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ABSTRACT
We study a natural network creation game, in which each
node locally tries to minimize its local diameter or its local
average distance to other nodes, by swapping one incident
edge at a time. The central question is what structure the re-
sulting equilibrium graphs have, in particular, how well they
globally minimize diameter. For the local-average-distance

version, we prove an upper bound of 2O(
√

lg n), a lower bound
of 3, a tight bound of exactly 2 for trees, and give evidence
of a general polylogarithmic upper bound. For the local-
diameter version, we prove a lower bound of Ω(

√
n), and a

tight upper bound of 3 for trees. All of our upper bounds
apply equally well to previously extensively studied network
creation games, both in terms of the diameter metric de-
scribed above and the previously studied price of anarchy
(which are related by constant factors). In surprising con-
trast, our model has no parameter α for the link creation
cost, so our results automatically apply for all values of α
without additional effort; furthermore, equilibrium can be
checked in polynomial time in our model, unlike previous
models. Our perspective enables simpler and more general
proofs that get at the heart of network creation games.
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1. INTRODUCTION
In a network creation game (see, e.g., [9, 2, 5, 4, 11, 7,

1, 12, 8]), several players (the nodes) collectively attempt to
build an efficient network that interconnects everyone. Each
player has two (selfish) goals: to minimize the cost spent
building links (creation cost) and to minimize the average or
maximum distance to all other nodes (usage cost). Together,
these goals capture the issues of both network design and
network routing.

Many different network creation games have been pro-
posed, for example, varying which players can participate in
the building of a link. All of the games, however, mediate
the two objectives (creation cost and usage cost) by defining
the cost of each link to be a parameter α, and minimizing the
sum of creation cost and usage cost. The resulting behavior
of these games seems quite intricate, and heavily dependent
on the choice of α, with most bounds and proofs applying
only to specific ranges of α. Furthermore, despite much ef-
fort in this area, the behavior remains poorly understood for
certain ranges of α, in particular when the cost of creating
a link is equivalent within a logarithmic factor to decreasing
the distance to all other nodes by 1.

We introduce a basic form of the game that is at the
heart of essentially all network creation games, while avoid-
ing parameterization by a parameter α. Namely, we suppose



that creation cost cannot be transformed into usage cost or
vice versa, but that the cost of every edge remains equal.
Equivalently, we can suppose that the uniform edge cost α
is unknown. Thus, given some existing network (undirected
graph), the only improving transformations that agents con-
sider performing is the replacement of one set of edges with
an equal number of other edges. We focus on the simplest
form, called basic network creation, where each agent per-
forms edge swaps: replacing an existing (incident) edge with
another (incident) edge, whenever that swap improves the
agent’s usage cost. As a special case, the agent can swap
an edge with an already existing edge, which corresponds to
deleting an (extraneous) edge.

Our hope is that by simplifying the model to have no pa-
rameters, we get at the essence of the problem and shed new
light on it. One motivation for this approach comes from
the cache-oblivious model of computation [10, 6], which has
successfully transformed the study of external-memory algo-
rithms by removing parameters from the model. Indeed, we
show that results for our basic network creation game carry
over directly to other network creation games for all values
of the parameter α. Therefore our approach enables a new
uniform treatment of all values of α by carefully removing
the parameter from the model.

The study of network creation games in general, and in
this paper, focuses on equilibria: locally stable networks
in which no agent can greedily improve their situation by
changing the network. In general, there are many types
of equilibria depending on the types of moves allowed. The
most famous is Nash equilibria, where each agent can change
their entire strategy, while fixing all other agents’ strate-
gies. In the original network creation game [9], this notion
corresponds to one node deleting and/or adding any num-
ber of incident edges, without changing any other edges. In
our basic network creation game, we require a weaker condi-
tion, called swap equilibrium, that no edge swap decreases an
agent’s usage cost. Thus, swap equilibria is a much broader
class of strategies than previous notions of equilibria, so any
theorems about swap equilibria apply equally well to many
previous structures as well.

The study of equilibria in network creation games focuses
on the price of anarchy : the worst possible overall cost in
an equilibrium network divided by the best possible over-
all cost in any network. This ratio gives a measure of how
effectively greedy agents approximate an optimal, socially
planned solution. In most existing network creation games,
as well as ours, the price of anarchy turns out to be within a
constant factor of the largest possible diameter of an equilib-
rium network, as proved in [7]. Thus we arrive at the central
question: how effectively greedy agents trying to minimize
cost arrive at a low-diameter network. This question is im-
portant in its own right, beyond the application to price of
anarchy, as it offers a first step toward understanding the
structure of equilibria, in particular suggesting the emer-
gence of a small-world phenomenon.

Because swap equilibria are broader than previous notions
of equilibria, all upper bounds we prove on their diameter,
and thus on price of anarchy, apply equally well to previous
network creation games. What is interesting about this re-
lation is that swap equilibria are defined independent of α,
while other notions of equilibria require knowledge of the pa-
rameter α. As a consequence, all upper bounds we transfer
from swap equilibria to other equilibria automatically apply

for all values of parameter α. This opens the exciting pos-
sibility of a uniform treatment of network creation games
without parameterization by α.

