefore an existence of an ε′qr-approximation algorithm
computing a solution Y for an induced subproblem which

works in time 2Õ
(

1
(ε′)2

)
(cf. [3]) entails, by Theorem 8, an

εnr-approximation algorithm for P working in time 2Õ( 1
ε2 )

(and using sample size O
(

log( 1
ε )

ε12

)
) for all ε > 0.

2

A similar argument can be applied to Theorem 2, yielding

Theorem 4. For every ε > 0, MAX-2CSP has εn2-
approximation algorithms working in time 2Õ( 1

ε2 ) and having
sample complexity O

(
1
ε4

)
.

2

2 Existence of Cut Decomposition

In this section, we prove the existence of a certain approxi-
mation to any matrix. The approximation will be the sum of
a small number of cut-arrays. The sum is taken entry-wise.
The proof is elementary and essentially drawn from [8].

Theorem 5. Suppose A is an array on V1, V2, . . . Vr, N =
|V1||V2| . . . |Vr| and ε is a positive real number. There exist at
most 4r/ε2 cut arrays whose sum D approximates A well in
the sense :

||A−D||C ≤ ε
√
N ||A||F (2)

||A−D||F ≤ ||A||F (3)
The sum of the squares of the coefficients of the

cut arrays is at most 4r
||A||2F
N

. (4)

This upper estimate on the number of cut arrays is tight up
to the dependence on the dimension r.

Proof. For an existence argument, we are going to find
cut arrays D(1), D(2), . . . D(t) one by one always maintaining
the condition:

||A− (D(1) +D(2) + · · ·+D(t))||2F ≤ (1− ε2t

4r
)||A||2F . (5)

We start with t = 0. At a general stage, suppose we
already have D(1), . . . D(t) satisfying (5). If now W (t) =
A− (D(1) +D(2) + · · ·+D(t)) satisfies ||W (t)||C ≤ ε

√
N ||A||F ,

then we stop. Otherwise, there exist S1, S2, . . . Sr such that
|W (t)(S1, S2, . . . Sr)| ≥ ε

√
N ||A||F . If |S1| < |V1|/2, then

since W (t)(S1, S2, . . . Sr) = W (t)(V1, S2, . . . Sr) − W (t)(V1 \
S1, S2, . . . Sr), we have that one of |W (t)(V1, S2, . . . Sr)| or
|W (t)(V1 \ S1, S2, . . . Sr)| must be at least (ε/2)

√
N ||A||F .

Thus we have that there exist some S1 ⊆ V1, |S1| ≥ |V1|/2 and
S2, . . . Sr such that |W (t)(S1, S2, . . . Sr)| ≥ (ε/2)

√
N ||A||F .

By repeating this with S2, S3, . . . Sr, we see that

∃St+1
1 ;St+1

2 , . . . St+1
r : |St+1

i | ≥ |Vi|/2

|W (t)(St+1
1 ;St+1

2 , . . . St+1
r )| ≥ (ε/2r)

√
N ||A||F .

Let dt+1 = W (t)(St+1
1 ;St+1

2 , . . . St+1
r )/(|St+1

1 ||St+1
2 | . . . |St+1

r |)
be the average of the entries in S1 × S2 × . . . Sr and let
D(t+1) = CUT (St+1

1 ;St+1
2 , . . . St+1

r , dt+1). Then, noting that
subtracting the cut array D(t+1) from W (t) just corresponds
to subtracting the average from a set of real numbers, we
have :

||W (t) −D(t+1)||2F − ||W (t)||2F =∑
i1∈St+1

1 ,i2∈St+1
2 ...

((W (t)(i1, i2, . . . ir)− dt+1)2

−(W (t)(i1, i2, . . . ir))2) (6)
= −|St+1

1 ||St+1
2 | . . . |St+1

r |d2
t+1 =

−W
(t)(St+1

1 , St+1
2 , . . . St+1

r )2

|St+1
1 ||St+1

2 | . . . |St+1
r |

≤ − ε2

22r
||A||2F .

