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Abstract

In the manufacture of oligo arrays for DNA hybridization experiments, manufacturing de-
fects must be detected and their position determined. The design of manufacturing protocols
for such oligo arrays leads to a combinatorial problem, requiring certain binary codes which
have an additional balance property. Constructions using block designs and packings for these
codes, within a range of interest in a practical manufacturing application, are developed. The
focus is on equireplicate codes, constant weight codes in which every bit position is a one
equally often.

AMS Subject Classification: 05B05.

1 Introduction

Let X be a set ob element®r points Let B be a collection ob subsets ofX, calledblocks Then
(X, B) is a(v, b)-set systemTheblock sizef (X, B) are the cardinalities of thieblocks in5;
when all blocks have cardinality, the set system is-uniform We often write(v, b, k)-set system
to denote &-uniform (v, b)-set system.

In an application to quality control in the manufacture of oligo arrays described in the next
section, certairjv, b, k)-set systems are of particular interest. For each pointX, we define the
replication numbenf = to be the number of blocks containirg The set system is-equireplicate
if every point has replication number We call a(v, b, k)-set systemi-discriminatedf, for every
pointz € X, the replication number, satisfies! < r, < b — d; and, for every two distinct points
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x,y € X, the number of blocks containirggactly one of x andy is at leastd. In other words, if
Azy represents the number of blocks containing botindy, we require that, + r, — 2),, > d.
A d-discriminated(v, b, k)-set system is henceforth denoted(byb, &, d)-balanced binary code
or (v, b, k, d)-bbcfor short.

Table 1 gives an example of @8, 14, 10, 5)-bbc, which is 5-equireplicate. This was con-
structed using the method described in [3].
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Table 1: A 5-equireplicate (28,14,10,5)-bbc set system

The connection to codes arises as follows. If we formithev incidence matrix of the set
system, then each row has weighrdand each column has weight at ledstnd at most — d. Hence
each column differs from the all-zero vector and from the all-one vector in at depgsitions.
Moreover, since two points satisfy, + r, — 2\,, > d, we have that every two columns have
Hamming distance at leagt Hence the code whose words are the columns together with the all-
zero and all-one vectors has minimum distance (at lela$tpr the example in Table 1, the matrix
is given in Table 2.

The fundamental existence question for balanced binary codes is to determine, for a given
andk, a code with a ‘small’ numbéer of rows having ‘large’ discriminatiod. (See Section 2 for
the motivation.) To make this precise, givenk, andd, we seek the smallest value fofor which
a(v,b, k,d)-bbc exists. We begin by establishing a lower bound.on

Proposition 1.1 If a (v, b, k, d)-bbc exists, theh > max (3], [-44]).

Proof. The incidence matrix of &, b, k, d)-bbc containdk one entries, since each of theows
containsk ones. Since each of thecolumns contains at leagtand at mosb — d ones, we have:

vd < bk < vb — vd.

The bounds follow. O



1000100101000110001010010001
0011100001000001101000010110
0000101010000101000111001100
1001110000001000100101100001
0110001001100100110001000001
0100010000110110100100010100
0001000111111000000011000100
1110000100010001000001111000
1011010010010100011000001000
1100000011001011010100000010
0100011100001000001000001111
0000001000011011111010100000
0001000000100000010110111011
0010111110100010000000100010

Table 2: A 5-equireplicate (28,14,10,5)-bbc incidence matrix

We call a(v,b, k,d)-bbc optimal when b realizes the bound in Proposition 1.1. When a
(v, b, k, d)-bbc exists, an additional row can easily be appended to fofm a+ 1, k, d)-bbc;
in fact, simply duplicating any of the rows produces the extended bbc. It is therefore natural to
study the optimal balanced binary codes.

Let (V, B) be a set system. Theomplemenof (V, B), denoted byV, B), has the same s&t
of elements, and the collection of blocks= {V' \ D : D € B}.

