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Abstract

In the manufacture of oligo arrays for DNA hybridization experiments, manufacturing de-
fects must be detected and their position determined. The design of manufacturing protocols
for such oligo arrays leads to a combinatorial problem, requiring certain binary codes which
have an additional balance property. Constructions using block designs and packings for these
codes, within a range of interest in a practical manufacturing application, are developed. The
focus is on equireplicate codes, constant weight codes in which every bit position is a one
equally often.

AMS Subject Classification: 05B05.

1 Introduction

LetX be a set ofv elementsor points. LetB be a collection ofb subsets ofX, calledblocks. Then
(X,B) is a (v, b)-set system. Theblock sizesof (X,B) are the cardinalities of theb blocks inB;
when all blocks have cardinalityk, the set system isk-uniform. We often write(v, b, k)-set system
to denote ak-uniform (v, b)-set system.

In an application to quality control in the manufacture of oligo arrays described in the next
section, certain(v, b, k)-set systems are of particular interest. For each pointx ∈ X, we define the
replication numberof x to be the number of blocks containingx. The set system isr-equireplicate
if every point has replication numberr. We call a(v, b, k)-set systemd-discriminatedif, for every
pointx ∈ X, the replication numberrx satisfiesd ≤ rx ≤ b− d; and, for every two distinct points
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x, y ∈ X, the number of blocks containingexactly one of x andy is at leastd. In other words, if
λxy represents the number of blocks containing bothx andy, we require thatrx + ry − 2λxy ≥ d.
A d-discriminated(v, b, k)-set system is henceforth denoted by(v, b, k, d)-balanced binary code,
or (v, b, k, d)-bbcfor short.

Table 1 gives an example of a(28, 14, 10, 5)-bbc, which is 5-equireplicate. This was con-
structed using the method described in [3].

0 4 7 9 13 14 18 20 23 27
2 3 4 9 15 16 18 23 25 26
4 6 8 13 15 19 20 21 24 25
0 3 4 5 12 16 19 21 22 27
1 2 6 9 10 13 16 17 21 27
1 5 10 11 13 14 16 19 23 25
3 7 8 9 10 11 12 20 21 25
0 1 2 7 11 15 21 22 23 24
0 2 3 5 8 11 13 17 18 24
0 1 8 9 12 14 15 17 19 26
1 5 6 7 12 18 24 25 26 27
6 11 12 14 15 16 17 18 20 22
3 10 17 19 20 22 23 24 26 27
2 4 5 6 7 8 10 14 22 26

Table 1: A 5-equireplicate (28,14,10,5)-bbc set system

The connection to codes arises as follows. If we form theb × v incidence matrix of the set
system, then each row has weightk and each column has weight at leastd and at mostb−d. Hence
each column differs from the all-zero vector and from the all-one vector in at leastd positions.
Moreover, since two points satisfyrx + ry − 2λxy ≥ d, we have that every two columns have
Hamming distance at leastd. Hence the code whose words are the columns together with the all-
zero and all-one vectors has minimum distance (at least)d. For the example in Table 1, the matrix
is given in Table 2.

The fundamental existence question for balanced binary codes is to determine, for a givenv
andk, a code with a ‘small’ numberb of rows having ‘large’ discriminationd. (See Section 2 for
the motivation.) To make this precise, givenv, k, andd, we seek the smallest value ofb for which
a (v, b, k, d)-bbc exists. We begin by establishing a lower bound onb.

Proposition 1.1 If a (v, b, k, d)-bbc exists, thenb ≥ max
(⌈

vd
k

⌉
,
⌈
vd
v−k

⌉)
.

Proof. The incidence matrix of a(v, b, k, d)-bbc containsbk one entries, since each of theb rows
containsk ones. Since each of thev columns contains at leastd and at mostb− d ones, we have:

vd ≤ bk ≤ vb− vd.

The bounds follow. �
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1000100101000110001010010001
0011100001000001101000010110
0000101010000101000111001100
1001110000001000100101100001
0110001001100100110001000001
0100010000110110100100010100
0001000111111000000011000100
1110000100010001000001111000
1011010010010100011000001000
1100000011001011010100000010
0100011100001000001000001111
0000001000011011111010100000
0001000000100000010110111011
0010111110100010000000100010

Table 2: A 5-equireplicate (28,14,10,5)-bbc incidence matrix

We call a (v, b, k, d)-bbc optimal when b realizes the bound in Proposition 1.1. When a
(v, b, k, d)-bbc exists, an additional row can easily be appended to form a(v, b + 1, k, d)-bbc;
in fact, simply duplicating any of the rows produces the extended bbc. It is therefore natural to
study the optimal balanced binary codes.

Let (V,B) be a set system. Thecomplementof (V,B), denoted by(V,B), has the same setV
of elements, and the collection of blocksB = {V \D : D ∈ B}.

Lemma 1.2 The complement of a(v, b, k, d)-bbc is a(v, b, v − k, d)-bbc. The complement of an
equireplicate bbc is also equireplicate. The complement of an optimal bbc is also optimal.

The following lemma gives a simple characterization of optimal equireplicate bbc’s.

Lemma 1.3 SupposeB is an equireplicate(v, b, k, d)-bbc with replication numberr.

1. If v ≥ 2k,B is optimal if and only ifr = d.

2. If v < 2k,B is optimal if and only ifr = b− d.

Proof. By Lemma 1.2, assume without loss of generality thatv ≥ 2k. Supposer = d.
Since bk = vr, both being the number of ones in the incidence matrix ofB, we have
b = vd

k
= max

(⌈
vd
k

⌉
,
⌈
vd
v−k

⌉)
, makingB optimal. Conversely, supposeB is optimal. Then

b =
⌈
vd
k

⌉
≤ vd+k−1

k
. By the definition of discrimination, all replication numbers ofB are at least

d, sod ≤ r = bk
v
≤ d+ k−1

v
< d+ 1. Sincer is integral,r = d. �

Sengupta and Tompa [9] observed that ifB1 is a(v, b1, k, d1)-bbc andB2 is a(v, b2, k, d2)-bbc,

then
[
B1

B2

]
, the union of the blocks ofB1 andB2, is a (v, b1 + b2, k, d1 + d2)-bbc; we call this

operationaddition. Unfortunately, the addition of two optimal bbc’s need not be optimal. The
reason is simple. Since the bound in Proposition 1.1 is the next larger integer, it is possible for the
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addition ofB1 andB2 to contain one more row than does an optimal bbc, despite the optimality of
B1 andB2 individually. Nevertheless, the addition proves to be very useful in limiting the ranges
of the discrimination to be examined:

Proposition 1.4 If B1 is an optimal equireplicate(v, b1, k, d1)-bbc and B2 is an optimal

(v, b2, k, d2)-bbc, then
[
B1

B2

]
is an optimal(v, b1 + b2, k, d1 + d2)-bbc.