Also, ||W (t) −D(t+1)||2F − ||W (t)||2F ≤ −d2
t+1N/2

2r. (7)

We now have (5) satisfied with t one greater. Note that (5)
implies that we must stop before t exceeds 22r/ε2. The up-
per bound on the sum of the d2

t follows from adding up the
inequalities (7) which yields

||A||2F ≥ ||A||2F−||A−(D(1)+D(2)+. . . D(t))||2F ≥
∑
t

d2
tN/2

2r.

The proof of the tightness of the upper estimate is included
in the full version of this paper.
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3 Cut Norm of Random Subarrays

The main purpose of this section is to show that if an array on
V r (where |V | = n is large) has small cut-norm, then so does
the array induced by a random subset J of V of cardinality
O(1/ε6).

The outline of the proof is as follows : Suppose G is the array
on V r, and B is the array on Jr. Suppose Q1, Q2, . . . Qr are
random subsets of Jr−1, each of cardinality Ω(1/ε2). Then,
lemma (7) asserts that with high probability, there are subsets
Q′1 ⊆ Q1, Q′2 ⊆ Q2 . . . Q

′
r ⊆ Qr such that

B(P (Q′1), P (Q′2), . . . P (Q′r)) ≈ B+. (8)

In other words, we need to consider only 2O(1/ε2) candi-
date subsets of J to find the S1, S2, . . . Sr ⊆ J approxi-
mately maximizing B(S1, S2, . . . Sr) (not all 2O(|J|) of them.)
Next Lemma (8) shows that if we had already fixed, say
X1 = P (Q′1), X2 = P (Q′2), . . . Xr = P (Q′r), and then we
pick J (independently of Xi), we will have that with high
probability

G(X1, X2, . . . Xr) ≈
|V |r

|J |r
B(X1, X2, . . . Xr). (9)

Multiplying the failure probability with the number of possi-
ble subsets of the Qi (which is 2O(1/ε2)), we also get that with
high probability, this holds for every subset Q′1 of Q1, Q′2 of
Q2 etc. If this holds rigorously, we would then clearly be able
to infer from (8) and (9) that

G+ ≈ |V |
r

|J |r
B+.

A similar inequality also will follow (along the same lines) for
(−G)+ and this would finish the proof.

The major problem is that J is not independent of
Q1, Q2, . . . Qr; if it were (8) will not hold. To tackle this,
we adopt a method of proof reminiscent of the argument of
Vapnik and Chervonenkis [15]. We consider a set J ′ which
is J minus all the end points of r− tuples in Q1, Q2, . . . Qr.
Noting that |J |−|J ′| ∈ O(1/ε2), we argue that we get roughly
the same probability distributions if we pick, as we described
already, J first and then Q1, Q2, . . . Qr as random subsets
of Jr−1, whence (8) holds as if we first pick J ′ and then
Q1, Q2, . . . Qr as random subsets of V r−1, whence we have
that (9) holds. Thus, we may actually use both (8) and (9)
to get our result.

Lemma 6. Suppose B is a r−dimensional array on R1×R2×
. . . Rr. Suppose S1 ⊆ R1, S2 ⊆ R2, . . . Sr ⊆ Rr are some fixed

subsets. Suppose Q1 is a random subset of R2 × R3 × . . . Rr
of cardinality p. 1 Then, with probability at least 1− 1

40(4r)r ,
we have :

B(P (Q1 ∩ (S2 × S3 . . . Sr)), S2, S3, . . . , Sr) ≥

B(S1, S2, . . . Sr)−
40(4r)r

√
|R1||R2| . . . |Rr|√

p
||B||F .