Lemma 1.2 The complement of @, b, k, d)-bbc is a(v, b, v — k, d)-bbc. The complement of an
equireplicate bbc is also equireplicate. The complement of an optimal bbc is also optimal.

The following lemma gives a simple characterization of optimal equireplicate bbc’s.

Lemma 1.3 Suppose3 is an equireplicaté v, b, k, d)-bbc with replication number.
1. Ifv > 2k, Bis optimal if and only if- = d.

2. Ifv < 2k, B is optimal if and only ifr = b — d.

Proof. By Lemma 1.2, assume without loss of generality that> 2k. Supposer = d.
Since bk = wvr, both being the number of ones in the incidence matrix3f we have
b = % = max ([%],[-24]), making B optimal. Conversely, supposg is optimal. Then

b= [4]| < »k=L By the definition of discrimination, all replication numbers®fare at least
d,sod <r =" <d+ %1 < d+1. Sincer is integral,r = d. 0

Sengupta and Tompa [9] observed thabifis a(v, by, k, d;)-bbc andB, is a(v, b, k, d3)-bbc,
then [g—;], the union of the blocks oB; and Bs, is a(v,b; + by, k,d; + dy)-bbc; we call this

operationaddition Unfortunately, the addition of two optimal bbc’'s need not be optimal. The
reason is simple. Since the bound in Proposition 1.1 is the next larger integer, it is possible for the
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addition of B; and B, to contain one more row than does an optimal bbc, despite the optimality of
By and B, individually. Nevertheless, the addition proves to be very useful in limiting the ranges
of the discrimination to be examined:

Proposition 1.4 If B; is an optimal equireplicate(v, by, k,d;)-bbc and B, is an optimal
(v, ba, k, ds)-bb, then[g—;] is an optimal(v, by + by, k, di + d2)-bbc.

Proof. By Lemma 1.2, assume without loss of generality that 2k. By Lemma 1.3, then, all
replication numbers oB; ared;, sobk = vd;. It follows thatb; + b, = % + [%1. But since

% is an integer, we havig + by = (%L so that the addition is optimal. O

For this reason, the critical ingredients in producing optimal balanced binary codes are those
that are equireplicate. In this paper, we provide a number of combinatorial constructions for
equireplicate optimal bbc’s, primarily within a range of practical interest in the study of the manu-
facture of oligo arrays. In a companion paper [3], we examine heuristic techniques which we have
used for the production of optimal bbc’s in the case when replication numbers are not all equal.
Combining these techniques yields a powerful existence result for balanced binary codes in the
intended application.

An understanding of the application is critical to motivating both the definitions given and to
describing the specific bbc’s sought. We provide a brief overview of the biotechnology application
before pursuing the construction of optimal bbc’s. For full details on the application, see Sengupta
and Tompa [9].

2 The Quality Control Problem

For this discussion, BNA moleculecan be abstracted as a string over the alphflieC, G, T'}.

An oligo arrayis a small chip containing approximately 100,@Q®ts to each of which is attached

its own synthesized DNA molecule. Oligo arrays are used to measure how much of each gene
product is produced by a given cell type under given conditions. For more information on oligo
arrays see, for example, Lipschtzal. [5].

Our application is in the manufacture of oligo arrays rather than their subsequent use. An array
is manufactured in a series of steps “labeledC, G, T, A,C,G, T, A, ... Initially every spot’s
DNA molecule is empty. In preparation for any given step, an arbitrary subset of the spots can be
masked If the step is labeled, only a spot that is unmasked will haveappended to the end of
its DNA molecule. By appropriate construction of the masks, each spot can be designed to contain
an arbitrary DNA sequence.

The manufacturing process is subject to two different sorts of faults: (1) several individual
spots may fail, and (2) an entire manufacturing step may fail, affecting all spots unmasked during
that step. The goal of quality control is to identify any single failed step, evemdividual spots
fail, wheree is a parameter of the manufacturing process. A small number of spots on the chip can
be used for this quality control purpose.