Proof. By Lemma 1.2, assume without loss of generality thatv ≥ 2k. By Lemma 1.3, then, all
replication numbers ofB1 ared1, sob1k = vd1. It follows thatb1 + b2 = vd1

k
+ dvd2

k
e. But since

vd1

k
is an integer, we haveb1 + b2 = dv(d1+d2)

k
e, so that the addition is optimal. �

For this reason, the critical ingredients in producing optimal balanced binary codes are those
that are equireplicate. In this paper, we provide a number of combinatorial constructions for
equireplicate optimal bbc’s, primarily within a range of practical interest in the study of the manu-
facture of oligo arrays. In a companion paper [3], we examine heuristic techniques which we have
used for the production of optimal bbc’s in the case when replication numbers are not all equal.
Combining these techniques yields a powerful existence result for balanced binary codes in the
intended application.

An understanding of the application is critical to motivating both the definitions given and to
describing the specific bbc’s sought. We provide a brief overview of the biotechnology application
before pursuing the construction of optimal bbc’s. For full details on the application, see Sengupta
and Tompa [9].

2 The Quality Control Problem

For this discussion, aDNA moleculecan be abstracted as a string over the alphabet{A,C,G, T}.
An oligo array is a small chip containing approximately 100,000spots, to each of which is attached
its own synthesized DNA molecule. Oligo arrays are used to measure how much of each gene
product is produced by a given cell type under given conditions. For more information on oligo
arrays see, for example, Lipschutzet al. [5].

Our application is in the manufacture of oligo arrays rather than their subsequent use. An array
is manufactured in a series of steps “labeled”A,C,G, T,A,C,G, T,A, . . . Initially every spot’s
DNA molecule is empty. In preparation for any given step, an arbitrary subset of the spots can be
masked. If the step is labeledσ, only a spot that is unmasked will haveσ appended to the end of
its DNA molecule. By appropriate construction of the masks, each spot can be designed to contain
an arbitrary DNA sequence.

The manufacturing process is subject to two different sorts of faults: (1) several individual
spots may fail, and (2) an entire manufacturing step may fail, affecting all spots unmasked during
that step. The goal of quality control is to identify any single failed step, even ife individual spots
fail, wheree is a parameter of the manufacturing process. A small number of spots on the chip can
be used for this quality control purpose.

Hubbell and Pevzner [4] first investigated this problem. The clever idea underlying their ap-
proach is to manufacture identical DNA molecules at multiple spots, using different schedules of
steps. If no step fails, all such spots should behave identically. If some step fails, the spots behaving
incorrectly hopefully provide a “signature” that identifies the failed step.
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Figure 1: A pair of4× 4 QC blocks. For ease of visualization, the figure shows blanks instead of
zeros, and the manufacturing step’s label instead of a one.

The problem Hubbell and Pevzner left open was how to design the quality control molecules
and schedules to guarantee such signatures, even in the presence ofe faulty spots. Sengupta and
Tompa [9] reduced this problem to the design of well discriminated balanced binary codes as
described below, and supplied an initial collection of good balanced codes.

First they abstracted the quality control problem as that of designing aQC matrixQ, which
is a 0-1 matrix with a row for each quality control spot, a column for each manufacturing step,
andQij = 1 if and only if spoti is unmasked during stepj. Given the spots that subsequently
behave incorrectly as a column vectorI, identifying the failed step corresponds roughly to finding
the column ofQ that resemblesI, with up toe exceptions. Although this resembles the familiar
error-correcting code problem, what makes it more complicated is that (1) one cannot compare
the behaviors of spots with different DNA sequences, and (2) even for the spots with identical
sequences, it may not be possible to distinguish between all such spots behaving correctly and all
such spots behaving incorrectly.

In terms that are beyond our scope, but are detailed by Sengupta and Tompa [9], the properties
of a good QC matrixQ are as follows:

1. The set of DNA molecules manufactured at the quality control spots “hybridize poorly” to
themselves and each other.

2. Q has high “separation” sep(Q), which ensures sufficient coverage of each step, and suffi-
cient difference between steps to identify the failed step. Sengupta and Tompa proved that
sep(Q) ≥ 2e + 1 is sufficient to identify any single failed step, even in the presence ofe
arbitrarily faulty spots.

Sengupta and Tompa designed QC matrices with these properties using a product construction.
First they hand crafted someQC blocks, which are small QC matrices. An example of a pair of
4 × 4 QC blocks from their paper is given in Figure 1. They then showed that a certain cross
product of any well discriminated balanced binary code and any QC block yields a QC matrix with
the desired properties above. More specifically, ifB is a(v, b, k, d)-bbc, then alternately replacing
the ones in each row ofB by the two4× 4 QC blocks of Figure 1, and replacing the zeros inB by
4×4 matrices of zeros, produces a4b×4v QC matrixQ for which each DNA molecule has length
2k, the set of DNA molecules hybridizes poorly, and sep(Q) = 2d. An example of this product
construction is shown in Figure 2.

This then explains the design problem of Section 1. Since the array manufacturer specifies the
number of steps (4v) and the molecule lengths (2k), and the goal is to minimize the number of
quality control spots (4b) and maximize separation (2d), the resulting balanced binary code design
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problem is to minimizeb and maximize discriminationd for a givenv andk. For the current
photolithographic process, reasonable ranges for the parameters are16 ≤ 2k ≤ 20, 60 ≤ 4v ≤
136, and4b up to a few hundred.

Although Sengupta and Tompa supplied an initial collection of balanced binary codes, they left
open the construction of optimal balanced binary codes for arbitrary choices ofv, k, andd. The
current paper addresses exactly this problem for the relevant parameter ranges given above. The
resulting constructions are summarized in Tables 7 and 8.