Proof. Let S2 × S3 . . .× Sr = S. We have,

B(P (Q1 ∩S), S) = B(P (S), S)−B(B1, S) +B(B2, S), (10)

where

B1 = {z ∈ R1 : B(z, S) > 0 and B(z, S ∩Q1) < 0},
B2 = {z ∈ R1 : B(z, S) < 0 and B(z, S ∩Q1) > 0},

Consider one fixed z ∈ R1. Let Xz = B(z, S ∩Q1). We may
write Xz as the sum X1 +X2 + . . . Xp, where X1, X2, . . . Xp is
a sample of size p drawn uniformly without replacement from
the set of l = |R2|× |R3|× . . . |Rr| reals - {B(z, y))1y∈S}. For
analysis, we also introduce the random variables Y1, Y2, . . . Yp
- a sample of size p drawn independently, each uniformly dis-
tributed over the same set of reals, but now with replacement.
We have

E(X1 +X2 + . . . Xp) =
p

l
B(z, S)

Var(X1 +X2 + . . . Xp) ≤ Var(Y1 + Y2 + . . . Yp) ≤
p

l

∑
u∈S

B(z, u)2 ≤ p

l

∑
u∈R2×R3×...Rr

B(z, u)2,

where the second line is a standard inequality (for example,
it follows from Theorem 4 of [11]). Hence, for any ξ > 0,

Pr
(∣∣∣Xz −

p

l
B(z, S)

∣∣∣ ≥ ξ) ≤ p
∑
u∈R2×R3×...Rr B(z, u)2

lξ2

(11)
If z ∈ B1 then Xz − (p/l)B(z, S) ≤ −(p/q)B(z, S) and so
applying (11) with ξ = pB(z, S)/l we get that for each fixed
z,

Pr(z ∈ B1) ≤
l
∑
u∈R2×R3×...Rr B(z, u)2

pB(z, S)2
.

E

(∑
z∈B1

B(z, S)

)
1So, each of the

(|R2||R3|...|Rr|
p

)
subsets is equally likely to be picked

to be Q1.
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≤
∑

{z∈R1: B(z,S)>0}

min
{
B(z, S),

l
∑
uB(z, u)2

pB(z, S)

}

≤
∑

{z∈R1: B(z,S)>0}

√
l
∑
u∈R2×R3...Rr

B(z, u)2

p
(12)

By an identical argument we obtain

E

(∑
z∈B2

B(z, S)

)
≥ −

∑
{z∈R1: B(z,S)<0}

√
l
∑
uB(u, z)2

p
.

Hence, (using the Cauchy-Schwartz inequality),

E(B(P (Q1 ∩ S), S)) ≥ B(P (S), S)−
∑
z∈R1

√
l
∑
uB(u, z)2

p

≥ B(P (S), S)−
√
|R1||R2| . . . |Rr|√

p
||B||F .

Now, B(P (S), S)−B(P (S ∩Q1), S) is a nonnegative random

variable with expectation at most
√
|R1||R2|...|Rr|√

p ||B||F , as ar-
gued above. So using Markov inequality, the lemma follows.

2

Lemma 7. Suppose B is a r−dimensional array on R1×R2×
. . . Rr. Let p ≥ 160r4/ε2. Suppose also that Qi is a random
subset of R1 × R2 × . . . Ri−1 × Ri+1 . . . Rr of cardinality p.
Then with probability at least 1− r/(40(4r)r), we have :

∃Q′1 ⊆ Q1,∃Q′2 ⊆ Q2, . . .∃Q′r ⊆ Qr,

B(P (Q′1), P (Q′2), . . . P (Q′r)) ≥ B+−ε
√
|R1||R2| . . . |Rr| ||B||F .

Proof. Let S1 ⊆ R1, S2 ⊆ R2 . . . Sr ⊆ Rr satisfy
B(S1, S2, . . . Sr) = B+. Applying Lemma (6) r times, we
get the current lemma.

2

We first need one more simple technical lemma.

Lemma 8. Suppose G is a r dimensional array on V r with
each entry of absolute value at most M . Let t be a fixed
positive integer. Let I be a random subset of V of cardinality
t. Then, with probability at least 1− e−ε4t/8 we have

|G(V, V, V, . . . V )− |V |
r

(t)r
G(I, I, . . . I)| ≤ ε2M |V |r.

Proof. Note that changing any one element of I changes
the random variable G(I, I, . . . I) by at most Mtr−1. Thus
the lemma follows by standard Martingale inequalities ([4]).