Hubbell and Pevzner [4] first investigated this problem. The clever idea underlying their ap-
proach is to manufacture identical DNA molecules at multiple spots, using different schedules of
steps. If no step fails, all such spots should behave identically. If some step fails, the spots behaving
incorrectly hopefully provide a “signature” that identifies the failed step.
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Figure 1: A pair of4 x 4 QC blocks. For ease of visualization, the figure shows blanks instead of
zeros, and the manufacturing step’s label instead of a one.

The problem Hubbell and Pevzner left open was how to design the quality control molecules
and schedules to guarantee such signatures, even in the preserfealof spots. Sengupta and
Tompa [9] reduced this problem to the design of well discriminated balanced binary codes as
described below, and supplied an initial collection of good balanced codes.

First they abstracted the quality control problem as that of designi@@ anatrix ), which
is a 0-1 matrix with a row for each quality control spot, a column for each manufacturing step,
and@;; = 1 if and only if spoti is unmasked during step Given the spots that subsequently
behave incorrectly as a column veciglidentifying the failed step corresponds roughly to finding
the column ofQ) that resembleg, with up toe exceptions. Although this resembles the familiar
error-correcting code problem, what makes it more complicated is that (1) one cannot compare
the behaviors of spots with different DNA sequences, and (2) even for the spots with identical
sequences, it may not be possible to distinguish between all such spots behaving correctly and all
such spots behaving incorrectly.

In terms that are beyond our scope, but are detailed by Sengupta and Tompa [9], the properties
of a good QC matrix) are as follows:

1. The set of DNA molecules manufactured at the quality control spots “hybridize poorly” to
themselves and each other.

2. @ has high “separation” sé@)), which ensures sufficient coverage of each step, and suffi-
cient difference between steps to identify the failed step. Sengupta and Tompa proved that
sef®) > 2e + 1 is sufficient to identify any single failed step, even in the presence of
arbitrarily faulty spots.

Sengupta and Tompa designed QC matrices with these properties using a product construction.
First they hand crafted son@C blocks which are small QC matrices. An example of a pair of
4 x 4 QC blocks from their paper is given in Figure 1.  They then showed that a certain cross
product of any well discriminated balanced binary code and any QC block yields a QC matrix with
the desired properties above. More specifically3 i a (v, b, k, d)-bbc, then alternately replacing
the ones in each row d? by the two4 x 4 QC blocks of Figure 1, and replacing the zero®iiy
4 x 4 matrices of zeros, produced@x 4v QC matrix@ for which each DNA molecule has length
2k, the set of DNA molecules hybridizes poorly, and @@p = 2d. An example of this product
construction is shown in Figure 2.

This then explains the design problem of Section 1. Since the array manufacturer specifies the
number of steps4f) and the molecule lengthgK), and the goal is to minimize the number of
quality control spots4p) and maximize separatiod), the resulting balanced binary code design



problem is to minimizeb and maximize discriminatiod for a givenv and k. For the current
photolithographic process, reasonable ranges for the parametdis arek < 20, 60 < 4v <
136, and4b up to a few hundred.

Although Sengupta and Tompa supplied an initial collection of balanced binary codes, they left
open the construction of optimal balanced binary codes for arbitrary choiees:pindd. The
current paper addresses exactly this problem for the relevant parameter ranges given above. The
resulting constructions are summarized in Tables 7 and 8.

3 Primal Constructions

In this section, we examine constructions for the bbc set system; to distinguish from later con-
structions, we call this thprimal set system. Our constructions begin with a useful connection
to balanced incomplete block designs.t4v, b, , k, \) designis a pair(V, B), whereV is a set

of v elementsandB is a collection ofk-element subsets df calledblocks Everyt-subset ofl”
appears as a subset of exactlpf the b blocks inB. It follows that everys-subset fol) < s <t
appears in the same numberof blocks (since the block sizes all eqédl In this notation) = ),

r = A\, and\ = )\;. Whent = 2, at-design is ealanced incomplete block desijgor simply a

block design The connection to bbc's is immediate:

Theorem 3.1 Whenv > k > 2, every 2fv,b,r k,\) design is an optimal equireplicate
(v, b, k,min(r,b — r))-bbc.