3 Primal Constructions

In this section, we examine constructions for the bbc set system; to distinguish from later con-
structions, we call this theprimal set system. Our constructions begin with a useful connection
to balanced incomplete block designs. At-(v, b, r, k, λ) designis a pair(V,B), whereV is a set
of v elements, andB is a collection ofk-element subsets ofV calledblocks. Everyt-subset ofV
appears as a subset of exactlyλ of theb blocks inB. It follows that everys-subset for0 ≤ s ≤ t
appears in the same numberλs of blocks (since the block sizes all equalk). In this notation,b = λ0,
r = λ1, andλ = λt. Whent = 2, a t-design is abalanced incomplete block design, or simply a
block design. The connection to bbc’s is immediate:

Theorem 3.1 When v > k > 2, every 2-(v, b, r, k, λ) design is an optimal equireplicate
(v, b, k,min(r, b− r))-bbc.

Proof. The design is a(v, b, k)-set system by construction. To verify that it is min(r, b − r)-
discriminated, we observe that the number of blocks containing exactly one of (any) two distinct
elements is2(r − λ). By Lemma 1.2, we can assume without loss of generality thatv ≥ 2k. Then
2(r − λ) ≥ r sincer = λ(v−1)

k−1
. Optimality follows from Lemma 1.3 and the observation that

d = min(r, b− r) = r, sincer = bk/v ≤ b/2. �

Corollary 3.2 There are equireplicate (16,30,8,15)-, (18,34,9,17)-, and (20,38,10,19)-bbc’s.

Proof. There exist 2-(16,30,15,8,7), 2-(18,34,17,9,8), and 2-(20,38,19,10,9) designs (see, e.g., [7]).
The first and last areHadamard designsarising from Hadamard matrices; see [1]. �

Block designs have been very extensively studied, and much is known about their existence;
see [7] for a table giving known existence results for ‘small’ values ofr. For our application,
the conditions on block designs are too stringent. Indeed, in a block design, every two elements
have the property that there areexactly2(r − λ) blocks containing precisely one of them, and the
application does not require this type of uniformity. Consequently, block designs provide only a
small fraction of the bbc’s needed, even among the optimal equireplicate cases. A more serious
drawback arises sinceb is constrained to be at leastv by Fisher’s inequality (see, for example, [1]).
Using addition, however, we are most interested in bbc’s withb very small.

We therefore relax the requirements by allowing, for each pair of elements, the number of
blocks containing exactly one of them to vary, provided that it remain at leastd. Translating to
the design vernacular, when the bbc is equireplicate, we are specifying that every pair of elements
occur together in at most some numberλ of blocks.
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A t-(v, k, λ) packing(V,B) is a(v, b, k)-set system in which everyt-subset of elements occurs
together in at mostλ of the blocks inB. A 2-(v, k, λ) packing in whichv ≥ 2k and every element
has replication number at leastr yields a bbc which is min(r, 2(r − λ))-discriminated. See [8] for
a survey of packings.

Our first construction produces2-(v, k, λ) packings withb = v. We take, as the set of elements,
the integers modulov, Zv. We choose a single block,B, containingk elements, and formB =
{B + 0, . . . , B + (v − 1)}, where the translateB + i = {x+ i mod v : x ∈ B}. To determine the
indexλ of the packing(Zv,B), proceed as follows. Each pair{i, j} of elements has an associated
differencemodulov, namely min(i − j mod v, j − i mod v). If this difference appears as the
difference between two elements ofB, then the pair occurs in exactly one translate of these two
elements unless the difference is precisely half ofv, in which case the pair appears in two translates.
Hence to determine the maximum number of times that a pair occurs in the packing, we need only
determine how many pairs of elements inB have a specified difference. To handle the case when
v is even and the difference examined isd/2, we must double the number of occurrences of the
difference.

In the construction of bbc’s, we may not require the minimum possible value ofλ. Indeed, if
v ≥ 2k and we are to produce a(v, v, k, k)-bbc, we require only that every difference appear at
mostbk/2c times. A single block ofk elements fromZv in which every difference is represented
at mostbk/2c times, except whenv is even we require thatv/2 be represented at mostbv/4c times,
is a near difference set. Whenv is odd and every difference is represented the same number of
times, the block is acyclic difference set, and these have been studied extensively [1].

In Table 3, we present near difference sets for a number of parameters of interest. These
solutions were found using a simple backtracking method.

Such bbc’s arising from near difference sets can exist only for some of the parameter sets of
interest, namely those whenb = v. We therefore examine a more general method. Again we
takeZv as the set of elements. We form a number ofbase blocksB1, B2, ...,B`. We can again
develop each base block modulov to form v blocks. For certain base blocks, thev blocks in
the development are not all distinct. In these cases, we can choose to include only a subset of
the blocks. Suppose, for example, thatv andk are both even, and thatBi = {b1, . . . , bk/2, b1 +
(v/2), . . . , bk/2 + (v/2)}, with 0 ≤ bi < v/2 when1 ≤ i ≤ k/2. ThenBi + (v/2) = Bi. In this
case, we can produce onlyv/2 blocks, ahalf orbit, by includingBi+j for j = 0, . . . , (v/2)−1. In
Table 4, we present solutions containing one half orbit and one starter block generatingv blocks.
To prescribe the block for the half orbit, we give only the elementsb1, . . . , bk/2.

Other relaxations of the stringent block design conditions can be exploited. A(g, k;λ)-
difference matrixoverZg is a k × λg arrayA with entries fromZg, with the property that for
any1 ≤ i < j ≤ k, the collection of differences{Ai,` − Aj,` mod g : 1 ≤ ` ≤ λg} contains theg
numbers inZg λ times each.

Proposition 3.3 There is an equireplicate (27,21,9,7)-bbc and an equireplicate (30,21,10,7)-bbc.