Theorem 9. Suppose G is a r−dimensional array on V r =
V × V × . . . V with all entries of absolute value at most M .
Let J be a random subset of V of cardinality q ≥ 1000r7/ε6.
Let B be the r−dimensional array obtained by restricting G
to Jr. Then, we have with probability at least 39/40:

||B||C ≤
qr

|V |r
||G||C + 10ε2Mqr + 5εqr

||G||F
|V |r/2

.

Proof. First we have that E(||B||2F ) = qr

|V |r ||G||
2
F , so us-

ing Markov inequality, we have that with

E1 : ||B||F ≤ 4
qr/2

|V |r/2
||G||F has Pr(E1) ≥ 9/10. (13)

Let p = 160r4/ε2. Let Q1, Q2, . . . Qr be r independently, each
uniformly randomly picked subsets of Jr−1, each of cardinal-
ity p. We apply Lemma (7) to B. So, with probability at
least 7/8 (using (13))

∃Q′1 ⊆ Q1,∃Q′2 ⊆ Q2, . . .∃Q′r ⊆ Qr, G(P (Q′1) ∩ J, P (Q′2)

∩J, . . . P (Q′r) ∩ J) ≥ B+ − ε

3
qr

|V |r/2
||G||F . (14)

[Here, we mean by P (Q′1) the set {z ∈ V : G(z,Q′1) > 0}.]
Let J ′ be obtained from J by removing the at most r(r− 1)p
end points of the elements of Q1 ∪Q2 ∪ . . . Qr.

We will make crucial use of the fact that the following two
different methods of picking J,Q1, Q2, . . . Qr produce nearly
the same joint probability distribution on them :

(i) As above, pick J to be a random subset of V of cardinality
q and then pick Q1, Q2, . . . Qr to be independent random sub-
sets of Jr−1 each of cardinality p. Let P (i)(J,Q1, Q2, . . . Qr)
be the probability that we pick J,Q1, Q2, . . . Qr in this ex-
periment. Then, clearly, for each J,Q1, Q2, . . . Qr with |J | =
q,Q1, Q2, . . . Qr ⊆ Jr−1, |Qi| = p, we have

P (i)(J,Q1, Q2, . . . Qr) =
((
|V |
q

)(
qr−1

p

)r)−1

.

(ii) Now, pick J ′ to be a random subset of V of cardinality
q − r(r − 1)p. Then pick independently (of J ′ and of each
other) r random subsets Q̃1, . . . Q̃r of V r−1 of cardinality p
each. Let J̃ = J ′∪ (the set of all end points of elements of
Q̃1 ∪ Q̃2 . . . Q̃r). Let P (ii)(J ′, Q̃1, . . . Q̃r) be the probabilities
here.

Define E2 to be the event that all pr(r − 1) end points of
the elements in Q1, Q2, . . . Qr are all distinct and let E3 be
the event that all the end points of Q̃1, Q̃2, . . . Q̃r are distinct
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and none of them is in J ′. It is easy to see by direct calcula-
tion that conditioned on the events E2, E3 P

(i) and P (ii) are
exactly equal. It is also easy to see that

P (i)(E2) =
(( q

r−1

)
p

)(( q
r−1

)
− p

p

)
. . .

(( q
r−1

)
− (r − 1)p
p

)
/

[(
qr−1

p

)]r
≥ 99/100,

and P (ii)(E3) ≥ 99/100; so we have that the following in-
equality which we will use shortly :

||P (i) − P (ii)||TV ≤ 1/50. (15)

Consider one particular collection of subsets Q′1 ⊆ Q1, Q
′
2 ⊆

Q2, . . . Q
′
r ⊆ Qr. We will apply Lemma (8) to the array G′

on V r obtained by setting

G′(i1, i2, . . . ir) = G(i1, i2, . . . ir)∀(i1, i2, . . . ir) ∈ P (Q′1)
×P (Q′2)× . . . P (Q′r)

G(i1, i2, . . . ir) = 0 otherwise .

Note that ||G′||F ≤ ||G||F . Note that we are consid-
ering the set-up regarding P (ii); so we may assume that
Q1, Q2, . . . Qr have already been picked. For now, the sub-
sets Q′1 ⊆ Q1, Q

′
2 ⊆ Q2, . . . Q

′
r ⊆ Qr have been also fixed.