Another motivation for our basic network creation game
is that Nash equilibria in network creation games are ac-
tually unrealistic: computationally bounded agents cannot
even tell if they are in a Nash equilibrium (the problem is
NP-complete) [9], and thus cannot tell whether they want
to change their local strategy while not changing all oth-
ers. In a network creation game of computationally bounded
agents, it is much more reasonable to assume that an agent
can only weigh a constant or sublogarithmic number of edges
against each other. Our approach is to focus on the most
general extreme of these models, where agents can weigh
only one edge against another edge. Questions of the form
“would I rather have this edge instead of this edge?” seem
natural local decisions for agents to make. In addition, the
theoretical advantage of this approach is that any bounds
we obtain apply equally well to all other computationally
bounded models as well. When we find that diameters can
actually be large in the most general model, namely in Sec-
tion 4, we also consider the effect of a more powerful agent
that can weigh more (up to Θ(lgn/ lg lgn)) edges against
each other, and how this improves the diameter.

Problem statement..
More formally, we define two basic network creation

games. As in previous work, we consider two possible defini-
tions of the usage cost of a node: sum and max. For the sum
version, we define a graph to be in sum equilibrium if, for
every edge vw and every node w′, swapping edge vw with
edge vw′ does not decrease the total sum of distances from
v to all other nodes.

For the max version, we define the local diameter of a ver-
tex v to be the maximum distance between v and any other
vertex. We define a graph to be in max equilibrium if, for
every edge vw and every node w′, swapping edge vw with
edge vw′ does not decrease the local diameter of v, and fur-
thermore, deleting edge vw strictly increases the local diam-
eter of v. The latter condition is equivalent to the following
graph property: a graph is deletion-critical if deleting any
edge strictly increases the local diameter of both of its end-
points. A closely related property is the following: a graph
is insertion-stable if inserting any edge does not decrease
the local diameter of either endpoint. If a graph is both
insertion-stable and deletion-critical, then it is certainly in
max equilibrium. In our lower-bound constructions for the
max version, we design graphs that are both insertion-stable
and deletion-critical, as these properties are even stronger
than max equilibria.

Note that both sum and max equilibria can be detected
easily in polynomial time, even locally by each agent: simply
try every possible edge swap and deletion. Thus these equi-
libria are more natural for computationally bounded agents.

Our results..
For the sum version, we prove in Section 3.2 an up-

per bound of 2O(
√

lg n) on the diameter of sum-equilibrium
graphs. This result is stronger than a previous result which
depends on α [7]. Our result effectively gets to the essence
of the previous result, using a simpler proof that is indepen-
dent of α and generalizes to a broader class of equilibria.



We conjecture that the diameter of sum equilibrium
graphs is polylogarithmic, and offer interesting evidence
for this conjecture in Section 5. Specifically, call a graph
distance-uniform if all vertices have almost all vertices at
the same distance d. We prove that sum equilibrium graphs
induce distance-uniform graphs whose diameter is smaller by
at most a factor of O(lg2 n). We conjecture that distance-
uniform graphs have polylogarithmic diameter—even get-
ting superconstant diameter seems difficult—and prove this
conjecture for Cayley graphs of Abelian groups. A proof for
the general case would clearly imply our conjecture about
sum equilibrium graphs. This connection shows that the
structure of equilibria is closely linked to a deeper, purely
graph theoretic problem of independent interest.

Fabrikant et al. [9] conjectured that Nash equilibria in the
sum version are trees. Later, their conjecture was disproved
[2]. We prove in Section 2.1 that, in fact, all trees in sum
equilibrium have diameter exactly 2. In other words, the
only tree in sum equilibrium is the star. (This result imme-
diately transfers to Nash equilibria as well.)

In fact, all previous examples of sum equilibrium graphs
have diameter 2. The disproof of the tree conjecture [2] con-
structed a cyclic sum equilibrium graph arising from finite
projective planes, but it too has diameter 2. Thus it seems
reasonable to conjecture that all sum equilibrium graphs
have diameter 2. We rule out this possibility in Section 3.1
by proving the first diameter lower bound of 3 for sum equi-
libria, which also serves as the first separation between trees
and general graphs.

For the max version, we prove in Section 4 a strong lower
bound of Ω(

√
n) on the diameter of max equilibrium graphs

(or more precisely, insertion-stable deletion-critical graphs).
We also construct graphs that are both deletion-critical and
stable under k insertions, meaning that the graph is sta-
ble when the agent is permitted to change any k (incident)

edges. We prove a lower bound of Ω(n1/(k+1)) in this case,
giving a smooth trade-off between diameter and computa-
tional power. In the extreme case of k = Θ(lgn/ lg lgn), the
lower bound becomes Ω(lgn).

For trees in the max version, we show in Section 2.2 that,
in contrast to the sum version, the diameter can be as large
as 3. Conversely, we prove that no diameter larger than 3 is
possible.

