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Abstract

Let H = (VH , EH) be a graph, and let k be a positive integer. A graph G = (VG, EG) is
H-coverable with overlap k if there is a covering of the edges of G by copies of H such that
no edge of G is covered more than k times. Denote by overlap(H,G) the minimum k for
which G is H-coverable with overlap k. The redundancy of a covering that uses t copies of H
is (t|EH | − |EG|)/|EG|. Our main result is the following: If H is a tree on h vertices and G

is a graph with minimum degree δ(G) ≥ (2h)10 + C, where C is an absolute constant, then
overlap(H,G) ≤ 2. Furthermore, one can find such a covering with overlap 2 and redundancy
at most 1.5/δ(G)0.1. This result is tight in the sense that for every tree H on h ≥ 4 vertices and
for every function f , the problem of deciding if a graph with δ(G) ≥ f(h) has overlap(H,G) = 1
is NP-Complete.

1 Introduction

All graphs considered here are finite, undirected and simple, unless otherwise noted. For the
standard graph-theoretic notations the reader is referred to [2]. Let H be a graph, and let k be a
positive integer. A graph G = (V,E) is H-coverable with overlap k if there is a set L = {G1, . . . Gt}
of subgraphs of G such that each Gi is isomorphic to H and every edge e ∈ E appears in at least
one member of L but in no more than k members of L. Denote by overlap(H,G) the minimum
k for which G is H-coverable with overlap k. Clearly, overlap(H,G) = 1 if and only if there is
a decomposition of G into H. Also, if there is an edge of G which appears in no subgraph of G
which is isomorphic to H, we put overlap(H,G) = ∞. Clearly, if overlap(H,G) is finite then
overlap(H,G) ≤ |E(G)| − |E(H)|+ 1. This upper bound is realized by many pairs of graphs. For
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example, let Hn be the star on n vertices to which an edge has been added between two leaves. In
this case we have overlap(H4,Hn) = n− 3.

It has been shown by Dor and Tarsi [3] that for every fixed graph H having a connected
component with at least 3 edges, the problem of deciding for a given input graph G on n vertices
whether overlap(H,G) = 1 is NP-Complete. Thus, even if H is a tree on 4 vertices, this problem is
difficult. If the minimum degree of G is very large, that is, δ(G) ≥ (1− ε(H))n, this decomposition
problem can be solved in polynomial time, by the results of Wilson and Gustavsson [6, 5]. On the
other hand, we show in Theorem 1.2 that this problem remains NP-Complete for every tree H on
h ≥ 4 or more vertices, even if δ(G) ≥ n0.499. Hence, there is no function f(H) for which we can
recognize efficiently the class of graphs G having δ(G) ≥ f(H) and which have overlap(H,G) = 1,
unless P=NP. The main result in this paper is to show that such a function does exist if we allow
some edges to be covered twice. In fact, this function is only a moderate polynomial function of h,
and only a small fraction of the edges are covered twice. This result is summarized in the following
theorem.

Theorem 1.1 Let H be a tree on h vertices, and let G = (V,E) be a graph with δ(G) > (2h)10 +
11410, then overlap(H,G) ≤ 2. Furthermore, there exists a covering with overlap 2, where at most
1.5|E|/δ(G)0.1 edges are covered twice.

The overlap obtained in this result is clearly best possible in a combinatorial sense, since an
exact decomposition requires additional divisibility constraints which cannot be expressed in terms
of the minimal degree of G. It is also best possible in an algorithmic sense (unless P=NP), even if
we significantly increase the minimum degree requirement:

Theorem 1.2 Let α < 0.5 be fixed, and let H be any graph having a connected component with
three or more edges, and having a vertex of degree one. Deciding whether a graph G with δ(G) > nα

has overlap(H,G) = 1 is NP-Complete.

Note that Theorem 1.2 applies to any tree H with 4 or more vertices.
A minimum degree requirement in Theorem 1.1 is mandatory. For any tree H on h ≥ 4 vertices,

let G be the graph obtained by joining two vertex-disjoint cliques of order h − 1 with one edge.
Clearly, δ(G) = h − 2, every edge of G is on some copy of H (unless H = K1,h−1 in which case
overlap(H,G) = ∞), and thus overlap(H,G) is finite, but every copy of H in G passes through
the unique bridge. Thus, the overlap is at least d((h − 1)(h − 2) + 1)/(h − 1)e ≥ h − 1 ≥ 3. The
minimum degree bound of O(h10) in Theorem 1.1 is not best possible. With some more effort we
can reduce the power to a single digit number, but this is still far from the obvious lower bound of
h−1 described above. Furthermore, Theorem 1.1 also shows that only a small fraction of the edges
are covered twice. In fact, if δ(G) = w(n) tends to infinity arbitrarily slow, then only o(E) edges
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are covered twice. For some trees, however, we do know that a minimal degree of h− 1 guarantees
an overlap of 2:

Theorem 1.3 Let k > 1 be an integer. Let G be a graph such that every edge of G has an
endpoint whose degree is at least k. Then overlap(K1,k, G) ≤ 2. Consequently, if δ(G) ≥ k then
overlap(K1,k, G) ≤ 2.

Note that this simply means that if a graph G is K1,k-coverable with any overlap, then it is also
K1,k-coverable with overlap 2.

Theorem 1.4 If δ(G) ≥ 3 then overlap(P4, G) ≤ 2, where P4 is the path with four vertices.

Theorem 1.3 implies that given a graph G, deciding whether overlap(K1,k, G) ≤ 2 can be done
in polynomial time, for every k. This is quite different from the corresponding decomposition
problem for stars. The result of Dor and Tarsi (as well as the previously known results on this
question) imply that for k ≥ 3, deciding whether overlap(K1,k, G) = 1 is NP-Complete. However,
we can still show the following:

Theorem 1.5 There are infinitely many (fixed) trees H for which, given a graph G, deciding
whether overlap(H,G) ≤ 2 is NP-Complete.