Then we pick J ′ ⊆ V of cardinality q − r(r − 1)p indepen-
dently of Q1, Q2, . . . Qr. Thus applying the lemma, we get
the claimed bounds for the probabilities of the events defined
below :

Let E8(J ′, Q′1, Q
′
2, . . . Q

′
r) :∣∣∣∣G(P (Q′1), P (Q′2), . . . P (Q′r))−

|V |r

(q − r(r − 1)p)r

G(P (Q′1) ∩ J ′, P (Q′2) ∩ J ′, . . . , P (Q′r) ∩ J ′)|
≤ 10ε2M |V |r

Then, P (ii)(E8(J ′, Q′1, Q
′
2, . . . Q

′
r)) ≥ 1− e−ε

4q/16.

Now using the fact that for a choice of Q1, Q2, . . . Qr, there
are 2pr ≤ eε2q/32 choices of Q′1, Q

′
2, . . . Q

′
r, we get :

E9(J ′, Q1, Q2, . . . Qr) : ∀Q′1 ⊆ Q1,∀Q′2 ⊆ Q2, . . .∀Q′r ⊆ Qr
E8(J ′, Q′1, Q

′
2, . . . Q

′
r)

P (ii)(E9(J ′, Q1, Q2, . . . Qr)) ≥ 1− e−ε
4q/32 ≥ 99/100.

Noting that qr ≤ (1 + ε2)(q − r(r − 1)p)r and |G(P (Q′1) ∩
J ′, P (Q′2) ∩ J ′, . . . , P (Q′r) ∩ J ′) − G(P (Q′1) ∩ J, P (Q′2) ∩
J, . . . , P (Q′r) ∩ J)| ≤ ε2qrM , we get (using also (15)) :

Let E10(J,Q1, Q2, . . . Qr) :
∀Q′1 ⊆ Q1,∀Q′2 ⊆ Q2, . . .∀Q′r ⊆ Qr

∣∣∣∣G(P (Q′1), P (Q′2), . . . P (Q′r))−
|V |r

(q − r(r − 1)p)r

G(P (Q′1) ∩J, P (Q′2) ∩ J, . . . , P (Q′r) ∩ J)| ≤ 10ε2M |V |r,
P (i)(E10(J,Q1, Q2, . . . Qr)) ≥ 97/100. (16)

Under E10(J,Q1, Q2, . . . Qr), we have from (14) that

∃Q′1 ⊆ Q1,∃Q′2 ⊆ Q2 . . . G(P (Q′1), P (Q′2), . . . P (Q′r)) ≥

|V |r

qr
B+ − 5ε|V |r/2||G||F − 10ε2M |V |r.

Thus, we get that with probability at least 79/80 :

G+ ≥ |V |
r

qr
B+ − 10ε2M |V |r − 5ε|V |r/2||G||F .

By an exactly identical argument applied to −G, we get also
that with probability at least 79/80,

(−G)+ ≥ |V |
r

qr
(−B)+ − 10ε2M |V |r − 5ε|V |r/2||G||F .

From the last two statements, the Theorem follows.

4 Upper Bound on the Sample Com-
plexity of MAX-rCSP

The purpose of this section is to prove the following theorem.

Theorem 10. Let r be a fixed integer such that r ≥ 2.
Let F = {f1, ...f`} be a collection of functions where each
fi is a boolean function of exactly r variables picked from
V = {x1, ...xn}. Assume that J is a random subset of V
of cardinality q where q = Ω( log(1/ε)

ε12 ). Let m(V ) denote the
maximum number of functions in F which can be made true
for some assignment of V and m(J) the maximum number of
functions in F with all variables in J which can be made true.
Then we have that

m(V ) ≤ m(J) |V |r

qr
+ ε|V |r (17)

m(V ) ≥ m(J) |V |r

qr
− ε|V |r (18)

with probability at least 2/3.