Proof. There is a (3,9;3)-difference matrix; see [2], for example. Choose any seven of its columns,
and append the fourteen further columns obtained by developing the columns under addition mod-
ulo 3. Treat the resulting set of 21 columns as blocks of a packing on the 27 points(i, σ), where
i indicates the row, andσ the symbol fromZ3. The resulting packing hasλ = 3, and hence is
a 2-(27,9,3) packing on 21 blocks which is equireplicate. Hence an equireplicate (27,21,9,7)-bbc
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Figure 2: The product of a (19,19,9,9,4) 2-design and the pair of4 × 4 QC blocks of Figure 1,
resulting in a76× 76 QC matrixQ with minimum separation sep(Q) = 18.

v k d Block v k d Block
9 8 1 0 1 2 3 4 5 6 7 10 8 2 0 1 2 3 4 5 6 7

10 9 1 0 1 2 3 4 5 6 7 8 11 8 3 0 1 2 3 4 5 6 8
11 9 2 0 1 2 3 4 5 6 7 8 11 10 1 0 1 2 3 4 5 6 7 8 9
12 9 3 0 1 2 3 4 5 6 7 9 12 10 2 0 1 2 3 4 5 6 7 8 9
13 8 5 0 1 2 3 4 5 8 10 13 9 4 0 1 2 3 4 5 7 9 10
13 10 3 0 1 2 3 4 5 6 7 8 10 14 8 6 0 1 2 3 4 5 7 10
14 9 5 0 1 2 3 4 5 6 9 11 15 8 7 0 1 2 3 5 7 8 11
15 9 6 0 1 2 3 4 5 6 8 11 15 10 5 0 1 2 3 4 5 6 7 10 12
16 8 8 0 1 2 3 4 7 9 12 16 9 7 0 1 2 3 4 6 7 11 13
16 10 6 0 1 2 3 4 5 6 7 9 12 17 8 8 0 1 2 3 4 6 9 13
17 9 8 0 1 2 3 4 5 8 10 13 17 10 7 0 1 2 3 4 5 7 8 11 13
19 8 8 0 1 2 3 4 6 9 13 19 9 9 0 1 2 3 5 7 12 13 16
19 10 9 0 1 2 3 5 7 12 13 15 16 20 9 9 0 1 2 3 4 7 9 12 16
20 10 10 0 1 2 3 4 6 8 11 14 15 21 8 8 0 1 2 3 5 8 12 16
21 9 9 0 1 2 3 4 7 9 13 18 21 10 10 0 1 2 3 4 5 8 10 13 17
22 9 9 0 1 2 3 4 6 9 13 17 22 10 10 0 1 2 3 4 5 8 10 13 17
23 8 8 0 1 2 3 5 8 12 16 23 9 9 0 1 2 3 4 6 9 13 17
23 10 10 0 1 2 3 4 5 7 10 14 18 24 9 9 0 1 2 3 4 6 9 13 17
24 10 10 0 1 2 3 5 6 11 13 17 20 25 8 8 0 1 2 3 5 8 12 16
25 9 9 0 1 2 3 4 6 9 13 17 26 9 9 0 1 2 4 6 11 12 20 23
26 10 10 0 1 2 3 4 7 9 12 16 20 27 8 8 0 1 2 3 5 8 12 16
27 10 10 0 1 2 3 4 6 9 13 17 22 28 9 9 0 1 2 3 5 8 12 16 21
29 8 8 0 1 2 3 5 8 12 16 29 9 9 0 1 2 3 5 8 12 16 22
29 10 10 0 1 2 3 4 6 9 13 17 23 30 9 9 0 1 2 3 5 8 12 16 21
31 8 8 0 1 2 4 7 12 16 25 31 9 9 0 1 2 3 5 8 12 16 21
31 10 10 0 1 2 3 4 6 9 13 17 22 32 9 9 0 1 2 3 5 8 12 16 22
33 8 8 0 1 2 4 7 11 19 24 33 9 9 0 1 2 3 5 8 12 16 21
33 10 10 0 1 2 3 5 8 12 18 22 27 34 9 9 0 1 2 3 5 8 12 16 21

Table 3: Near Difference Sets
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v k d Half Orbit Full Orbit
10 8 3 0 1 2 3 0 1 2 3 4 5 6 7
12 10 3 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
14 8 9 0 1 2 4 0 1 2 3 4 6 7 12
16 10 9 0 1 2 3 4 0 1 2 3 4 5 7 8 10 14
22 10 15 0 1 2 3 5 0 1 2 3 5 7 10 15 18 19
24 10 15 0 1 2 4 9 0 1 2 3 6 7 9 11 17 20
26 10 15 0 1 2 4 7 0 1 2 3 4 7 10 12 18 22

Table 4: One and a Half Orbits

exists. Now this 2-(27,9,3) packing can, by construction, be partitioned into seven sets of three
blocks each, so that each set contains three mutually disjoint blocks. LetP1, . . . , P7 be such a
partition of the blocks. Add three new elementsa, b, c to the packing. Adda to each block inP1

andP2 and to the first block inP7; addb to each block inP3 andP4 and to the second block in
P7; addc to the remaining 7 blocks. The result is a 2-(30,10,3) packing; it is equireplicate with
replication number 7, and hence yields an equireplicate (30,21,10,7)-bbc. �

4 Dual Constructions

Since we are primarily interested in cases in whichb < v, it is natural to consider the dual set
system. Thedual set systemof a set system(V,B) is a set system(X,D) in whichX = {xB :
B ∈ B} andD = {Dy : y ∈ V }, whereDy = {xB : y ∈ B ∈ B}. The dual of a(v, b, k)-set
system with replication numbersr1, . . . , rv is a (b, v)-set system withv blocks of sizesr1, . . . , rv
and having constant replication numberk. Indeed when the(v, b, k)-set system is equireplicate
with replication numberr, its dual is a(b, v, r)-set system which has constant replication number
k. The dual of the set system in Table 1 is given in Table 5.

0 3 7 8 9 4 5 7 9 10 1 4 7 8 13
1 3 6 8 12 0 1 2 3 13 3 5 8 10 13
2 4 10 11 13 0 6 7 10 13 2 6 8 9 13
0 1 4 6 9 4 5 6 12 13 5 6 7 8 11
3 6 9 10 11 0 2 4 5 8 0 5 9 11 13
1 2 7 9 11 1 3 4 5 11 4 8 9 11 12
0 1 8 10 11 2 3 5 9 12 0 2 6 11 12
2 3 4 6 7 3 7 11 12 13 0 1 5 7 12
2 7 8 10 12 1 2 5 6 10 1 9 10 12 13
0 3 4 10 12

Table 5: Dual Set System of (28,14,10,5)-bbc

The discrimination of the primal is reflected in the dual in a somewhat different manner than
in the primal. Two blocks of the dual sharingµ elements result in a discriminationd of the primal
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satisfyingd ≤ 2r− 2µ; hence maximizingd amounts to minimizingµ, the intersection size of two
blocks, sincer is fixed. Translating this into design vernacular, we establish that:

Theorem 4.1 A t-(b, r, 1) packing onv blocks with replication numberk yields an equireplicate
(v, b, k,min(r, b− r, 2(r − t+ 1)))-bbc with replication numberr.