The rest of this paper is organized as follows. Section 2 contains the necessary lemmas needed for
the proof of Theorem 1.1, and the proof itself. In Section 3 we prove the exact results for the stars
K1,k and the path P4, namely Theorems 1.3 and 1.4. In Section 4 we prove the NP-Completeness
results stated in Theorems 1.2 and 1.5. Concluding remarks and open problems appear in Section
5.

2 Covering graphs by trees with overlap 2

The graph G in Theorem 1.1 is assumed to have a minimum degree bound, but may otherwise be
highly irregular. Our proof methods require, however, that the degrees of all vertices are bounded.
We can overcome this problem using the fact that any graph with a large-enough minimum degree
is homeomorphic in the following strong sense to an almost-regular graph with a quadratically
smaller minimum degree.

Lemma 2.1 Let G = (V,E) be a graph, δ(G) ≥ d(d− 1). There exists a graph G′ = (V ′, E′) and
a function f : V ′ → V such that the following hold:

1. For each (u, v) ∈ E there exists exactly one edge (x, y) ∈ E′ with f(x) = u and f(y) = v.

2. (x, y) ∈ E′ implies (f(x), f(y)) ∈ E.
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3. If x, y ∈ V ′, x 6= y and f(x) = f(y) then x and y are at distance at least 3 (in G′).

4. The degree of every vertex of G′ is either d or d+ 1.

Proof: Let V = {1, . . . , n}. Let di denote the degree of i in G. Since di ≥ d(d − 1), we may
partition N(i), the neighbor set of i, into si = bdi/dc disjoint subsets N(i, 1), . . . , N(i, si) such that
d + 1 ≥ |N(i, j)| ≥ d. We define the graph G′ as follows. Let Vi = {vi,1, . . . , vi,si}, V ′ = ∪ni=1Vi.
The function f is defined as f(vi,j) = i, j = 1, . . . , si. In order to define E′ we do the following.
For each (i, j) ∈ E, we have that j ∈ N(i, r) for some r and i ∈ N(j, t) for some t. We therefore
make (vi,r, vj,t) an edge of G′. It is easy to check that the four conditions in the lemma are satisfied
by G′. 2

A strong coloring f of a multigraph is defined as a proper vertex-coloring, where two vertices of
the same color do not share a common neighbor. Note that the function f in Lemma 2.1 is a strong
coloring of the vertices of G′. A simple subgraph H of a multigraph G′ with a strong-coloring f is
called colorful with respect to f if all its vertices have different colors.

Corollary 2.2 If G and G′ are graphs as in Lemma 2.1, and G′ is H-coverable with overlap k such
that every copy of H in the covering is colorful with respect to the coloring function f of Lemma
2.1, then overlap(H,G) ≤ k. 2

Our proof of Theorem 1.1 is essentially divided into three stages. Given the graph G we initially
create the graph G′ as in Lemma 2.1. In the second stage we embed in G′ a set of edge-disjoint
colorful copies of the tree H, such that for every vertex of G′, only a small fraction of the edges
adjacent to it are non-covered. In the third stage, we embed in G′ a set of edge-disjoint colorful
copies of H, such that every edge that was not covered in the second stage is now covered. Note
that every edge of G′ is covered at most twice (at most once in stage 2 and at most once in stage 3),
and thus Theorem 1.1 follows from Corollary 2.2. Lemmas 2.3 and 2.4 will provide us with stages
2 and 3 respectively. However, before we state them, we need some preparations.

Let H be a tree with h ≥ 2 vertices. Every vertex v ∈ H defines a unique rooted-orientation of
H, denoted by H(v), which results from a breadth-first search (BFS) beginning at v. The vertex v
is called the root of such an orientation, and every vertex u of H(v), except v, has a unique parent
which is the source of the unique incoming edge into u. Given an orientation H(v), let (e1, . . . , eh−1)
denote the edge-addition sequence of the BFS. Let H i(v), for i = 1, . . . , h − 1 denote the directed
subtree of H(v) on the edge-set (e1, . . . , ei). Note that H i(v) is obtained from H i−1(v) by adding
a new vertex (a leaf) and directing an edge from its parent to it. We may assume that the chosen
root v is a leaf of H. With this assumption, we may define, for i = 2, . . . , h − 1 the parent of the
edge ei of H(v) to be the unique incoming edge of the source of ei. The edge e1 does not have a
parent. Note that if ej is the parent of ei then j < i.
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Let G′ be a graph. A well-known consequence of Euler’s Theorem (cf., e.g., [2]) is that the
edges of G′ can be oriented so that for every vertex v, |d+(v)− d−(v)| ≤ 1, where d+(v) and d−(v)
denote the outdegree and indegree (respectively) of v in the oriented G′. We call such an orientation
balanced. We use the notations ∆+(G′),∆−(G′), δ+(G′), δ−(G′) to denote the maximum-outdegree,
maximum-indegree, minimum-outdegree and minimum-indegree (resp.) of G′.

Lemma 2.3 Let H be a tree on h ≥ 30 vertices. Let G′ = (V ′, E′) be a graph with a strong
coloring f . Suppose that 32h5 ≥ d ≥ 31h5 and d ≤ δ(G′) ≤ ∆(G′) ≤ d + 1. Furthermore, assume
that 2(h − 1)x = d + 2 where x is a perfect square. Then there is a set L of edge-disjoint colorful
subgraphs of G′, each isomorphic to H, such that every vertex of G′ has at most 2(h− 1)

√
x edges

adjacent to it among those not covered by members of L.