Note that our Ω hides a factor exponential in r

Proof. For each 0, 1 sequence z of length r, z =
(z1, z2, ...zr), say, we define the r-dimensional array A(z) on
V r by

A(z)(i1, ...ir) = number of functions in F true by setting
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xi1 = z1, ...xir = zr

Note that the A(z) are not algorithmically constructed. They
are used only for the proof. We letM = maxz∈{0,1}r ||A(z)||∞.
We can of course assume M ≤ 22r . 2

Let S : V → {0, 1} be any fixed assignment. We will also
think of S as the set of true variables under S. Clearly, the
number of functions satisfied by S is equal to∑

z∈{0,1}r

∑
i1,...ir:S(i1)=z1,...S(ir)=zr

A(z)(i1, ...ir) (19)

Suppose that we have cut decompositions of all the A(z)

D(z) = A(z)−E(z) =
s∑
t=1

Cut(S(z)
t,1 , S

(z)
t,2 , ...S

(z)
t,r , d

(z)
t ), 1 ≤ t ≤ s,

say, with s = 4r

ε2 , ||E
(z)||C ≤ εM |V |r. Using (19), we see that

the number of functions which are true in the assignment S
and with weights given by the arrays D(z), z ∈ {0, 1}r, is equal
to v∗(ν), say, where

v∗(ν) =
∑

z∈{0,1}r

s∑
t=1

d
(z)
t Πr

i=1ν
(z)
t,i (20)

with ν
(z)
t,i = |S(z)

t,i ∩ S| if zi = 1 and ν
(z)
t,i = |S(z)

t,i ∩
(V \S)| if zi = 0.

For t = 1, 2, ...s, i = 1, 2, ...r and z ∈ {0, 1}r, fix a set ν of
values of the ν(z)

t,i . We say that ν is realizable if there exists
S ⊆ V such that

||S(z)
t,i ∩ S| − ν

(z)
t,i | ≤

3ε3

8rs
n for all triples (z, t, i) with zi = 1,

and

||S(z)
t,i ∩(V \S)|−ν(z)

t,i | ≤
3ε3

8rs
n for all triples (z, t, i) with zi = 0.

We claim that if ν is not realizable, then the following Lin-
ear Program LP(V, ν) which is just a tightening of the above
inequalities, is not feasible:

ν
(z)
t,i −

2ε3n
8rs

≤
∑
j∈S(z)

t,i

xj ≤ ν(z)
t,i +

2ε3n
8rs

for all triples (z, t, i)

with zi = 1

ν
(z)
t,i −

2ε3n
8rs

≤
∑
j∈S(z)

t,i

(1− xj) ≤ ν(z)
t,i +

2ε3n
8rs

for all triples (z, t, i) with zi = 0

0 ≤ xj ≤ 1, 1 ≤ j ≤ n [LP (V, ν)]

[This is because if LP(V, ν) was feasible, then it would have a
basic feasible solution which would have at most N = sr2r+1

fractional components; setting the fractional xi to zero will
yield a 0-1 vector realizing ν. We use the obvious fact that
for large n, we have that sr2r+1 ≤ ε3

8rsn]. So, by Linear
Programming duality, we see that there exists one inequality
obtained as a nonnegative combination of the first N inequal-
ities of LP(V,ν) for which there is no solution x satisfying the
bounds 0 ≤ xi ≤ 1. It is easy to see that the combination
need not involve both the upper bound and the lower bound
on any of the sets S(z)

t,i . Thus we get that there are sr2r real

numbers u(z)
t,i , 1 ≤ t ≤ s, 1 ≤ i ≤ r, z ∈ {0, 1}r (depending

on ν) such that, letting,

c
(ν)
i =

∑
1≤j≤r

 ∑
z:zj=1

∑
t:i∈S(z)

t,j

u
(z)
t,j −

∑
z:zj=0

∑
t:i∈S(z)

t,j

u
(z)
t,j


and

c
(ν)
0 =

∑
z∈{0,1}r

 ∑
1≤t≤s, 1≤j≤r

(u(z)
t,j ν

(z)
t,j + |u(z)

t,j |
ε3n

8rs
)


−
∑

1≤j≤r

∑
z:zj=0

∑
1≤t≤s

u
(z)
t,j

we get that

n∑
i=1

c
(ν)
i xi ≤ c(ν)

0 has no solution x with 0 ≤ xi ≤ 1 (21)

which is equivalent to
n∑
i=1

Min(c(ν)
i , 0) > c

(ν)
0 . (22)

Let J be a random subset of V of cardinality q = Ω
(

log(1/ε)
ε12

)
.