Proof. The design is dv, b, k)-set system by construction. To verify that it is rirb — r)-
discriminated, we observe that the number of blocks containing exactly one of (any) two distinct
elements i2(r — ). By Lemma 1.2, we can assume without loss of generalityithatk. Then

2(r — X)) > rsincer = % Optimality follows from Lemma 1.3 and the observation that
d = min(r,b —r) = r, sincer = bk/v < b/2. O

Corollary 3.2 There are equireplicate (16,30,8,15)-, (18,34,9,17)-, and (20,38,10,19)-bbc’s.

Proof. There exist 2-(16,30,15,8,7), 2-(18,34,17,9,8), and 2-(20,38,19,10,9) designs (see, e.g., [7]).
The first and last areladamard designarising from Hadamard matrices; see [1]. O

Block designs have been very extensively studied, and much is known about their existence;
see [7] for a table giving known existence results for ‘small’ values.ofor our application,
the conditions on block designs are too stringent. Indeed, in a block design, every two elements
have the property that there aeactly2(r — \) blocks containing precisely one of them, and the
application does not require this type of uniformity. Consequently, block designs provide only a
small fraction of the bbc’s needed, even among the optimal equireplicate cases. A more serious
drawback arises sindas constrained to be at leasby Fisher’s inequality (see, for example, [1]).
Using addition, however, we are most interested in bbc’s itary small.

We therefore relax the requirements by allowing, for each pair of elements, the number of
blocks containing exactly one of them to vary, provided that it remain at tta$tanslating to
the design vernacular, when the bbc is equireplicate, we are specifying that every pair of elements
occur together in at most some numbeof blocks.
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A t-(v, k, \) packing(V, B) is a(v, b, k)-set system in which everysubset of elements occurs
together in at mosk of the blocks inB. A 2-(v, k, \) packing in whichv > 2k and every element
has replication number at leasyields a bbc which is mifr, 2(r — X))-discriminated. See [8] for
a survey of packings.

Our first construction produc@s(v, k, A) packings withh = v. We take, as the set of elements,
the integers module, Z,. We choose a single bloclg, containingk elements, and forn8 =
{B+0,...,B+ (v—1)}, where the translat8 + i = {z + ¢ mod v : € B}. To determine the
index \ of the packingZ,, B), proceed as follows. Each pdit, j} of elements has an associated
differencemodulo v, namely mirfi — j mod v, j — i mod v). If this difference appears as the
difference between two elements Bf then the pair occurs in exactly one translate of these two
elements unless the difference is precisely half,ah which case the pair appears in two translates.
Hence to determine the maximum number of times that a pair occurs in the packing, we need only
determine how many pairs of elementsirhave a specified difference. To handle the case when
v is even and the difference examinedij®, we must double the number of occurrences of the
difference.

In the construction of bbc’s, we may not require the minimum possible value bfdeed, if
v > 2k and we are to produce (&, v, k, k)-bbc, we require only that every difference appear at
most|k/2| times. A single block of: elements fronZ, in which every difference is represented
at most| k/2 | times, except whenis even we require that/2 be represented at mast/4| times,
is anear difference setWhenv is odd and every difference is represented the same number of
times, the block is ayclic difference setand these have been studied extensively [1].

In Table 3, we present near difference sets for a number of parameters of interest. These
solutions were found using a simple backtracking method.