Proof: We begin by coloring the edges of G′ with the colors {1, . . . , d+2} such that no two adjacent
edges receive the same color. This can be done by Vising’s Theorem (cf. [2]). Since h− 1 divides
d+2 we can partition the colors into h−1 subsets C1, . . . , Ch−1 each consisting of 2x colors. Let Ei
be the set of edges colored with a color from Ci, and put Gi = (V ′, Ei) for i = 1, . . . , h−1. Note that
δ(Gi) ≥ 2x− 2 and ∆(Gi) ≤ 2x. We now orient the edges of each Ei such that the orientations are
balanced. Thus, in these orientations, ∆−(Gi),∆+(Gi) ≤ x and δ−(Gi), δ+(Gi) ≥ x− 1. Consider
the oriented graph Gi. By adding a perfect (directed) matching Fi from the vertices with out-degree
x− 1 to the vertices with in-degree x− 1 (these sets have equal sizes) we obtain a regular directed
multigraph G∗i = (V ′, Ei ∪ Fi) with in-degree and out-degree x. Note that some edges of Fi may
be loops or parallel to some edge of Ei. Let G∗ = (V ′, E1 ∪ F1 ∪ . . . ∪ Eh−1 ∪ Fh−1). Note that
G∗ is a directed multigraph with |V ′|x(h− 1) edges. Also, the maximum degree of a vertex in G∗,
considered as an undirected multigraph, is d+ 2.

Let H(v) be a rooted orientation of H, where v is a leaf of H. Let (e1, . . . , eh−1) be the edge-
addition sequence of H(v). For each vertex w ∈ V ′ and for each i = 2, . . . , h−1 we select a matching
πi,w between its x incoming edges belonging to Ej∪Fj and its x outgoing edges belonging to Ei∪Fi,
where ej is the parent of ei in H(v). Each matching is selected randomly, and uniformly among
the x! possible matchings. All matchings are independent.

We now construct a set L′ of |V ′|x edge-disjoint subgraphs of G∗, each consisting of h− 1 edges
(hence, every edge appears in exactly one member of L′). The construction is done according to
H(v) and the matchings πi,w in the following inductive manner: We initially define the set L1 to be
the single-edge graphs which are the edges of E1∪F1. Note that L1 has |V ′|x elements. We assume
by induction that we have constructed Li−1, which is a set of |V ′|x edge-disjoint subgraphs of G∗,
each containing i − 1 edges, one from each Ek ∪ Fk, k = 1, . . . , i − 1. We show how to construct
Li. Let ej be the parent of ei in H(v). Note that 1 ≤ j ≤ i − 1. Consider a copy in Li−1. This
copy contains exactly one (directed) edge (u,w) of Ej ∪ Fj . We extend the copy to a copy of Li
by adding to it the edge πi,w((u,w)). Clearly, this edge belongs to Ei ∪ Fi, the new copy has i

5



edges, and all the copies of Li remain edge-disjoint. Finally note that by putting L′ = Lh−1 we
obtain the desired construction. Note that our construction implies that each colorful member of
L′ is, in fact, isomorphic to H(v). In particular, every colorful member of L′ which contains no
edge belonging to F1 ∪ . . . ∪ Fh−1 uniquely defines a colorful copy of H in G′. We therefore call a
member of L′ good if it is colorful and contains no edge from F1 ∪ . . . ∪ Fh−1, otherwise it is called
bad. Let L ⊂ L′ be the set of good copies. Our aim is to show that, with positive probability, L
satisfies the statement of the lemma.

For e ∈ E1 ∪ . . . ∪ Eh−1 let L′(e) denote the member of L′ containing e, and let L′(e, i) be the
edge of L′(e) belonging to Ei ∪ Fi. An edge L′(e, i) = (u,w) is called bad if it belongs to Fi or if
w’s color already appears in L′(e), that is L′(e, j) has an endpoint colored by the same color as w
where j < i. Let Ae,i be the event that L′(e, i) is bad and let Ae be the event that L′(e) is bad. It
is not difficult to see that

Prob[Ae] ≤
h−1∑
i=1

Prob[Ae,i] ≤
1
x

+
1
x

+
2
x

+ . . .+
h− 2
x
≤ h2

2x
.

Let U = {(u1, w), . . . , (uk, w)} be a k-subset of the edges of Ei (for some i) that enter a vertex w.
Assume that k ≤ x/2 and let AU be the event that L′((uj , w)) is bad for all j = 1, . . . , k. Clearly,

Prob[AU ] =
k∏
j=1

Prob[A(uj ,w)|A(u1,w), . . . , A(uj−1,w)].

On the other hand,

Prob[A(uj ,w)|A(u1,w), . . . , A(uj−1,w)] ≤
h−1∑
t=1

Prob[A(uj ,w),t|A(u1,w), . . . , A(uj−1,w)] ≤

1
x− (j − 1)

+
1

x− (j − 1)
+

2
x− (j − 1)

+. . .+
h− 2

x− (j − 1)
≤ h2

2(x− (j − 1))
≤ h2

2(x− (k − 1))
≤ h2

x
.

Consequently,

Prob[AU ] ≤ (
h2

x
)k.

Note that exactly the same computation holds if we replace U by a set of k edges emanating from
w. Let k ≤ x/2 be fixed (we shall choose its exact value later). For w ∈ V ′ and i = 1, . . . , h − 1
let Bw,i be the event that there exist k edges of Ei entering w which belong to bad copies, or that
there exist k edges emanating from w which belong to bad copies. We have thus shown that

Prob[Bw,i] ≤ 2

(
x

k

)
(h2/x)k.

The event Bw,i is independent of the event Bu,j if the distance between w and u in G∗, considered
as an undirected multigraph, is at least twice the height of H(v). This is true since a copy of H(v)
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in G∗ which contains u cannot share an edge with a copy of H(v) in G∗ which contains w. The
height of H(v) is at most h − 1. The number of vertices v at distance at most 2h − 3 from w is
therefore bounded by

(d+ 2) + (d+ 1)(d+ 2) + (d+ 1)2(d+ 2) + . . .+ (d+ 1)2h−4(d+ 2) ≤ (d+ 1)2h−3(2h− 3).

Hence, Bw,i is independent of all other events Bu,j but at most

(h− 1)(2h− 3)(d+ 1)2h−3 + (h− 2).

Our aim is to show that with positive probability, none of the events Bw,i hold. In other words, we
need to show that

Prob[∩w∈V ′ ∩h−1
i=1 Bw,i] > 0.