Overall, we offer stronger results with simpler and more
elegant proofs, leading to a clearer understanding of network
creation problems. We propose that further attention to
network creation games focus on the basic network creation
game, as it captures the same essence while being easier to
work with and enabling more powerful techniques.

2. TREES
We start by analyzing equilibrium trees for both the sum

and max versions. In both cases, we tightly characterize the
maximum possible diameter: 2 for sum and 3 for max.

2.1 Sum ⇒ Diameter 2
For the sum version, we prove that there is essentially only

one equilibrium tree:

Theorem 1. If a sum equilibrium graph in the basic
network-creation game is a tree, then it has diameter at
most 2, and thus is a star.

sbsasv sw

av b w

Figure 1: Illustration of Theorem 1.

Proof. Suppose for contradiction that an equilibrium
tree has diameter at least 3; refer to Figure 1. Thus it has
two vertices v, w at distance exactly 3, inducing a length-3
shortest path v → a → b → w. Let sv, sa, sb, sw denote the
size of the subtrees rooted at v, a, b, w, respectively, count-
ing the roots themselves. Consider two possible swaps: (1) v
replaces its edge to a with an edge to b, and (2) w replaces
its edge to b with an edge to a. The first swap improves v’s
distance to b’s and w’s subtrees by 1 (the unique shortest
path in the tree no longer having to pass through a), and
worsens v’s distance to a’s subtrees by 1; thus, the swap is
a net win unless sb + sw ≤ sa. Similarly, the second swap
is a net win unless sv + sa ≤ sb. For both swaps to not be
net wins, we must have both inequalities. Summing these
inequalities, we obtain that sv + sa + sb + sw ≤ sa + sb, i.e.,
sv + sw ≤ 0, contradicting that sv + sw ≥ 2 (because in
particular they count v and w).

Obviously, diameter 2 can also be achieved (and is opti-
mal), as evidenced by the star.

2.2 Max ⇒ Diameter 3

v w

a b

a′

Figure 2: A tree of diameter 3 that is in max equilib-

rium. There are three types of edges we might try to

add, shown dashed: from a leaf a to a cousin leaf a′ or

to a distinct leaf b or to the other root w. The only

option that decreases the local diameter of either end-

point is adding aw which decreases the local diameter of

a (but not w) by 1. In any swap around a, however, this

addition must be combined with the deletion of edge av,

which restores the original local diameter of a.

In contrast to the sum version, max-equilibrium trees can
have diameter as high as 3; see Figure 2. However, this
diameter is the maximum possible. To prove this, we first



need a general lemma about balance in max equilibrium
graphs:

Lemma 2. In any max-equilibrium graph, the local diam-
eters of any two nodes differ by at most 1.

Proof. Suppose vertex v has local diameter d while ver-
tex w has local diameter at least d+ 2. Let T be a breadth-
first search tree from v. We claim that w prefers to swap its
edge to its parent in T with an edge to v (the root of T ).
Observe that this swap only decreases the depths of nodes
in T , so the local diameter of v remains at most d. Thus w’s
local diameter decreases to at most d+1, because w can take
a unit step to reach v and then follow v’s path to any other
node. This swap contradicts being in max-equilibrium.

Lemma 3. If a max equilibrium graph has a cut vertex v,
then only one connected component of G − v can have a
vertex of distance more than 1 from v.

Proof. Let d be the local diameter of v. Let w be a
vertex at distance d from v, and let W be the connected
component of G−v that contains w. Suppose for contradic-
tion that there is a vertex x in G−W of distance more than
1 from v. Then any path from x to W must pass through v,
so is at least 2 longer than the corresponding path from v.
Therefore the local diameter of w is at least d + 2, contra-
dicting Lemma 2.

Theorem 4. If a max equilibrium graph in the basic
network-creation game is a tree, then it has diameter at
most 3.

Proof. Suppose for contradiction that an equilibrium
tree has diameter at least 4. Thus it has two vertices v, w
at distance exactly 4, inducing a length-4 shortest path
v → a → b → c → w. But then b is a cut vertex and
two connected components of G − b have vertices v, w of
distance more than 1 from b, contradicting Lemma 3.

Therefore, there are two families of max equilibrium trees:
stars (of diameter 2) and “double-stars” (of diameter 3, as
in Figure 2). To be in max equilibrium, the latter type must
have at least two leaves attached to each star root (v and w).

3. SUM VERSION
Next we analyze the case of general networks in the sum

version. We start in Section 3.1 by giving the first lower
bound of 3, and then turn to our sub-nε upper bound in
Section 3.2.

3.1 Lower Bounds
Currently all examples of sum equilibrium graphs have di-

ameter 2. Initially, Fabrikant et al. [9] conjectured that sum
equilibrium graphs are trees, and we have shown in Section 2
that such graphs must have diameter 2. Albers et al. [2] dis-
proved this conjecture with a cyclic sum equilibrium graph,
arising from finite projective planes, but it too has diame-
ter 2. Thus it seems reasonable to conjecture that all sum
equilibrium graphs have diameter 2. Here we rule out this
conjecture:

Theorem 5. There is a diameter-3 sum equilibrium
graph.