Let γ(ν) =
∑
z∈{0,1}r

∑
1≤t≤s |u

(z)
t,j |. Noting that |c(ν)

i | ≤ γ(ν),
we have from (22), using the Theorems of Hoeffding [11],

Pr

(∑
i∈J

Min(c(ν)
i , 0) ≤ q

n
c
(ν)
0 − 2ε3q

8rsn
γ(ν)

)
≤ exp

(
− 2ε6q

82rs2

)
which implies that the following Linear Program [LP (J, ν)]
on the variables xi, i ∈ J is unfeasible :

q

n

(
ν

(z)
t,j −

ε3n

8rs

)
≤

∑
i∈S(z)

t,j
∩J

xi ≤
q

n

(
ν

(z)
t,j +

ε3n

8rs

)

for all (z, t, j) with zj = 1
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q

n

(
ν

(z)
t,j −

ε3n

8rs

)
≤

∑
i∈S(z)

t,j
∩J

(1− xi) ≤
q

n

(
ν

(z)
t,j +

ε3n

8rs

)

for all (z, t, j) with zj = 0

0 ≤ xi ≤ 1 ∀i ∈ J [LP (J, ν)]

Let α = exp
(
− 2ε10q

(32)2r

)
. To sum-

marize, we have that for any ν,
LP(V, ν) is not feasible implies that LP(J, ν) is not feasible
with probability at least 1− α.

This is of course the same as

Pr(LP(J, ν) feasible) > α) implies LP(V, ν) feasible.

This means that, again for any fixed ν, either we are guar-
anteed the existence of a “good” solution in V , or the prob-
ability that LP(J, ν) is feasible is very small. Now, we fix
attention on the set K, say, of points with coordinates of the
form qε3

8r λ
(z)
t,j where the λ(z)

t,j are integers. Note that there are

at most
(

8r

ε3

) r8r
ε2 such points. Thus, we can bound above the

total probability of having simultaneously LP(J, ν) feasible
and LP(V, ν) unfeasible on one point of K by

|K|α =
(

8r

ε3

) r8r

ε2

exp
(
− 2ε10q

(32)2r

)

which is less than 1/3 for q = Ω
(

log(1/ε)
ε12

)
For each z ∈ {0, 1}r, let B(z) be the matrix induced by A(z)

on Jr, and let us write

B(z) = F (z) +
∑

0≤t≤s

Cut(S(z)
t,1 ∩ J, S

(z)
t,2 ∩ J, ...S

(z)
t,r ∩ J, d

(z)
t )

say. Then we have that F (z) is the array induced by E(z) on
Jr.

The following theorem resembles Theorem 9. However it dif-
fers from it in that it does not require a bound for the Frobe-
nius norm (and requires higher sampling size).

Theorem 11. Suppose G is a r-dimensional array on V r =
V ×V ×...V with all entries of absolute value at most M . Sup-
pose J is a random subset of V of cardinality q ≥ 5000r7/ε8.
Let B be the r-dimensional array obtained by restricting G to
Jr. Then we have, with probability at least 1− 1/(4.2r),

||B||C ≤
qr

|V |r
||G||C + 5ε2qrM(3 + 4r/ε).

Proof The proof of Theorem 11 mimics the proof of Theorem
9 and we give only a sketch. There are two differences. First
we use the trivial upper bound |V |r/2M(1 + 4r/ε) for the
Frobenius norm of B. Also, we increase the value of p in
Lemma 7 by a factor Ω(1/ε2) so as to get the assertion of
Lemma 2 with ε2 in place of ε and with probability at least
1 − 1/(4.2r). We get then that, with probability at least
1− 1/(3.2r),

||B||C ≤
qr

|V |r
||G||C + 10ε2Mqr + 5ε2qrM(1 + 4r/ε).