According to the Lovász Local Lemma (cf., e.g., [1]), it suffices to show that

e · 2

(
x

k

)
(h2/x)k · (h− 1)((2h− 3)(d+ 1)2h−3 + 1) < 1 (1)

holds. To see this, note that the following inequality holds:

e · 2

(
x

k

)
(h2/x)k · (h− 1)((2h− 3)(d+ 1)2h−3 + 1) ≤ (2)

≤ 4eh2(d+ 1)2h−3

(
x

k

)
(h2/x)k < (d+ 1)2h

(
x

k

)
(h2/x)k.

Choosing k =
√
x and using the fact that

( x√
x

)
< (e
√
x)
√
x it follows from (2) that in order to prove

(1) it suffices to show that

(
h2e√
x

)
√
x(d+ 1)2h < 1.

Recall that x = (d+ 2)/(2h− 2) > d/2h ≥ 15.5h4. Hence,

(
h2e√
x

)
√
xd2h < (

e

3.9
)3.9h2

(32h5 + 1)2h < 1

where the rightmost inequality holds for h ≥ 30. We have proved that with positive probability,
none of the events Bw,i hold. This means that there exists a set of permutations πi,w such that
every vertex is adjacent to at most 2(h− 1)

√
x bad edges. Thus L is a set of edge-disjoint colorful

subgraphs of G′, each one isomorphic to H, such that every vertex of G′ has at most 2(h − 1)
√
x

adjacent edges which are not covered by members of L. 2

Lemma 2.4 Let H be a tree on h ≥ 2 vertices. Let G′ = (V ′, E′) be a graph with a strong coloring
f . Let G1 = (V ′, E1) be a spanning subgraph of G′ with ∆(G1) ≤ 2s. Furthermore, suppose that
d ≥ sh2 + h3 and d ≤ δ(G′) ≤ ∆(G′) ≤ d + 1. Then there are edge-disjoint colorful subgraphs of
G′, each one isomorphic to H, such that their edge-union contains the edges of G1.
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Proof: Let G∗ = (V ′, E∗) where E∗ = E′ \E1. Clearly, ∆(G∗) ≤ d+ 1, and δ(G∗) ≥ d− 2s. As in
Lemma 2.3, we color the edges of E∗ with the colors {1, . . . , d+ 2} such that no two adjacent edges
receive the same color. We may partition the colors into h − 1 disjoint sets, C2, . . . , Ch where Ci
contains exactly 2(is +

(i
2

)
) colors, for i = 2, . . . , h− 1. Ch contains the rest of the colors, if there

are any. This can be done since

h−1∑
i=2

2(is+

(
i

2

)
) ≤ sh2 + h3 < d+ 2.

Let Ei be the set of edges of E∗ whose color belong to Ci, and Gi = (V ′, Ei), i = 2, . . . , h. Thus
E′ = E1 ∪ . . . ∪ Eh. Note that the property of our coloring and the degree bounds of G∗ imply
that δ(Gi) ≥ 2(is +

(i
2

)
) − (2s + 2) and ∆(Gi) ≤ 2(is +

(i
2

)
), for i = 2, . . . , h − 1. We now

orient the edges of Ei for i = 1, . . . , h such that the orientations are balanced. Thus, in these
orientations, ∆−(G1),∆+(G1) ≤ s, and for i = 2, . . . , h − 1 we have ∆−(Gi),∆+(Gi) ≤ is +

(i
2

)
and δ−(Gi), δ+(Gi) ≥ is+

(i
2

)
− (s+ 1). (We claim nothing on the degrees of the oriented Gh. In

fact, we will ignore the edges of Eh). Note that we have oriented every edge of G′, and we may
now consider it as a directed graph. Let H(v) be a rooted orientation of H, where v is a leaf of H.
Let (e1, . . . , eh−1) be the edge-addition sequence of H(v). We will create |E1| edge-disjoint colorful
subgraphs of (the directed) G′, each isomorphic to H(v), such that the edge corresponding to ei

in each copy belongs to Ei for i = 1, . . . , h − 1. We do this in h − 1 stages where after stage i
we shall have |E1| edge-disjoint colorful subgraphs isomorphic to H i(v). For i = 1 we simply take
every directed edge of E1 as a subgraph, which is trivially isomorphic to H1(v). Note that we have
already guaranteed that all the edges of G1 are covered. All these subgraphs are colorful since
the coloring f is proper. Suppose we have already constructed |E1| edge-disjoint colorful copies of
H i(v), so that in each copy the edge playing the role of ej is taken from Ej , j = 1, . . . , i. We show
how to extend these copies to edge-disjoint colorful copies of H i+1(v), only by using edges from
Ei+1. Let ej be the parent of ei+1 in H(v). Note that j ≤ i. Let w ∈ G′, and consider all the copies
of H i(v) where w plays the role of the target of ej (and thus should become the source of ei+1 after
the extension). By our assumption, there is a one-to-one correspondence between these copies and
some of the edges of Ej whose target is w (there may be other edges of Ej whose target is w that
were not covered). Thus, the number of these copies is at most js+

(j
2

)
(note that this also holds if

j = 1). Each such copy must be extended to a copy of H i+1(v) by an edge of Ei+1 whose source is
w. Thus, each copy must select an edge (w, u) ∈ Ei+1 such that all the selections are distinct, and
such that u is not colored by any of the i + 1 colors of the vertices of the copy of H i(v). In fact,
for each copy we may only worry about i− 1 forbidden colors, since u is already guaranteed not to
have the color of w nor the color of the source of the edge playing the role of ej in the copy (recall
that the coloring is strong). This can be done if we can show that δ+(Gi+1) ≥ js +

(j
2

)
+ (i − 1).
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Indeed,

δ+(Gi+1) ≥ (i+ 1)s+

(
i+ 1

2

)
− (s+ 1) = is+

(
i

2

)
+ (i− 1) ≥ js+

(
j

2

)
+ (i− 1).