First we establish a few tools for proving equilibrium in
graphs of small diameter/girth. The proofs are straightfor-
ward and hence omitted.

Lemma 6. For a vertex v of local diameter 2, swapping an
incident edge does not improve the sum of distances from v.

Lemma 7. Consider a vertex v of local diameter 3.
Adding an edge from v to a vertex w of distance r decreases
the sum of the distances from v by at most r−1 for w and by
at most 1 for any neighbors of w whose distance to v was 3.

Lemma 8. In any graph of girth 4, swapping an edge vw
with edge vw′ increases the distance from v to w by at least 2,
unless w′ is a neighbor of w, in which case it increases by
at least 1.

c2,1

c3,1

a

b1 b2 b3

c1,2
c2,2

c1,1 c3,2

d3d2d1

Figure 3: A diameter-3 sum equilibrium graph.

Proof of Theorem 5. Figure 3 illustrates the graph.
One vertex a has three neighbors: b1, b2, b3. Each vertex
bi has two unique neighbors other than a: Ci = {ci,1, ci,2}.
Furthermore, for each i ∈ {1, 2, 3}, we have an additional
vertex di connected to all of Ci. Finally, for each i, j ∈
{1, 2, 3}, i 6= j, we add a particular perfect matching be-
tween Ci and Cj . Between C1 and C2 and between C2 and
C3, we use the obvious matching: ci,1cj,1 and ci,2cj,2. Be-
tween C1 and C3, we use the other matching: ci,1cj,2 and
ci,2cj,1.

We consider all possible edge swaps around each vertex,
characterizing vertices by their local diameter. By inspec-
tion, vertices a, bi, and di have local diameter 3, while ver-
tices ci,k have local diameter 2. In particular, the graph has
diameter 3. Also observe that the graph has girth 4 (by
checking that the neighbor set of each vertex is an indepen-
dent set), so Lemma 8 applies.

By Lemma 6, swapping edges incident to any ci,k does not
help. For all other vertices, we apply Lemma 7.

For vertex a, swapping an edge abi with acj,k or adj de-
creases the sum of distances from a by at most 2: in the
former case, 1 for cj,k and 1 for dj ; and in the latter case, 2
for dj . Now, if i 6= j or if we add edge adj , then by Lemma 8,
the distance from a to bi increases by at least 2, absorbing
any possible benefit to the swap. If i = j and we add acj,k,
then the distances from a to bi and to ci,3−k increase by 1,
again absorbing the benefit.



For a vertex bi, swapping with an edge to bj (for i 6= j) or
to di is not useful by Lemma 7, because all neighbors of bj
are already at distance at most 2 from bi. If we swap with
an edge to dj for j 6= i, then by Lemma 7 we gain at most 2,
but by Lemma 8 we lose at least 2, so the swap is useless. If
we swap the edge bia with bicj,k for i 6= j, then by Lemma 7
we gain at most 1 for cj,k and 1 for dj , but by Lemma 8 we
lose at least 2, so the swap is useless. If we swap an edge
bici,k with bicj,l for i 6= j, then by Lemma 7 we gain at most
1 for cj,l and 1 for dj , but we increase the distances from bi
to ci,k and to at least one of its c neighbors by at least 1, so
again the swap is useless.

Finally, for a vertex di, if we swap edge dici,k with dibi,
then by Lemma 7 we gain at most 1 for bi and 1 for a, but
we increase the distance from di to ci,j and to each of its c
neighbors by at least 1, absorbing the benefit. If we swap
edge dici,k with dia, then by Lemma 7 we gain at most 2 for
a and 2 total for bj , j 6= i, but by Lemma 8 we increase the
distance from di to ci,j by at least 2, and we increase the
distances from di to each of ci,j ’s c neighbors by at least 1,
absorbing the benefit. If we swap edge dici,k with anything
else, then by Lemma 8 we increase the distances from di to
ci,j by at least 2, and we increase the distance from di to at
least one of ci,j ’s c neighbors by at least 1. If we swap edge
dici,k with dibj or didj for j 6= i, then by Lemma 7 we gain
at most 2 for bj , and in the former case, 1 for a. If we swap
edge dici,k with dicj,l for j 6= i, then by Lemma 7 we gain
at most 1 for cj,l and 1 for each of bj and dj . In all cases,
the gain is at most the loss, so the swap is useless.

3.2 2O(
√

lg n) Bound
Next we prove our upper bound, which generalizes the

previous result of [7]:

Theorem 9. All sum equilibrium graphs have diameter

2O(
√

lg n).

First we need two basic results, which will find use in
Section 5 as well.

Lemma 10. Any sum equilibrium graph either has diam-
eter at most 2 lgn or, given any vertex u, there is an edge xy
where d(u, x) ≤ lgn and whose removal increases the sum
of distances from x by at most 2n(1 + lgn).