This implies immediately the assertion of the theorem. 2

We return now to the proof of Theorem 8.

Taking G = F (z) gives

||F (z)||C ≤ 16ε4rqrM

simultaneously for all z ∈ {0, 1}r with probability at least
2/3. For v∗(η) as already defined (we use η when referring to
J , µ, ν when referring to V ) and v(η) the number of functions
with variables in J satisfied by S(η) we have

|v(η)− v∗(η)| ≤
∑

z∈{0,1}r
||F (z)||C ≤ 16εM8rqr. (23)

Also, since maxz,t |d(z)
t | ≤ 2rM ,

|v∗(µ)− v∗(ν)| ≤ 8rM
ε2
||µ− ν||`1. (24)

For each realizable η there is an η′, say, belonging to K and
for which ||η′ − η||`1 ≤

qε3

8rsr2
rs ≤ ε3qr

4r . We know that, with
probability at least 2/3, there exists simultaneously for all η′

in K, a feasible ν′ satisfying the inequalities of the Linear
Program [LP (J, η)] where η is replaced by η′, and with

||ν′ − |V |
q
η′||`1 ≤

ε3|V |
8rs

r2rs =
ε3r|V |

4r
.

This implies, using (24), |v∗(η′)−v∗(η)| ≤ 8rM
ε2 ||η

′− (η)||`1 ≤
ε2rqrM and, with the above inequality,

|v∗(ν′)− |V |
r

qr
v∗(η)| ≤ ε(r + 1)2r|V |rM.

Now we use (23) twice to get from the above inequality,

|v(ν′)− |V |
r

qr
v(η)| ≤ ε((r + 1)2r + 32.4r)|V |rM,

which gives, after a rescaling of ε, both assertions of the the-
orem by choosing η such that v(η) = m(J).

9
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This closes the proof of Theorem 1.

A refinement of the general method above yields also directly
the proof of Theorem 2. The details are given in the final
version of this paper.
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Variables, Tôhoku Math.J. 3 (1967), 357-367.

[5] A. Czumaj, C. Sohler, Testing Hypergraph Coloring,
Proc. 28th ICALP’01, LNCS Vol. 2076, Springer, 2001,
493-505.

[6] W.Fernandez-de-la-Vega, MAX-CUT has a Randomized
Approximation Scheme in Dense Graphs, Random Struc-
tures and Algorithms 8 (1996) 187-199.

[7] A.M.Frieze and R.Kannan, The Regularity Lemma and
approximation schemes for dense problems, Proceedings
of the 37th Annual IEEE Symposium on Foundations of
Computing, (1996) 12-20.

[8] A. M. Frieze and R. Kannan Quick Approximation to
matrices and applications, Combinatorica 19 (2) (1999)
pp 175-200.

[9] M.X.Goemans and D.P.Williamson, .878-Approximation
algorithms for MAX CUT and MAX 2SAT, Proceedings
of the 26th Annual ACM Symposium on Theory of Com-
puting, ACM Press (1994), 422-431.

[10] O.Goldreich, S.Goldwasser and D.Ron, Property testing
and its connection to learning and approximation, Proc.
37th IEEE FOCS 96, 339-348; the full paper appeared
in J. ACM 45 (1998), 653-750.

[11] W.Hoeffding, Probability inequalities for sums of bounded
random variables, Journal of the American Statistical
Association 58 (1963) 13-30.

[12] S. Khanna, M. Sudan and D. Williamson, A com-
plete classification of the approximability of maximiza-
tion problems derived from boolean constraint satisfac-
tion, Proc. 29th ACM STOC (1997), 11-20.

[13] F.J. MacWilliams and N.J.A. Sloane, The Theory of
Error-Correcting Codes, North Holland, Amsterdam,
1977.

[14] S. J. Szarek, On the best constants in the Khinchin In-
equality, Studia Math. 58 (1976), 197-208.

[15] V.N. Vapnik and A.Y. Chervonenkis. On the uniform
convergence of relative frequencies of events to their
probabilities, Theory of Probability and its Applications,
16(2) (1971), 264–280.

10