2

Proof of Theorem 1.1 We shall prove that if H is a tree with h ≥ 2 vertices and G is a graph
with δ(G) > (2h)10 + 11410, then overlap(H,G) ≤ 2. Let h0 be the maximal integer such that
δ(G) > (2h0)10 and h− 1 divides h0 − 1. Note that h0 ≥ max{30, h}. It is very easy to construct
a tree H0 on h0 vertices which has a decomposition into (h0 − 1)/(h − 1) copies of H. Hence, it
suffices to show that overlap(H0, G) ≤ 2. Let d be an integer satisfying 32h5

0 ≥ d ≥ 31h5
0, such that

(d+2)/(2h0−2) = x is a perfect square. Such a d certainly exists. Note that δ(G) ≥ d(d−1), so we
can construct the graph G′ and the strong coloring function f , as guaranteed by Lemma 2.1. We
can now apply Lemma 2.3 to G′ and obtain a set L of edge-disjoint colorful subgraphs of G′ which
are isomorphic to H0, where every vertex w ∈ G′ is adjacent to at most 2(h0 − 1)

√
x non-covered

edges. Let s = (h0 − 1)
√
x, and let G1 = (V ′, E1) be the spanning subgraph of G′ where E1 is the

set of the non-covered edges. Note that ∆(G1) ≤ 2s. Furthermore,

d ≥ h3
0

√
x ≥ (h0 − 1)

√
xh2

0 + h3
0 ≥ sh2

0 + h3
0.

Hence, according to Lemma 2.4, there is a set M of edge-disjoint colorful subgraphs of G′ which
are isomorphic to H0, such that every edge of E1 is covered. Now L ∪M is a covering of G′ with
colorful copies of H0 such that every edge is covered at most twice. By Corollary 2.2, we have
overlap(H0, G) ≤ 2. Lemma 2.4 and its proof imply that at most |E1|(h0 − 2) edges are covered
twice. Note that

|E1|(h0 − 2) ≤ 2(h0 − 1)
√
x|E|

d
(h0 − 2) =

2(h0 − 1)(h0 − 2)
√

(d+ 2)/(2h0 − 2)
d

|E| ≤

|E| · 2
√
h3

0/d ≤ 0.36|E|/h0 ≤ 0.36|E|/(0.25δ(G)0.1) ≤ 1.5|E|/δ(G)0.1.

2

3 Covering graphs by K1,k or P4 with overlap 2

Proof of Theorem 1.3 Let G = (V,E) be a graph such that if (a, b) ∈ E then either d(a) ≥ k or
d(b) ≥ k, where d(v) denotes the degree of v. We must find a set L of edge-disjoint subgraphs of G
which are isomorphic to K1,k such that every edge of G appears in a member of L, but in no more
than two members of L. Let V ′ = {v1, . . . , vs} be the set of vertices of G with degree at least k. We
initially mark all edges of G as uncovered, and put L = ∅. We add elements to L by performing the
following process for every vi ∈ V ′, where i = 1, . . . , s. Let Ei be the uncovered edges adjacent to
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vi. We can create b|Ei|/kc edge-disjoint copies of K1,k whose roots are vi and whose edges belong
to Ei. We add these copies to L, and mark the kb|Ei|/kc edges of these copies as covered once.
Now vi only has Fi ⊂ Ei non-covered adjacent edges, where 0 ≤ |Fi| < k. If |Fi| = 0, we are done
with vi. Otherwise, |Fi| > 0, and we create another copy of K1,k whose root is vi as follows. The
copy uses the edges of Fi, but still requires k−|Fi| more edges. If there is a set Di of k−|Fi| edges
adjacent to vi which are covered only once, we may use the edges of Di for the copy, add the copy
to L, mark the edges of Fi as covered once, and the edges of Di as covered twice. Otherwise, let
(vi, u) be any edge that is covered twice. The two elements of L that use (vi, u) have u as their root.
Assume they are S1 and S2. If every edge of S1 is covered twice, we delete S1 from L, and all the
edges of S1 are marked as covered once, in particular (vi, u) is covered once. If this is not the case,
there is some edge, say (u, a) of S1 which is covered once. In this case, we delete S2 from L and
replace it with the star obtained from S2 by deleting the edge (u, vi) and adding the edge (u, a).
Note that now (u, a) is covered twice, but (vi, u) is covered once. This process can be performed
on any edge adjacent to vi that is covered twice until we have k− |Fi| edges adjacent to vi that are
covered once.

Our process has the property that at any stage no edge is covered more than twice, and after
stage i, all edges adjacent to vi are covered at least once. Thus, after the final stage L is a covering
with overlap at most 2. 2

Note that the proof of Theorem 1.3 is algorithmic, and can be performed in O(V + E) time.
Furthermore, a graph that does not satisfy the requirements of Theorem 1.3 has overlap(K1,k, G) =
∞, as there is an edge (a, b) with d(a), d(b) < k, and this edge cannot belong to a K1,k. This
degree requirement is also detectable in polynomial time, so given a graph G we can decide if
overlap(K1,k, G) ≤ 2 in polynomial time, for every k.

Proof of Theorem 1.4 Let G = (V,E) be a graph with δ(G) ≥ 3. Let L be a maximal set
of edge-disjoint paths of length 3 of G (with respect to containment). Let E1 be the set of edges
of all the members of L, and put E2 = E \ E1. The maximality of L implies that G2 = (V,E2)
is a spanning subgraph of G whose connected components are either stars, or triangles or isolated
vertices. Denote the connected components which are not isolated vertices by S1, . . . , St. We now
perform the following process, which creates a set M of edge-disjoint paths of length 3, and shrinks
S1, . . . , St into connected subgraphs T1, . . . Tt, respectively. Initially, M is empty, and Ti = Si for
all i = 1, . . . , t. At any point in this process, the edges of Si \ Ti are the edges of Si that appear in
M . Furthermore, any edge of Si that appears in M is not the central edge of the member of M in
which it appears. Note that these properties hold initially.