Proof. The dual of at-(b, r, 1) packing onv blocks with replication numberk is a (v, b, k)-set
system with replication numberr in which every pair of elements occurs in at mostt − 1 blocks
together. �

Hence our goal is to producet-(b, r, 1) packings witht ≤ r/2 + 1. One potential benefit of this
dual approach whenb < v is that we can examine constructions overZb rather than the largerZv.
We illustrate this by producing a number of 4-equireplicate(2m,m, 8, 4)-bbc’s.

Theorem 4.2 A 4-equireplicate(2m,m, 8, 4)-bbc exists for allm ≥ 10.

Proof. The dual set system is constructed with elements inZm, and has two base blocks which are
developed modulom. We need only ensure that the result is a 3-(m, 4, 1) packing. Whenm = 10,
use the base blocks{0,1,2,6} and{0,2,4,7}; whenm ≥ 11, use the base blocks{0,1,2,7} and
{0,1,3,5}. The proof is completed by verifying that no translate of a triple in either base block
appears as a translate of a different triple or as a different translate of this triple. �

In a similar vein, other bbc’s are easily produced from 3-(b, 5, 1) packings:

v b k d Dual Base Blocks inZb
30 15 10 5 {0,1,4,11,14}, {0,2,7,8,13}
32 16 10 5 {0,2,8,14,15}, {0,3,7,11,14}
34 17 10 5 {0,3,10,12,14}, {0,4,12,15,16}

The dual solutions thus far presented all have the property thatv is an integral multiple of
b. We can vary the construction to admit other solutions. Suppose, for example, that we are to
produce a(25, 10, 10, 4)-bbc. Its dual is a(10, 25, 4)-set system which is 10-equireplicate and
forms a 3-(10,4,1) packing. Two base blocks,{0,1,2,6} and{0,2,4,7}, generate 20 blocks inZ10.
A third base block{0, 1, 3, 4} is used, but in its development, we only include translates obtained
by adding theeven integers. Since this last base block contains two even and two odd numbers,
this development ensures that the resulting packing is 10-equireplicate.

In general, by selecting certain translates out of one orbit of a base block, we can varyk andb
in the construction. We give some further examples of constructions of this type next, subscripting
one block with the integers to be added in forming its translates. The first three employ packings
with t = 3, while the last five employ packings witht = 4.

v b k d Dual Base Blocks inZb
27 12 9 4 {0,1,3,5}, {0,1,2,7}, {0,3,6,9}0,1,2

30 12 10 4 {0,1,3,5}, {0,1,2,7}, {0,2,6,8}0,1,2,3,4,5

32 20 8 5 {0,1,8,14,17}, {0,2,11,18,19}0,1,2,5,6,7,10,11,12,15,16,17

15 10 9 4 {2,3,5,6,7,9}, {3,4,5,6,8,9}0,2,4,6,8

28 21 8 6 {0,1,4,9,18,20}, {0,1,7,8,14,15}0,1,2,3,4,5,6

33 22 9 6 {0,1,6,7,10,15}, {0,1,3,11,12,14}0,1,2,3,4,5,6,7,8,9,10

24 21 8 7 {0,1,2,4,6,7,14}, {0,3,6,9,12,15,18}0,1,2

32 28 8 7 {0,1,2,4,7,11,17}, {0,4,8,12,16,20,24}0,1,2,3
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In a number of cases, we have not been able to find (dual) solutions which are cyclic modulo
b. In some of these situations, we have resorted to using a smaller group.

Theorem 4.3 There is a(3m, 2m, 9, 6)-bbc for allm ≥ 7.

Proof. We form the dual of the required bbc on the element setZm × {0, 1}. We begin
with three base blocks{(0,0),(1,0),(3,0),(0,1),(1,1),(3,1)}, {(2,0),(4,0),(5,0),(6,0),(0,1),(3,1)}, and
{(0,0),(3,0),(2,1),(4,1),(5,1),(6,1)}. Each givesm blocks of the dual by adding the nonzero ele-
ments ofZm in turn to the first coordinates of each element. It is easily verified that the result is a
3-(2m, 6, 1) packing which is 9-equireplicate. �

Theorem 4.4 There is a(4m, 3m, 8, 6)-bbc and a(5m, 3m, 10, 6)-bbc for allm ≥ 5.

Proof. We form the dual of the required bbc on the element setZm × {0, 1, 2}. We begin with five
base blocks:

{(0,0),(1,0),(2,0),(3,0),(4,1),(4,2)},
{(0,1),(1,1),(2,1),(3,1),(4,0),(4,2)},
{(0,2),(1,2),(2,2),(3,2),(4,1),(4,0)},
{(0,0),(1,0),(0,1),(1,1),(0,2),(1,2)},
{(0,0),(2,0),(0,1),(2,1),(0,2),(2,2)}.

Each givesm blocks of the dual by adding the nonzero elements ofZm in turn to the first coor-
dinates of each element. It is easily verified that the result is a 4-(3m, 6, 1) packing, and yields a
(5m, 3m, 10, 6)-bbc. Deleting the last base block and its translates yields a(4m, 3m, 8, 6)-bbc. �

Proposition 4.5 There exists a (24,15,8,5)-bbc and a (27,15,9,5)-bbc.

Proof. The point set for the dual in each case is the fifteen pointsZ12 ∪ {a, b, c}. Start with
the blocks obtained by developing{0, 1, 2, 4, 9} and{0, 1, 5} modulo 12. Then the translates of
{0, 1, 5} can be partitioned into three parallel classes of four blocks each. For the three parallel
classes in turn, add the points{a, b}, {a, c}, and{b, c}, respectively to each block of the parallel
class. The result is the dual of the (24,15,8,5)-bbc.

To this dual, add the three distinct translates of{0, 3, 6, 9} modulo 12, placinga, b, and c
respectively in one of the three translates. This is the dual of the (27,15,9,5)-bbc. �

For small values ofd, a direct construction can be quite simple:

Proposition 4.6 There are (12,6,8,2)-, (12,8,9,2)-, (14,7,10,2)-, and (15,6,10,2)-bbc’s.