Such bbc’s arising from near difference sets can exist only for some of the parameter sets of
interest, namely those wheén= v. We therefore examine a more general method. Again we
takeZ, as the set of elements. We form a numbeba$e blocks3,, B, ..., B,. We can again
develop each base block modulao form v blocks. For certain base blocks, theblocks in
the development are not all distinct. In these cases, we can choose to include only a subset of
the blocks. Suppose, for example, thaandk are both even, and thd;, = {b:, ..., by/2, b1 +
(v/2),...,bg2 + (v/2)}, With 0 < b; < v/2whenl < i < k/2. ThenB; + (v/2) = B;. In this
case, we can produce only2 blocks, ahalf orbit, by includingB; +j for j = 0,...,(v/2)—1. In
Table 4, we present solutions containing one half orbit and one starter block generhtouks.

To prescribe the block for the half orbit, we give only the eleménts. . , b /».

Other relaxations of the stringent block design conditions can be exploitedg, /A \)-
difference matrixoverZ, is ak x A\g array A with entries fromZ,, with the property that for
anyl <i < j <k, the collection of difference§A; , — A;, mod g : 1 < ¢ < Ag} contains they
numbers irZ, A times each.

Proposition 3.3 There is an equireplicate (27,21,9,7)-bbc and an equireplicate (30,21,10,7)-bbc.

Proof. There is a (3,9;3)-difference matrix; see [2], for example. Choose any seven of its columns,
and append the fourteen further columns obtained by developing the columns under addition mod-
ulo 3. Treat the resulting set of 21 columns as blocks of a packing on the 27 poimtswhere

1 indicates the row, and the symbol fromZ;. The resulting packing has = 3, and hence is

a 2-(27,9,3) packing on 21 blocks which is equireplicate. Hence an equireplicate (27,21,9,7)-bbc
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Figure 2. The product of a (19,19,9,9,4) 2-design and the padrof4 QC blocks of Figure 1,
resulting in a6 x 76 QC matrix@ with minimum separation s¢@) = 18.

v k d Block | v &k d Block
9 8 1 0123456710 8 2 01234567
10 9 1 012345678/ 11 8 3 01234568
11 9 2 01234567811 10 1 0123456789
12 9 3 01234567912 10 2 0123456789
13 8 5 012345810113 9 4 0123457910
13 10 3 0123456781014 8 6 012345710
14 9 5 012345691115 8 7 012357811
15 9 6 012345681115 10 5| 012345671012
16 8 8 012347912 16 9 7 01234671113
16 10 6 0123456791217 8 8 012346913
17 9 8 01234581013 17 10 7| 012345781113
19 8 8 01234691319 9 9| 012357121316
19 10 9/0123571213151§20 9 9 01234791216
20 10 10/ 012346811141521 8 8 0123581216
21 9 9 01234791318 21 10 10/0123458101317
22 9 9 01234691317 22 10 10/0123458101317
23 8 8 0123581216/23 9 9 01234691317
23 10 10| 012345710141824 9 9 01234691317
24 10 10/0123561113172025 8 8 0123581216
25 9 9 0123469131726 9 9, 0124611122023
26 10 10| 0123479121620 27 8 8 0123581216
27 10 10| 012346913172228 9 9| 012358121621
29 8 8 0123581216/29 9 9| 012358121627
29 10 10| 012346913172330 9 9, 012358121621
31 8 8 0124712162531 9 9| 012358121621
31 10 10| 012346913172232 9 9, 012358121627
33 8 8 0124711192433 9 9| 012358121621
33 10 10/0123581218222134 9 9| 012358121621

Table 3: Near Difference Sets



vk d | Half Orbit Full Orbit

10 8 3| 0123 01234567

12 10 3, 01234 0123456789
14 8 9| 0124 012346712

16 10 9| 01234 | 012345781014
22 10 15 01235|01235710151819
24 10 15 01249 0123679111720
26 10 15 01247|01234710121822