Assume there exists an edge (ai, aj) ∈ E1 which does not appear (yet) in a member of M such
that ai ∈ Ti and aj ∈ Tj where i 6= j, and at least one of the following conditions holds for k = i, j:

1. Sk is a triangle. (Note that Tk is either a triangle or a proper subgraph of it at this stage).
If Tk is a triangle, let (ck, ak) be any edge of this triangle. If Tk = K1,2 and ak is the root
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in Tk, Let bk, ck be the leaves of Tk. By our assumption, (bk, ck) is the starting edge of some
member of M . We may assume that ck is the a non-endpoint of this member. If Tk = K1,2

and ak is not the root of Tk, let ck be the root of Tk. If Tk = K1,1 let ck be the other member
of Tk.

2. Sk is a star and ak has degree 1 in Tk. (Note that since Tk is a subgraph of Sk, ak also has
degree 1 in Sk, unless ak was the root of Sk and Sk contained at least three vertices). Let
(ck, ak) ∈ Tk (there is only one such edge).

The path (ci, ai, aj , cj) is a path of length 3, which is added to M . We update Tk, for k = i, j

by deleting the edge (ck, ak) from it. If either ck or ak becomes isolated by this deletion, it is also
deleted from Tk. If Tk consisted only of ak and ck, we put Tk = ∅. Note that, indeed, M remains
a set of edge-disjoint paths of length 3, and that the edges of Si that appear in M , are exactly
the edges of Si \ Ti. Furthermore, any edge of Si that appears in M is not the central edge of the
member of M in which it appears.

We repeat the process described in the last paragraph until there is no such edge (ai, aj) ∈ E1

with the required properties. When this process is complete we have that any edge appears at most
once in L and at most once in M , but some may appear in both, namely, the middle edges of the
members of M . Let E′1 ⊂ E1 denote the set of edges that appear in both L and M .

Consider the graph G3 = (V,E3) where E3 is the set of edges that do not appear in L nor in
M . The non-isolated connected components of G3 are exactly the subgraphs T1, . . . Tt for which
Ti 6= ∅ at the end of the process of creating M . We may thus assume the non-isolated connected
components of G3 are T1, . . . Tt′ where t′ ≤ t. For i = 1, . . . , t′, let Fi ⊂ E1 \ E′1 be defined as
follows. If Si is a star, Fi is the set of all edges of E1 \E′1 adjacent to a vertex of degree 1 in Ti. If
Si is a triangle, Fi is the set of all edges of E1 \E′1 adjacent to any vertex of Ti. Clearly, Fi∩Fj = ∅
for 1 ≤ i < j ≤ t′ (otherwise, M would have been extended, and the process of creating M would
not have been completed). For each i = 1, . . . , t′ we create a set of paths of length 3 that cover all
the edges of Ti, each one at most twice, and some edges of Fi, each one at most once, and some
edges of Si \ Ti, each one at most once. This will clearly conclude the proof of the theorem.

Consider Ti and Fi. We distinguish between the following cases:

1. Si = (a, b, c) is a triangle, and Ti = Si. Since δ(G) ≥ 3 we have that Fi contains at least
three edges, and every vertex of Ti is adjacent to at least one edge of Fi. Let (a, d) ∈ Fi and
(b, e) ∈ Fi (it may be that d = e). The two paths (d, a, c, b) and (e, b, a, c) are the desired
covering in this case.

2. Si = (a, b, c) is a triangle, and Ti = K1,2 where a is the root of Ti. The edge (b, c) appears in
a member of M as a non-middle edge. We may hence assume that b is the end-vertex of this
member. This, and the fact that b has at least 3 neighbors in G, imply that (b, d) ∈ Fi for
some d. The path (d, b, a, c) is the desired covering in this case.
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3. Si = (a, b, c) is a triangle, and Ti = K1,1 consists only of a and b. The edges (a, c) and (b, c)
appear in distinct members P and Q of M (respectively) as a non-middle edges. We claim
that c cannot be the endpoint of both P and Q. To see this, assume that P was added to M
prior to Q, and that c is the endpoint of P . At the beginning of the iteration that added Q

to M , Ti was a K1,2 where b was the root. The middle edge of Q cannot be adjacent to b, as
this would cause the algorithm to select (a, b) for Q and not (b, c), as we assume. Thus, b is
the endpoint of Q. Assume, therefore, that c is not the endpoint of Q (and hence, b is). This
implies that (b, d) ∈ Fi for some d. The path (d, b, a, c) is the desired covering in this case.

4. Si is a star, and Ti = K1,1. Let a, b be the vertices of Ti. If Si = K1,1 then both a and b

each have two adjacent edges in Fi. Let (a, c) ∈ Fi and (b, d) ∈ Fi where b 6= d. The path
(c, a, b, d) is the desired covering in this case. If Si 6= K1,1, assume a is the root of Si. Let
c 6= b be another leaf of Si. Since b has two adjacent edges in Fi, let (b, d) ∈ Fi where d 6= c.
The path (d, b, a, c) is the desired covering in this case.

5. Si is a star, and Ti = K1,k where k ≥ 2. This, and the fact that δ(G) ≥ 3, imply that each one
of the leaves of Ti is adjacent to at least two edges of Fi, and hence |Fi| ≥ k. Let v1, . . . vk be
the leaves of Ti, and let v0 be the root. Let Rj = {v2j−1, v2j} for j = 1, . . . , bk/2c. Consider
the bipartite graph H = (A ∪ Fi, P ) which is defined as follows. The members of A are the
subsets Rj , and an edge p ∈ P connects Rj ∈ A with (a, b) ∈ Fi if a ∈ Rj or b ∈ Rj and
Rj 6= {a, b}. We claim that H has a matching which matches all the elements of A. To see
this, we show that Hall’s condition applies (cf., e.g., [2]). Let X ⊂ A. Consider the set of
2|X| leaves that belong to the subsets that comprise X. There are at least 2|X| edges of Fi
that are adjacent to one of these leaves. At-most X of them are non-neighbors of X in H,
since any Rj ∈ X disallows at most one edge (namely, the edge (v2j−1, v2j) if it exists). Thus
X has at least |X| neighbors in H. By Hall’s condition, H has a matching which matches
all the elements of A. We may assume that Rj is matched with the edge (v2j , wj) ∈ Fi. The
set of paths (v2j−1, v0, v2j , wj) for j = 1, . . . , bk/2c is the desired covering in this case. The
edge (v0, vk) may still be uncovered in case k is odd. We may cover it as follows. Let f ∈ Fi
be an edge that was not used for the matching. Such an edge exists since |Fi| ≥ k and only
bk/2c edges have been used. If vk is not an endpoint of f , we may assume f = (vj , w) for
some j ≤ k − 1. The path (vk, v0, vj , w) completes the covering. If vk is an endpoint of f ,
then f = (vk, w). Let vj be such that j ≤ k− 1 and vj 6= w. Such a j exists since k ≥ 3. The
path (w, vk, v0, vj) completes the covering in this case.