Proof. Consider a breadth-first search from any vertex u
in a sum equilibrium graph G. Let T denote the top 2+lgn
levels of the BFS tree, from level 0 (just u) to level 1 + lgn.
If there are any nontree edges connecting two vertices in T ,
then there is a cycle C whose distance from u is at most lgn
and whose length is at most 1 + 2(1 + lgn). In this case,
each edge xy of the cycle has the property that d(x, u) ≤ lgn
and removing xy decreases the sum of distances from x by at
most 2n(1+lg n) (replacing any use of xy with the alternate
path around the cycle). Thus we can assume that the graph
G[V (T )] induced on these top vertices is exactly the tree T .

For a vertex v in T , let Tv denote the subtree of T rooted
at v. Call v grounded if Tv includes a node at layer 1 +
lgn (“the ground”). Define the ground distance gd(v) of a
grounded vertex v to be 1 + lgn minus the level of vertex v,
i.e., the difference in levels between v and the ground. If
the root u is ungrounded, then every vertex has distance at
most lgn from u, so the diameter of the graph is at most

2 lgn, proving the lemma. Thus we can assume that u is
grounded.

We claim that every grounded vertex v other than u
has |Tv| ≥ 2gd(v). In particular, applying this claim to a
grounded child v of u implies that |T | > |Tv| ≥ 2lg n = n,
contradicting that the whole graph has only n vertices, and
thus proving the lemma. Now we prove the claim by induc-
tion on gd(v). In the base case, if v is in the ground (level
1 + lgn), i.e., gd(v) = 0, then |Tv| ≥ 1 as desired because
Tv includes v.

In the induction step, there are two cases. Because v
is grounded, it must have at least one grounded child. If
it has at least two grounded children, say a and b, then
|Tv| ≥ 1 + |Ta| + |Tb| ≥ 1 + 2 · 2gd(a) = 1 + 2gd(v) > 2gd(v),
proving the claim. Otherwise, v has exactly one grounded
child, say a. Let k denote the number of ungrounded de-
scendants of v, plus 1 to count v itself. Consider the parent
p of v in T (which exists because v 6= u) replacing its edge pv
with the edge pa. This replacement increases the distance
from p to all ungrounded descendants of v, as well as v itself,
by 1, increasing the sum of distances from p by (at most) k.
On the other hand, ignoring these ungrounded descendants
and v, the replacement shortcuts a degree-2 vertex v, so
it does not increase any other distances from p. Further-
more, the replacement strictly improves the distances to all
vertices in Ta by 1. Because the graph is in equilibrium,
the improvement |Ta| − k cannot be positive, i.e., k ≥ |Ta|.
Therefore, |Tv| = |Ta| + k ≥ 2|Ta| ≥ 2 · 2gd(a) = 2gd(v),
proving the claim.

Corollary 11. In any sum equilibrium graph, the addi-
tion of any edge uv decreases the sum of distances from u
by at most 5n logn.

Proof. Suppose for contradiction that the addition of
edge uv decreases the sum of distances from u by more
than 5n logn. If the graph has diameter at most 2 lgn, then
adding any edge can decrease each distance by at most 2 lgn,
for a total decrease of at most 2n lgn. Otherwise, we find
the edge xy of Lemma 10 with d(u, x) ≤ lgn and whose
removal decreases the sum of distances from x by less than
2n(1 + lgn). We claim that x prefers to replace edge xy
with edge xv. The loss from deleting edge xy is at most
2n(1 + lgn) ≤ 4n lgn. The benefit from inserting edge xv
is more than 5n lgn − n lgn, because distances from u and
from x differ by at most lg n. The net improvement is there-
fore more than 5n lgn − n lgn − 4n lgn = 0, i.e., positive,
contradicting that the graph is in sum equilibrium.

Proof of Theorem 9. Consider a sum equilibrium
graph G on n vertices. For any vertex u, let Sk(u) denote the
number of vertices at distance exactly k from u (the radius-k
sphere centered at u). Let Bk(u) =

P
i≤k Sk(u) denote the

number of vertices within distance at most k from u (the
radius-k ball centered at u). Let Bk = minu Bk(u). We
claim that

B4k > n/2 or B4k ≥
k

20 lgn
Bk. (1)

To prove (1), fix a vertex u, and assume that B4k(u) ≤
n/2. Then certainly B3k(u) ≤ n/2. Let T be a maximal
set of vertices at distance exactly 3k from u subject to the
distance between any pair of vertices in T being at least
2k + 1. We claim that, for every vertex v of distance more



than 3k from u, the distance of v from the set T is at most
d(u, v) − k. Indeed, v is of distance d(u, v) − 3k from some
vertex at distance exactly 3k from u, and any such vertex is
within distance 2k from some vertex of T , by the maximality
of T . Because we assumed that at least n/2 vertices have
distance more than 3k from u, by the pigeonhole principle,
there are at least n/(2|T |) such vertices v whose distance
from the same vertex t ∈ T is at most d(u, v) − k. Adding
an edge from u to t improves the sum of distances from u
by at least (k − 1)n/(2|T |) ≥ kn/(4|T |). By Corollary 11,
this improvement must be at most 5n lgn, so we conclude
that |T | ≥ k/(20 lgn). Now the balls of radius k centered
at the vertices of T are all pairwise disjoint, all lie withing
distance 4k of u, and each of them has at least Bk vertices
(by the definition of Bk). Thus B4k(u) ≥ Bkk/(20 lgn),
proving (1).