Proof. Start with ak-regular graph onn vertices, for(k, n) = (4,6), (3,8), (4,7), or (5,6), respec-
tively. The complement of this set system forms the dual of the required bbc. �

Similarly, the complement of the blocks of a 2-(9,12,4,3,1) design forms the dual of a
(12,9,8,3)-bbc.

We employ some constructions from Hadamard designs. AHadamard 3-designis a 3-
(4n, 2n, n−1) design [1]. Such a design has8n−2 blocks, and they occur in4n−1 complementary
pairs. Deleting one point of a 3-(4n, 2n, n − 1) design produces a 2-(4n − 1, 2n − 1, n − 1) de-
sign which has4n − 1 blocks and replication number2n − 1. Hence the 2-design issymmetric,
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and consequently every two blocks of the 2-design intersect inn − 1 elements. The 3-design can
be recovered from the 2-design by including the complements of the blocks of the 2-design, and
including the blocks with a single new element which is adjoined to each. From this construction,
the 3-design is an(n + 1)-(4n, 2n, 1) packing. Deleting blocks retains this packing property, but
more importantly deleting complementary pairs of blocks retains the property that the packing is
equireplicate. Indeed if we selectj complementary pairs of blocks, the replication number isj;
whenj ≥ 2n, the packing leads to a(2j, 4n, j, 2n)-bbc. Using Hadamard designs forn ∈ {3, 4, 5},
we obtain the following:

Proposition 4.7 There exist (16,12,8,6)-, (16,20,8,10)-, (18,12,9,6)-, (18,16,9,8)-, (18,20,9,10)-,
(20,12,10,6)-, and (20,16,10,8)-bbc’s.

We also need one specific construction:

Proposition 4.8 There exist (18,9,8,4)- and (18,9,10,4)-bbc’s.

Proof. The second is the complement of the first. To construct the dual of the first, we begin with
nine points{(i, j) : i, j ∈ Z3}. We include all nine blocks of the form{(i, k), (i, `), (j, k), (j, `)}
with i, j, k, ` ∈ Z3, i 6= j, and k 6= `. We then add all nine blocks of the form
{(i, j), (i, k), (a, `), (b, `)} when{i, a, b} = {j, k, `} = Z3. This is a 3-(9,4,1) packing with 18
blocks, having constant replication number eight. �

In Table 6, the dual of a (16,38,8,19)-bbc is presented. The method used to obtain this solution
is of independent interest, and is described in [3].

0 4 6 7 8 9 10 11 13 14 17 19 21 27 28 29 32 35 37
0 2 4 5 8 9 15 16 17 18 19 20 22 25 27 29 31 32 34
0 1 5 6 14 16 18 19 20 23 24 26 27 28 30 31 34 35 37
0 3 7 8 12 13 16 18 20 21 26 28 29 30 31 32 33 35 36
1 2 5 6 7 9 11 13 20 21 22 24 25 30 31 32 34 35 36
1 2 3 4 5 10 13 14 15 16 20 21 24 27 29 30 32 33 37
0 1 3 4 5 7 11 12 14 17 19 20 22 23 32 33 34 36 37
2 5 6 7 8 9 12 14 15 16 19 23 25 29 30 33 35 36 37
1 2 3 4 6 12 13 15 17 23 25 26 28 29 31 32 34 35 37
2 3 6 7 10 11 15 16 17 18 20 21 22 23 27 28 31 36 37
3 4 5 6 9 10 11 12 18 19 22 24 26 27 29 31 33 35 36
0 1 2 8 10 11 12 13 15 17 19 24 27 28 30 31 33 34 36
9 10 11 13 14 15 18 19 20 21 22 23 25 26 28 29 30 33 34
1 3 5 7 8 9 10 11 12 14 15 16 17 18 24 25 26 28 32
0 2 3 4 7 8 10 12 14 21 22 23 24 25 26 27 30 34 35
0 1 4 6 8 9 13 16 17 18 21 22 23 24 25 26 33 36 37

Table 6: Dual of a (16,38,8,19)-bbc
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5 Nonexistence Results

We have presented a large collection of constructions for optimal equireplicate bbc’s, focussing on
those with smaller discriminations in order to use addition to produce those with larger discrimi-
nation. However, not all bbc’s exist; in fact, those with low discrimination appear to be the least
likely to exist. We do not restrict to equireplicate bbc’s in this section. We establish a preliminary
result for small discrimination:

Theorem 5.1 An optimal(v, b, k, 1)-bbc exists only whenv = k + 1 or k = 1.

Proof. If v ≥ 2k, the dual set system hasb = dv/ke points, and has at leastv − k + 1 blocks of
size 1. Whenk > 1, some block is repeated and hence the discrimination is 0. Ifv < 2k, the dual
set system hasdv/(v − k)e points, and has at leastk + 1 blocks of sizev − 1. Its complement
therefore hask + 1 blocks of size 1, and hence contains a repeated block unlessv − k = 1. �

When the discrimination is two, the analysis is slightly more complex. We describe one con-
crete example, and then give much briefer arguments thereafter. Let us establish that a (31,8,8,2)-
bbc does not exist. If one were to exist, its dual has eight points. It has 31 blocks, and each must
have size at least two (and at most six). There are64 = 8 ·8 occurrences of points in blocks. Hence
there are either 30 blocks of size two and one of size four, or there are 29 blocks of size two and
two of size three. In this case, since

(
8
2

)
= 28, there must be arepeated block of size two. But then

the bbc has two identical columns, and its discrimination is zero, a contradiction. In general, the
nonexistence results all arise from an analysis of the cases that can arise, showing that each cannot
have the required discrimination.

Theorem 5.2 An optimal(v, b, k, 2)-bbc exists only if:

1. v ≤ 13, v ∈ {29, 30}, or v ≥ 33 whenk = 8;

2. v ≤ 14, v ∈ {32, 37, 38}, or v ≥ 41 whenk = 9;

3. v ≤ 16, v ∈ {46, 47}, or v ≥ 51 whenk = 10.

Proof. First we suppose thatv ≥ 2k. Thenb = d2v
k
e. The dual of the required bbc therefore hasbk

occurrences of elements distributed acrossv blocks, each having size at least two. It follows that
‘most’ blocks have size equal to two. If the dual has a block of size three, then no block of size
two can share both elements with the block of size three. To maximize the number of blocks in the
dual, we therefore construct the dual with the largest possible number of blocks of size four, and
the remaining blocks of size two.