2

Note that the proof of Theorem 1.4 is algorithmic. Given a graph G with δ(G) ≥ 3 we can
find a P4 covering with overlap 2 in polynomial time. Unlike Theorem 1.3, however, this is not an
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”if and only if” result. There are graphs containing some vertices of degree 1 or 2 which have a
P4-covering with overlap 2.

4 The hardness aspects of covering with small overlap

Proof of Theorem 1.2 Let α < 0.5 and let H be any graph on h edges having a connected
component with three or more edges, and having a vertex of degree one. The decision problem
stated in the theorem clearly belongs to NP as given a graph G = (V,E) and a set L of subgraphs
of G, we may verify efficiently that each member of L is isomorphic to H, and that each edge of G
appears exactly once in a member of L. We show that the problem is NP-Complete by reducing
from the general H-decomposition problem (which is NP-Complete by [3]). Let G = (V,E) be
an n-vertex graph, which is an input to the general H-decomposition problem, where n is large.
Let x > 0 be the solution to x − 2 = nα(x2 + 1)α. For every α < 0.5 such a solution exists and
x = O(nα/(1−2α)). Note that x is bounded by a polynomial function of n, and for all y ≥ x we
have y − 2 ≥ nα(y2 + 1)α. Let f(H) be an integer such that Kk has a decomposition into H, for
all k ≥ f(H), h|

(k
2

)
. Note that f(H) exists by Wilson’s Theorem [6]. Let y be the minimal integer

such that y ≥ x and Ky has an H-decomposition. Clearly, y ≤ x + f(H) + h. Note that y is
polynomial in n. Let K ′y be the graph on y + 1 vertices obtained from Ky by deleting some edge
(a, b) from Ky and adding a new vertex c and an edge (c, a). We call (c, a) the bridge of Ky. Clearly,
the assumption that H has a vertex of degree one implies that K ′y also has an H-decomposition.
We create the graph G′ as follows. To each v ∈ G we connect y copies of K ′y where v is identified
with the vertex corresponding to c in each such copy. The other y vertices of each copy belong
only to that copy. The graph G′ has n′ = n(y2 + 1) vertices, and hence G′ can be constructed in
polynomial time. Also, note that

δ(G′) ≥ y − 2 ≥ nα(y2 + 1)α = n′α.

It remains to show that G has an H-decomposition iff G′ has. Clearly, if G is H-decomposable so
is G′ since G′ contains G as an induced subgraph, and the remaining part of G′ is just a set of ny
copies of K ′y which are H-decomposable. On the other hand, consider any H-decomposition of G′.
The bridges that connect each attached copy of K ′y to the vertices of G imply that any copy of H
in this decomposition is either entirely in an attached K ′y copy, or entirely within G. Thus, G has
an H-decomposition as well. 2

The requirement that α < 0.5 in Theorem 1.2 can be replaced with the weaker requirement that
α < 1 when H = K1,k and k ≥ 3, by a slightly more complicated argument which we do not include
here. We conjecture, however, that for any graph H having a connected component with three or
more edges, and for α < 1, deciding whether a graph G with δ(G) > nα has overlap(H,G) = 1 is
NP-Complete.
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In order to prove Theorem 1.5 we should first define an infinite family of graphs for which the
2-overlap decision problem is NP-Complete. Consider the tree Hk which is obtained by taking k
paths of length 4 where all of the paths have a common endpoint, but are otherwise edge-disjoint.
Hk has 4k+ 1 vertices and 4k edges. For k ≥ 3 there is a unique root which is the vertex of degree
k in H. Alternatively, one may view Hk as a 4-subdivision of the edges of K1,k.

Proof of Theorem 1.5 We show that for each fixed k ≥ 3, given a graph G on n vertices,
deciding whether overlap(Hk, G) ≤ 2 is NP-Complete. The problem clearly belongs to NP as one
can verify, in polynomial (in n) time if a set of subgraphs forms a covering of G by copies of Hk

where each edge is covered at most twice.
Our reduction will be from the general K1,k-decomposition problem. In order to define our

construction we define the tree H ′k to be the tree obtained from Hk by contracting one of the k
paths of length 4 into a path of length 1. H ′k has 4k − 2 vertices and 4k − 3 edges. Also, H ′k has
a unique vertex of degree one which is adjacent to the root of H ′k. Let G = (V,E) be an input for
the K1,k-decomposition problem. We construct a graph G′ as follows.

1. Each edge e = (u, v) of G is subdivided into four edges. We denote the three new vertices on
this path by eu, em, ev and the four edges are (u, eu), (eu, em), (em, ev), (ev, v). This operation
introduces 3|E| new vertices and 4|E| new edges instead of the original edges of G, which we
call subdivision edges.

2. To each vertex of type eu (that is, a vertex that was introduced when e is subdivided and is
not the middle vertex in the subdivision) we attach a path of length 2 which we denote by
(eu, e′u, e

′′
u). We call this path the forcing path. This operation introduces 4|E| new vertices

and 4|E| new edges which we call forcing edges.

3. To each vertex of type em (that is, the middle vertex in the subdivision of e) we attach a
copy of H ′k which we denote by H(e). The attachment is done by identifying em with the
unique degree one vertex of H ′k which is adjacent to the root of H ′k. This operation introduces
|E|(4k − 3) new vertices and |E|(4k − 3) new edges which we call forced edges.