Now (1) easily implies that the diameter is at most

2O(
√

lg n). First, B2
√

lg n ≥ 2
√

lg n simply because the graph

is connected. Starting from this k = 2
√

lg n and applying (1),
whenever we multiply k by 4, Bk increases by a factor of at

least k/(20 lgn) ≥ 2
√

lg n−lg lg n−lg 20 = 2Ω(
√

lg n), unless Bk

is already more than n/2. Taking logarithms, O(
√

lgn) such
iterations suffice to reach a k where Bk > n/2. The diame-
ter of the graph is then at most twice such a k, because any
two vertices u, v must have overlapping balls of radius k.

4. MAX VERSION
Next we consider the max version, where we can prove a

strong lower bound:

Theorem 12. There is a max equilibrium graph of diam-
eter Θ(

√
n).

Proof. Our graph G can be described roughly as 2D
torus rotated 45◦; refer to Figure 4. (Note, however, that
a standard torus is not in max equilibrium, so the precise
definition is critical.) Specifically, G has n = 2k2 vertices,
one for each pair (i, j) of integers where 0 ≤ i, j < 2k and i+
j is even. We treat the integers as modulo 2k; in particular,
0 and 2k are equivalent coordinates. Each vertex (i, j) has
exactly four neighbors: (i+1, j+1), (i−1, j+1), (i+1, j−1),
and (i−1, j−1). In particular, G is vertex-transitive.1 The
distance between two vertices (i, j) and (i′, j′) in G is exactly
max{d(i, i′), d(j, j′)}, where the 1D distances are measured
on the modulo-2k circle: for 0 ≤ i, i′ ≤ 2k, d(i, i′) = min{|i−
i′|, 2k− |i− i′|}. (To prove this distance formula, we simply
need to observe that each coordinate can change by ±1 in
each step.)

First we show that the local diameter of every vertex is
exactly k. By vertex-transitivity, it suffices to show that the
local diameter of vertex (k, k) is exactly k. The distance
between (k, k) and any vertex (i, j), where 0 ≤ i, j ≤ 2k, is
max{|i− k|, |j − k|}, which is maximized when either i or j
equals 0 ≡ 2k.

Second we show that G is deletion-critical. By vertex-
transitivity and rotational symmetry, it suffices to show that
deleting the edge from (k, k) to (k+1, k+1) strictly increases
the local diameter of (k, k). Indeed, we claim that this dele-
tion increases the distance from (k, k) to (2k − 1, 2k − 1)

1A graph is vertex-transitive if any vertex can be mapped
to any other by a vertex automorphism, i.e., a relabeling of
vertices that preserves edges.

0 1 k 2k ≡ 0

2k ≡ 0

k

0

1

(k, k)

Figure 4: The Θ(
√

n)-diameter max equilibrium graph

of Theorem 12. The rightmost and topmost columns

(x = 2k and y = 2k) are actually duplicates of the left-

most and bottommost columns (x = 0 and y = 0), re-

spectively, and hence dotted. Shaded squares indicate

distance contours from the central point (k, k).

to k + 1. Any such path must first proceed to a neighbor
of (k, k), all of which have at least one coordinate of k − 1.
Thus, even in the original graph G, the distance from that
neighbor to (2k− 1, 2k− 1) is k, implying that the path has
length at least k + 1.

Third we show that G is insertion-stable (and thus in
equilibrium). By vertex-transitivity and rotational symme-
try, it suffices to show that inserting an edge from (k, k) to
(k+i, k+j) does not decrease the local diameter of (k, k) for
all 0 ≤ i, j ≤ k. Consider the vertex (2k, j−j mod 2), which
belongs to G because 2k+j−j mod 2 is even. As we showed
above, this vertex has distance k from (k, k) in the original
graph G, so it remains to show that the additional edge
does not make a shorter path. Such a path must first use
the added edge, so it suffices to show that the distance from
(k+i, k+j) to (2k, j−j mod 2) is at least k−1 in the original
graph G. This claim follows because the second coordinates
differ by d(k + j, j − j mod 2) = k − j mod 2 ≥ k − 1.

In fact, we can also increase the dimension of the construc-
tion to d between 2 and O(lgn/ lg lgn). Then we have a
vertex for each point (i1, i2, . . . , id) where i1 ≡ i2 ≡ · · · ≡ id
(mod 2), with edges to (i1± 1, i2± 1, . . . , id± 1) for all pos-
sible (independent) choices of signs for ±. The resulting

graph has diameter Θ(n1/d), which ranges from
√
n to lgn.

This graph is deletion-critical and has the stronger property
that it is stable (local diameter does not improve) under
the insertion (or swapping) of up to d − 1 edges from one
vertex. The proof is similar; for insertion-stability, we can
find a point that is simultaneously far from all endpoints of
the added edges by devoting one coordinate to each such
endpoint. This generalization is interesting because it offers
a computationally tractable alternative to Nash equilibrium
defined in [9], where a vertex can insert/swap an arbitrary
subset of edges.