Table 4: One and a Half Orbits

exists. Now this 2-(27,9,3) packing can, by construction, be partitioned into seven sets of three
blocks each, so that each set contains three mutually disjoint blocksP;Let. , P, be such a
partition of the blocks. Add three new element$, c to the packing. Add: to each block inP;

and P, and to the first block inP;; addb to each block inP; and P, and to the second block in

Pr; addc to the remaining 7 blocks. The result is a 2-(30,10,3) packing; it is equireplicate with
replication number 7, and hence yields an equireplicate (30,21,10,7)-bbc. O

4 Dual Constructions

Since we are primarily interested in cases in whick: v, it is natural to consider the dual set
system. Thelual set systerof a set systenfV, B) is a set systeni.X, D) in which X = {zp :

B € B}andD = {D, : y € V}, whereD, = {zp : y € B € B}. The dual of &, b, k)-set
system with replication numbers, ..., r, is a(b, v)-set system with blocks of sizes, ..., r,

and having constant replication number Indeed when thév, b, k)-set system is equireplicate
with replication number, its dual is a(b, v, r)-set system which has constant replication number
k. The dual of the set system in Table 1 is given in Table 5.

03 7 8 9|45 7 9 1001 4 7 8 13
13 6 8 12/0 1 2 3 133 5 8 10 13
2 4 10 11 130 6 7 10 132 6 8 9 13
01 4 6 945 6 12 135 6 7 8 11
3 6 9 10 110 2 4 5 8|0 5 9 11 13
12 7v 9 111 3 4 5 114 8 9 11 12
01 8 10 112 3 S5 9 120 2 6 11 12
2 3 4 6 7|3 7 11 12 130 1 5 7 12
2 7 8 10 12)1 2 5 6 101 9 10 12 13
0 3 4 10 12

Table 5: Dual Set System of (28,14,10,5)-bbc

The discrimination of the primal is reflected in the dual in a somewhat different manner than
in the primal. Two blocks of the dual sharipgelements result in a discriminatiahof the primal
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satisfyingd < 2r — 2u; hence maximizingl amounts to minimizing, the intersection size of two
blocks, sincer is fixed. Translating this into design vernacular, we establish that:

Theorem 4.1 A t-(b, r, 1) packing onv blocks with replication numbek yields an equireplicate
(v, b, k,min(r,b — r,2(r — t + 1)))-bbc with replication number.

Proof. The dual of at-(b,r, 1) packing onv blocks with replication numbet is a (v, b, k)-set
system with replication numberin which every pair of elements occurs in at most 1 blocks
together. O

Hence our goal is to produe€gb, r, 1) packings witht < /2 + 1. One potential benefit of this
dual approach wheh < v is that we can examine constructions o¥grather than the largét,.
We illustrate this by producing a number of 4-equirepliq@e, m, 8, 4)-bbc’s.

Theorem 4.2 A 4-equireplicatg2m, m, 8, 4)-bbc exists for alln > 10.

Proof. The dual set system is constructed with elemenis,inand has two base blocks which are
developed module:. We need only ensure that the result is @3-4, 1) packing. Whenn = 10,
use the base block®,1,2,§ and{0,2,4,%; whenm > 11, use the base block®,1,2,7 and
{0,1,3,3. The proof is completed by verifying that no translate of a triple in either base block
appears as a translate of a different triple or as a different translate of this triple. O

In a similar vein, other bbc’s are easily produced frorfv3, 1) packings:

v| b| k|d Dual Base Blocks iz,
30|15(10|5| {0,1,4,11,14,{0,2,7,8,13
32/16|10| 5| {0,2,8,14,15%,{0,3,7,11,14
3417|105 {0,3,10,12,14, {0,4,12,15,1%

The dual solutions thus far presented all have the property:tigtan integral multiple of
b. We can vary the construction to admit other solutions. Suppose, for example, that we are to
produce a(25, 10, 10,4)-bbc. Its dual is &10, 25, 4)-set system which is 10-equireplicate and
forms a 3-(10,4,1) packing. Two base block8,1,2,8 and{0,2,4,7, generate 20 blocks i#.
A third base blocK0, 1, 3,4} is used, but in its development, we only include translates obtained
by adding theeven integers. Since this last base block contains two even and two odd numbers,
this development ensures that the resulting packing is 10-equireplicate.