Consider the case whenk = 8. Write v = 4s + α with α ∈ {1, 2, 3, 4}. Thenb = 2s + 1, and
bk = 16s+ 8. It follows that the number of blocks of size two in the dual, when no blocks of size
three are chosen, is at least4s − 4 + 2α. Now requiring that4s − 4 + 2α ≤

(
b
2

)
, we obtain that

s(s − 7) ≥ 4α − 8. Hences ≥ 7 whenα ∈ {1, 2} ands ≥ 8 whenα ∈ {3, 4}. Whenk = 9 or
k = 10, the analysis is similar and is omitted.

When v < 2k, we use the fact that a(v, b, k, 2)-bbc is equivalent to a(v, b, v − k, 2)-bbc.
The remaining cases haveb = 5 but require more than 10 blocks of size two in the dual of the
complementary bbc. �
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The restrictions when the discrimination is three are more severe. In this case, the dual hasd3v
k
e

points, and itsv blocks are almost all of size three. However, two blocks of size three are permitted
to intersect in only one element. This establishes easily that whenk ∈ {8, 9, 10} and2k ≤ v ≤ 34,
no optimal(v, b, k, 3)-bbc exists. Whenv < 2k, a similar argument excludesv ∈ {13, 14, 15}
whenk = 8; v ∈ {15, 16, 17} whenk = 9; andv ∈ {15, 16, 17, 18, 19} whenk = 10.

Turning to discrimination four, the blocks of size four in the dual form a packing in which
every 3-subset appears in at most one block. Using this fact, we can conclude that no optimal
(v, b, k, 4)-bbc exists whenv ∈ {15, 16, 17} and k = 8; v ∈ {17, 18, 19, 20} and k = 9; or
v ∈ {19, 20, 21, 22} andk = 10. For example, when(v, k) ∈ {(16, 8), (18, 9), (20, 10)}, the dual
is a 3-(8,4,1) packing with 16, 18, or 20 blocks; but the maximum packing has only 14 blocks.

For discrimination five, the blocks of size five again form a packing in which every 3-subset
appears in at most one block. When(v, k) ∈ {(17, 8), (19, 9), (21, 10), (22, 10)}, the dual has
11 points and has at least 14 blocks of size five. Consider then thederiveddesign obtained by
choosing a point containing the maximum number of blocks of size five, selecting all blocks of
size five containing this point, and then deleting the point from each. This is a 2-(10,4,1) packing,
which must have at least 7 blocks by construction. But no 2-(10,4,1) packing with 7 blocks exists.
By complementation, we also eliminate the cases when(v, k) = (17, 9) or (19,10). A similar
argument shows that no (24,12,10,5)-bbc or (26,13,10,5)-bbc exists. A complete exhaustive search
by backtracking established the nonexistence of a (19,12,8,5)-bbc.

The astute reader will have observed that fewer negative results arise for even discrimination
than for odd, and that as the discrimination increases, the negative results are sparser. Indeed, in
Tables 7 and 8 there are very few negative results ford > 5. It is, however, possible to prove such
results. We give examples in the following two theorems.

Theorem 5.3 A (2k, 2d, k, d)-bbc does not exist whend is odd andd < 2k − 1.

Proof. Such a bbc is a 2-(2k, 2d, bd/2c) packing. Hence we require thatbd/2c ·
(

2k
2

)
≥ 2d ·

(
k
2

)
.

Letting d = 2s + 1, we require thats(2k − 1) ≥ (2s + 1)(k − 1). Simplifying, 2ks − s ≥
2ks+ k − 2s− 1, i.e.,s ≥ k − 1, or d ≥ 2k − 1. �

For even values ofd there is also a nonexistence result.

Theorem 5.4 A (2k, 2d, k, d)-bbc does not exist whend < k/2.

Proof. The columns of such a bbc are2k binary vectors of length2d so that the Hamming distance
between any pair is at leastd. By the pigeonhole principlek of them share the same first coordinate,
giving a set ofk vectors of length2d − 1 so that the Hamming distance between every pair is at
leastd. Since in each coordinate there are at mostbk2/4c pairs of these vectors that differ in this
coordinate, and the sum of distances between all pairs of these vectors is at least

(
k
2

)
d, it follows

that

(2d− 1)k2/4 ≥ (2d− 1)bk2/4c ≥
(
k

2

)
d,

implying thatd ≥ k/2, as needed. �
Similar nonexistence results can be derived for other values ofv andk, providedv ≥ 2k and

v− 2k is small, using the Plotkin bound (see, for example, [6, pp. 41-43]). Since our focus here is
on cases in the range of practical interest, we do not include a detailed study of these results.
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6 Existence of optimal bbc’s

We summarize the existence results for equireplicate optimal bbc’s in the range of primary interest
for the oligo array application. We can assume that addition is applied to all of the basic designs
produced. Then it is an easy matter to verify that all but a handful of parameter sets are settled.
Whenk ∈ {8, 9, 10} andk < v ≤ 34, we have established existence or nonexistence in all but five
cases, namely when(v, k, d) is one of (16,8,17), (18,9,19), (18,9,21), (20,10,21), or (20,10,23).

In [3], we develop a hillclimbing method which is remarkably successful at producing bbc’s,
even optimal ones. Indeed, when the bbc is not equireplicate, we succeeded in producing a large
number of base designs. In Tables 7 and 8, we give a statement of the current result for all pa-
rameter sets withk ∈ {8, 9, 10} andk < v ≤ 34. The encoding is as follows:+ denotes the
existence of an optimal equireplicate bbc, which is described in this paper;? denotes an unsettled
equireplicate case;. denotes a parameter set for which nonexistence of any optimal bbc has been
established;Y denotes a non-equireplicate optimal bbc, found using the algorithm from [3]; and
o denotes an unsettled non-equireplicate case. The majority of entries are obtained by addition of
bbc’s with smaller discrimination; a construction of this type is denoted byI , for ‘implied’. Note
that sometimes an optimal bbc can be implied by the addition of two nonequireplicate optimal
bbc’s.

We present the status only for1 ≤ d ≤ 40, but it can easily be established that existence is
implied for alld ≥ 40 for all parameter sets in our range, using addition.