The new graph G′ has |V |+ |E|4(k+1) vertices and |E|(4k+5) edges, and can thus be constructed
in polynomial time.

We claim that G has a K1,k-decomposition iff G′ has overlap(Hk, G) ≤ 2. Consider first a
decomposition of G. Let G′′ be the subgraph of G′ obtained from the subdivision edges. G′′ is
simply a 4-subdivision of G. However, Hk is also a 4-subdivision of K1,k, and hence G′′ has an Hk

decomposition. We still need to cover the forcing edges and the forced edges of G′. Consider a
two-path (eu, e′u, e

′′
u) of forcing edges. There is exactly one copy of Hk in G′ which covers the edge

(e′′u, e
′
u). This copy contains the edges of H(e), the edge (eu, em) and the edges (eu, e′u) and (e′u, e

′′
u).

Hence this copy of Hk which we denote by H(e, u) must be in the covering. Taking H(e, u) and
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H(e, v) for all e = (u, v) ∈ E, we obtain a covering of G′ where the forcing edges are covered once,
the forced edges are covered twice, half of the subdivision edges are covered twice (the middle edges
in every subdivision), and half of the subdivision edges are covered once (the side edges in every
subdivision). Consider now an Hk covering of G′ with overlap at most 2. Denote this covering by
L. As before, we must have that H(e, u) and H(e, v) are members of L for each e = (u, v) ∈ E.
This already implies that the forced edges are covered twice and the other members of L do not
include them. Put L′ = L \ {H(e, u),H(e, v) | e = (u, v) ∈ E}. The members of L′ only contain
subdivision edges and forcing edges. We claim that every H ∈ L′ only uses subdivision edges.
Indeed H has a unique vertex of degree k ≥ 3, the root of H. The root cannot be of type em since
em has degree 3, but one of its adjacent edges is a forced edge. The root cannot be of type eu since
eu has degree 3, but it is an endpoint of a forcing path, which only has length 2, which is smaller
than 4. Hence, the root of H must be an original vertex u ∈ V . Consider a path of length 4 in
H which begins at u. Since it cannot use forced edges, and since forcing paths are too short, this
path only uses subdivision edges. Hence, H ∈ L′ only uses subdivision edges, and every 4-path of
H which begins in the root maps to a subdivision of a single edge e ∈ E. We now claim that if
H ∈ L′ and H ′ ∈ L′ then H and H ′ are edge-disjoint. Indeed, if this were not the case, we would
have that H and H ′ use a common subdivision edge, of some edge e = (u, v) ∈ E, and thus use all
the 4 subdivision edges that correspond to e. In particular, they both use the edge (em, eu). But
(em, eu) is also used by H(e, u), contradicting the fact that L is a covering with overlap at most 2.
We have shown that each member H ∈ L′ corresponds to k edges of E with a common endpoint,
that is, to a K1,k in G. No two K1,k’s share an edge since the members of L′ are edge-disjoint.
Furthermore every e = (u, v) ∈ E belongs to one of these K1,k’s since the edge (u, eu) must be
covered by a member of L′. We have thus shown that G has a K1,k-decomposition. 2

There are many other trees for which we can deduce an NP-Completeness result. Let H be any
tree containing a vertex of degree 3. Let H ′ be obtained from H by an r-subdivision, where r ≥ 4
is even. A similar construction to the one described in Theorem 1.4 shows that deciding whether
overlap(H ′, G) ≤ 2 is NP-Complete. The result can also be extended to many other graphs H,
which are non-trees.

5 Concluding remarks and open problems

1. As mentioned in the introduction, the minimum degree bound in Theorem 1.1 is not best
possible. By modifying (and significantly complicating) the proofs to allow more flexibility
in the degrees of the graph G′ one can obtain a bound which is O(h6). This is done by
allowing the degrees of G′ to vary between d and, say, d+ o(d/h) instead of d and d+ 1 and
by modifying Lemma 2.3 accordingly. However, this is still far from the obvious lower bound
of h− 1 described in the introduction. We thus conjecture the following:
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Conjecture 5.1 For every tree H on h vertices, any graph G with δ(G) ≥ h − 1 has
overlap(H,G) ≤ 2.

Note that Theorems 1.3 and 1.4 show that Conjecture 5.1 holds for stars and for P4.

2. Conjecture 5.1, if true, does not imply Theorem 1.1, as Theorem 1.1 also guarantees that a
small fraction, of O(δ(G)−0.1), of the edges of G are covered twice. This near-packing result
does not hold for graphs with minimum degree h− 1. Consider a covering of Kh with K1,h−1

having overlap 2. Such a covering must contain at least h− 1 members, and hence all but at
most h− 1 edges are covered twice.

3. An H-covering of G is k-intersecting if every two elements in the covering share at most k
edges. Clearly, if overlap(H,G) > 1 then any H-covering of G is at least 1-intersecting. It
is quite easy to modify the proof of Lemma 2.4 such that when we create the copies of H,
we maintain a 1-intersection property as-well. Each time we extend a subtree H ′ of H on i

vertices by adding to it a new edge, we choose an edge that does not belong to any of the
copies that already intersect H ′. At-most i − 1 copies intersect it, and they each have no
more than i edges, thus we should avoid less than i2 edges. The lemma still holds if, say,
d ≥ sh2 + 2h3. Thus we can strengthen Theorem 1.1 to include a 1-intersection requirement
if the minimal degree is, say, (200h)10. Conjecture 5.1 may also be strengthened to include a
1-intersection requirement.

4. Theorem 1.3 implies that given a graph G, deciding whether overlap(K1,k, G) ≤ 2 can be
done in polynomial time, for every k. On the other hand, Theorem 1.5 shows that there are
infinitely many (fixed) trees for which this decision problem is NP-Complete. The smallest
tree for which we have an NP-Completeness result is the tree H3, defined in Section 4, which
contains 12 edges. A challenging open problem is to characterize all graphs (or, alternatively,
all trees) for which the 2-overlap problem is NP-Complete, and to characterize all trees for
which the 2-overlap problem is polynomial.
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