5. CONNECTION TO
DISTANCE UNIFORMITY

Call an n-vertex graph ε-distance-uniform if there is a
value r such that, for every vertex v, the number of ver-
tices w at distance exactly r from v is at least (1 − ε)n.
Slightly weaker, call an n-vertex graph ε-distance-almost-
uniform if there is a value r such that, for every vertex v,
the number of vertices w at distance either r or r + 1 from
v is at least (1 − ε)n. The following result connects high-
diameter sum equilibrium graphs to high-diameter distance
uniformity. We assume that the graph has more than a con-
stant number of vertices; otherwise, the diameter is trivially
constant and thus uninteresting.

Theorem 13. Any sum equilibrium graph G with n ≥ 24
vertices and diameter d > 2 lgn induces an ε-distance-
almost-uniform graph G′ with n vertices and diameter
Θ(εd/ lgn) and an ε-distance-uniform graph G′ with n ver-
tices and diameter Θ(εd/ lgn lg lgn).

Proof. We use one definitional tool to establish distance
uniformity. Call an ordered triple (a, b, c) of vertices skew if
d(a, c) > p lgn+ d(a, b), for a constant p to be chosen later.

First we claim that, if p ≥ 4/α, then less than an α frac-
tion of all n(n− 1)(n− 2) possible triples (a, b, c) are skew.
For if a constant fraction αn(n−1)(n−2) are skew, then by
averaging, there is a choice of b and c such that an α frac-
tion of the n−2 choices for node a have (a, b, c) skew. Then
adding edge bc improves the sum of distances from c by at
least (p lgn − 1)α(n − 2) = Ω(n lgn). By Lemma 10, and
because d > 2 lgn, there is an edge xy where d(c, x) ≤ lgn
and whose removal decreases the sum of distances from x
by at most 2n(1 + lgn). Because d(c, x) ≤ lgn, adding edge
xb still improves the sum of distances from x by at least
((p − 1) lgn − 1)α(n − 2). Thus, swapping edge xy with
edge xb improves the sum of distances from x by at least
((p − 1) lgn − 1)α(n − 2) − 2n(1 + lgn). If p ≥ 4/α, this
improvement is at least (2 − α)n lgn + 2α(1 + lgn) − (2 +
α)n − 8 lgn. Because α ≤ 1, this improvement is at least
n lgn−3n−8 lgn, which is positive for n ≥ 24, contradicting
equilibrium.

Second we claim that, for some vertex a, if we ignore the
nearest βn and farthest βn nodes from a, then the remaining
nodes b have distances d(a, b) forming an interval of length
at most 2p lgn. Let [`a, ua] denote the interval of distances
d(a, b) for b among the middle (1 − 2β)n nodes from a. If
the claim is false, then the interval has length more than
p lgn for all a. But then we claim that a constant fraction
of (a, b, c) triples are skew, contradicting the first claim for
sufficiently large p. We form two sets of triples as follows.
For each a, take b to be any node whose distance from a
is in the range [`a,

1
2
(`a + ua)], and take c to be any node

among the βn farthest nodes from a. Also, for each a, take
b to be any node among the nearest βn nodes from a, and
take c to be any node whose distance from a is in the range
[ 1
2
(`a + ua), ua]. All of these triples are skew because they

span a distance of at least 1
2
(ua − `a) > p lgn. The total

number of these triples is at least n(1 − 2β)nβn: n choices
for a, (1−2β)n choices for either b or c from the middle range
[`a, ua], and βn choices for either c or b from the farthest
or nearest βn nodes from a. Therefore (1 − 2β)βn3 triples
(a, b, c) are skew, which by the first claim is a contradiction
provided p ≥ 4/((1− 2β)β).

Third we claim that roughly the same property holds for
all a′. More precisely, let a be the node from the previous
claim, and suppose all nodes b among the middle (1− 2β)n
have distances in an interval D ± p lgn. We claim that,
for every vertex a′, if we ignore the nearest 3βn and far-
thest 3βn nodes from a′, then the remaining nodes b have
distances d(a, b) in the interval D ± 2p lgn. Otherwise, for
some vertex a′, either the nearest 3βn nodes have distances
from a′ less than D− 2p lgn or the farthest 3βn nodes have
distances from a′ more than D + 2p lgn (or both). Among
these 3βn nodes, at most 2βn of them are among the nearest
βn or farthest βn nodes from a. Thus, we obtain βn nodes
whose distance from a is in the interval D±p lgn but whose
distance from a′ is outside the interval D ± 2p lgn. Thus
adding the edge aa′ decreases the sum of distances from a
and a′ by at least βnp lgn total. By averaging, the sum of
distances from either a or a′ decreases by at least 1

2
βnp lgn.

Relabel a and a′ so that the sum of distances from a′ so
improves. By Lemma 10, and because d > 2 lgn, there is an
edge xy where d(a′, x) ≤ lgn and whose removal decreases
the sum of distances from x by at most 2n(1+lgn). Because
d(a′, x) ≤ lgn, adding edge xa still improves the sum of dis-
tances from x by at least βn( 1

2
p − 1) lgn. Thus, swapping

edge xy with edge xa improves the sum of distances from x
by at least βn( 1

2
p − 1) lgn − 2n(1 + lgn). If p ≥ 8/β, this

improvement is at least (2 − β)n lgn − 2n. Because β ≤ 1,
this improvement is at least n lgn−2n, which is positive for
n ≥ 5, contradicting equilibrium.