The practical consequence of this is that, for large discrimination, the problem appears to be-
come easier. However, only through the direct and computational constructions for small discrim-
ination have we been able to establish such a strong existence result.

7 Concluding Remarks

Optimal balanced binary codes appear, at first glance, to require strong balance conditions leading
to designs. Indeed, whenv = 2k, the conditions are quite severe and do require the pair-balance
condition of balanced incomplete block designs. However, whenv is not near2k, the packing
conditions that are required appear to be much less restrictive than do the conditions on block sizes
and replication numbers. This is the primary reason that the approach here of constructing the
required packings directly appears more fruitful than the approach of starting with block designs
and applying simple transformations.

One might expect that the non-equireplicate cases would be easier in view of the increased
flexibility in choosing replication numbers. In [3], we exploit this flexibility to develop an heuristic
search technique that is very successful.

While we have focussed in this paper on cases in the range of practical interest, we expect that
similar conclusions and techniques arise more generally in the existence of bbc’s.
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v k Existence for discriminationd, 1 ≤ d ≤ 40
0000000001 1111111112 2222222223 3333333334
1234567890 1234567890 1234567890 1234567890

9 8 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
10 8 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
10 9 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
11 8 .Y+YIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
11 9 .+YIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
11 10 +IIIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
12 8 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
12 9 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
12 10 .++IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
13 8 .Y.Y+YIYII IIIIIIIIII IIIIIIIIII IIIIIIIIII
13 9 .YY+IIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
13 10 .Y+IIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
14 8 ...YY+YY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
14 9 .YYI+YIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
14 10 .+YIIIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
15 8 ....oY+YYY YIIIIIIIII IIIIIIIIII IIIIIIIIII
15 9 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
15 10 .+.I+IIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
16 8 .....+.+.+ .I.I+I?I+I IIIIIIIIII IIIIIIIIII
16 9 ...YYY+YYY IIIIIIIIII IIIIIIIIII IIIIIIIIII
16 10 .Y.YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
17 8 .....Yo+YY YIYIYIIIII IIIIIIIIII IIIIIIIIII
17 9 .....Yo+YY YIYIYIIIII IIIIIIIIII IIIIIIIIII
17 10 ...YYY+IYI IIIIIIIIII IIIIIIIIII IIIIIIIIII
18 8 ...+YYoIII YIIIIIIIII IIIIIIIIII IIIIIIIIII
18 9 .....+.+.+ .I.I.I+I?I ?IIIIIIIII IIIIIIIIII
18 10 ...+YYoIII YIIIIIIIII IIIIIIIIII IIIIIIIIII
19 8 ...Y.YY+YY IIYIIIIIII IIIIIIIIII IIIIIIIIII
19 9 .....ooY+Y YYYYYIIIII IIIIIIIIII IIIIIIIIII
19 10 .....ooY+Y YYYYYIIIII IIIIIIIIII IIIIIIIIII
20 8 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
20 9 ....oYoY+Y YYYIIIIIII IIIIIIIIII IIIIIIIIII
20 10 .....+.+.+ .I.I.I.I+I ?I?IIIIIII IIIIIIIIII
21 8 ...YYYY+YI YIIIIIIIII IIIIIIIIII IIIIIIIIII
21 9 ...Yo+YY+I YIIIIIIIII IIIIIIIIII IIIIIIIIII
21 10 .....oooo+ YYYYYYYYYI IIIIIIIIII IIIIIIIIII
22 8 ...+YYYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
22 9 ...YYYYI+I YIIIIIIIII IIIIIIIIII IIIIIIIIII
22 10 .....YoYo+ YYYY+IYIYI IIIIIIIIII IIIIIIIIII

Table 7: Existence of optimal bbc’s, I
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v k Existence for discriminationd, 1 ≤ d ≤ 40
0000000001 1111111112 2222222223 3333333334
1234567890 1234567890 1234567890 1234567890

23 8 ...YYYY+YY YIIIIIIIII IIIIIIIIII IIIIIIIIII
23 9 ...YoYYY+Y IYIIIIIIII IIIIIIIIII IIIIIIIIII
23 10 ...YoYYYY+ YIYIIIIIII IIIIIIIIII IIIIIIIIII
24 8 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII
24 9 ...YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
24 10 ...Y.YoIY+ YYII+IYIII IIIIIIIIII IIIIIIIIII
25 8 ...YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII
25 9 ...YoYYY+Y YIIYIIIIII IIIIIIIIII IIIIIIIIII
25 10 ...+o+YIYI IIIIIIIIII IIIIIIIIII IIIIIIIIII
26 8 ...+YYYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
26 9 ...YYYYI+Y YYIIIIIIII IIIIIIIIII IIIIIIIIII
26 10 ...Y.YYYY+ YIYI+IIIII IIIIIIIIII IIIIIIIIII
27 8 ...YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII
27 9 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII
27 10 ...YYYYII+ IIIIIIIIII IIIIIIIIII IIIIIIIIII
28 8 ...+Y+YIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
28 9 ...YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
28 10 ...Y+YYYII IIIIIIIIII IIIIIIIIII IIIIIIIIII
29 8 .Y.YYYY+YI YIIIIIIIII IIIIIIIIII IIIIIIIIII
29 9 ...YYYYI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
29 10 ...YYYYII+ YYYIIIIIII IIIIIIIIII IIIIIIIIII
30 8 .Y.+YIIIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
30 9 ...YY+YY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
30 10 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII
31 8 ...YYYY+YY YIIIIIIIII IIIIIIIIII IIIIIIIIII
31 9 ...YYYYI+I YIIIIIIIII IIIIIIIIII IIIIIIIIII
31 10 ...YYYYYY+ IIIIIIIIII IIIIIIIIII IIIIIIIIII
32 8 ...++++III IIIIIIIIII IIIIIIIIII IIIIIIIIII
32 9 .Y.YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
32 10 ...Y+YYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
33 8 .Y.YYYY+II IIIIIIIIII IIIIIIIIII IIIIIIIIII
33 9 ...YY+YI+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
33 10 ...YYYYYY+ IIYIIIIIII IIIIIIIIII IIIIIIIIII
34 8 .Y.+YIYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII
34 9 ...YYYYY+I IIIIIIIIII IIIIIIIIII IIIIIIIIII
34 10 ...Y+YYIII IIIIIIIIII IIIIIIIIII IIIIIIIIII

Table 8: Existence of optimal bbc’s, II
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