Finally we take the xth power of the graph for an inte-
ger x. If two vertices a and b have distance d(a, b) in the
original graph, then they have distance dd(a, b)/xe in the
power graph. In other words, the power-graph construction
coalesces distances between consecutive integer multiples of
x down to a common distance (the larger of the two mul-
tiples). Therefore, choosing x = 2p lgn + 1 implies that all
distances in the range D ± 2p lgn convert to at most two
distances r and r + 1. As argued by the previous claim,
every vertex a has at least (1 − 6β)n vertices b within this
distance range, mapping to distances of either r or r + 1
in the power graph. The diameter of the power graph is
dd/xe = Θ(d/(p lgn)) = Θ(βd/ lgn).

To obtain distances of just r, we need a power x with the
property that no integer multiple of x falls in the intervalD±
2p lgn. We show that this is possible for x = O(lgn lg lgn):
for any interval I = [i, j] where |j − i| = O(lgn) and 0 <
i, j < n, there is a number x = O(lgn lg lgn) such that no
integer multiple of x is in [i, j]. Put m = |j − i| + 1 and
choose y > m minimal such that the product of all prime
numbers in [m, y] exceeds n. By the prime-number theorem,
y = O(lgn). Assume that for every k in [m, y], [i, j] contains
a multiple f(k) of k – any k for which this fails can be chosen
as x.

Note that f cannot be constant on [m, y], since then f(m)
would be a multiple of every prime in [m, y], contradict-
ing the choice of y and the fact that f(m) is bounded
by n. Therefore there are r and s in [m, y] with 0 <
|f(r) − f(s)| < m. Let p be the smallest prime that
does not divide |f(r) − f(s)|. By the prime-number the-
orem, p = O(lgm) = O(lg lgn). Note that p cannot di-
vide both f(r) and f(s). Assume without loss of gener-
ality that p does not divide f(r). Then we can choose
x = pr = O(lgn lg lgn), since the only multiple of r in
[i, j] is f(r), which is not a multiple of p.



Conjecture 14. Distance-almost-uniform graphs have
diameter O(lgn).

If Conjecture 14 is true, Theorem 13 implies that sum
equilibrium graphs have diameter O(lg2 n). (The slightly
weaker conjecture for distance-uniform graphs implies an
upper bound of O(lg2 n lg lgn). ) Note that for Conjec-
ture 14 it is crucial that we require every vertex to have
distance exactly r to almost every vertex, not just that al-
most all pairs of vertices have distance exactly r. Otherwise,
a large-diameter example would be a node of degree Θ(1/ε)
attached to paths of length (d − 2)/2, with Θ(ε n) vertices
attached to the end of each path. Provided d = O(ε n), the
number of vertices can be made Θ(n).

While we have not been able to prove or disprove Con-
jecture 14, we can prove it (in a strong form) for Cayley
graphs of Abelian groups. Recall that the Cayley graph of
an Abelian group A with respect to a set S ⊂ A satisfy-
ing S = −S is a graph in which the set of vertices is the
set of all elements of the group A, where a, a′ are adjacent
if and only if there exists an s ∈ S so that a + s = a′.
Thus, for example, the graph described in Section 4 is the
Cayley graph of the group of all elements of Z2

2k with an
even sum of coordinates, with respect to the generating set
S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

Theorem 15. Let G be an ε-distance-uniform graph with
n vertices, and suppose that G is a Cayley graph of an
Abelian group and that ε < 1/4. Then the diameter of G

is at most O
“

lg n
lg(1/ε)

”
.

Proof. Let G be the Cayley graph of the Abelian group
A with respect to the set S. For each integer i ≥ 1 put

iS = {s1 + s2 + · · ·+ si : sj ∈ S for all 1 ≤ j ≤ i}.

Note that iS is the set of all vertices of G that can be reached
from the element 0 ∈ A by a walk of length i. Since G is ε-
distance-uniform, there is an integer r so that all vertices of
G but at most εn are of distance r or r+1 from 0. Therefore
|(r − 1)S| ≤ εn, while |(r + 1)S| ≥ (1− ε)n.

A known consequence of the Plunnecke Inequalities (see,
e.g., [13]), which can also be derived from the results in [3,
Section 2], is that if S is a subset of an Abelian group then

for every q > p, |qS| ≤ |pS|q/p. Applying it in our setting
with q = r + 1 and p = r − 1 we conclude that

(1− ε)n ≤ |(r + 1)S| ≤ |(r − 1)S|1+ 2
r−1 ≤ εn · n2/(r−1).

Therefore lg( 1−ε
ε

) ≤ 2
r−1

lgn, implying that r ≤
O
“

lg n
lg(1/ε)

”
. The desired result follows, as the diameter of

G is clearly at most 2r + 2.
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