In general, by selecting certain translates out of one orbit of a base block, we canaray
in the construction. We give some further examples of constructions of this type next, subscripting
one block with the integers to be added in forming its translates. The first three employ packings
with ¢ = 3, while the last five employ packings with= 4.

v| bl k|d Dual Base Blocks iz,

27112 914 {0,1,3,%,{0,1,2,%,{0,3,6,% 012
30/12/10| 4 {0,1,3,%,{0,1,2,%,{0,2,6,8 012345
32|20| 8|5]{0,1,8,14,1%,{0,2,11,18,19) 1 256.7.10,11,12,15,16.17
15110 9 4 {2,3,5,6,7,9, {3,4,5,6,8,902.463
28|21| 8|6 {0,1,4,9,18,29, {0,1,7,8,14,1% 12345
33122 9|6/ {0,1,6,7,10,15,{0,1,3,11,12,1 1 23.45.6,7.89.10
24|121| 8|7 {0,1,2,4,6,7,14,{0,3,6,9,12,15,18 ; »

321 28| 8|7 {0,1,2,4,7,11,1}, {0,4,8,12,16,20,24% ; » 3
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In a number of cases, we have not been able to find (dual) solutions which are cyclic modulo
b. In some of these situations, we have resorted to using a smaller group.

Theorem 4.3 There is a3m, 2m, 9, 6)-bbc for allm > 7.

Proof. We form the dual of the required bbc on the elementZgtx {0,1}. We begin

with three base block§0,0),(1,0),(3,0),(0,1),(1,1),(3,1){(2,0),(4,0),(5,0),(6,0),(0,1),(3,L)and
{(0,0),(3,0),(2,1),(4,1),(5,1),(6,1) Each givesn blocks of the dual by adding the nonzero ele-
ments ofZ,, in turn to the first coordinates of each element. It is easily verified that the result is a
3-(2m, 6, 1) packing which is 9-equireplicate. O

Theorem 4.4 There is a(4m, 3m, 8, 6)-bbc and a5m, 3m, 10, 6)-bbc for allm > 5.

Proof. We form the dual of the required bbc on the elemenZsgtx {0, 1,2}. We begin with five
base blocks:

{(0,0),(1,0),(2,0),(3,0),(4.1),(4.2)
{(0,1),(1,1),(2,1),(3,1),(4,0).(4.2)
{(0,2),(1,2),(2,2),(3,2),(4.1),(4.9)
{(0,0),(1,0),(0,1),(1,1),(0,2),(1.2)
{(0,0),(2,0),(0,1),(2,1),(0,2).(2.2)

Each givesn blocks of the dual by adding the nonzero element&,gfin turn to the first coor-
dinates of each element. It is easily verified that the result i@4-6, 1) packing, and yields a
(5m, 3m, 10, 6)-bbc. Deleting the last base block and its translates yields@a3m, 8, 6)-bbc. [

Proposition 4.5 There exists a (24,15,8,5)-bbc and a (27,15,9,5)-bbc.

Proof. The point set for the dual in each case is the fifteen pdintsu {a,b,c}. Start with
the blocks obtained by developid@, 1,2,4,9} and{0, 1,5} modulo 12. Then the translates of
{0,1,5} can be partitioned into three parallel classes of four blocks each. For the three parallel
classes in turn, add the points, b}, {a, c}, and{b, c}, respectively to each block of the parallel
class. The result is the dual of the (24,15,8,5)-bbc.

To this dual, add the three distinct translates{0f3, 6,9} modulo 12, placing:, b, and¢
respectively in one of the three translates. This is the dual of the (27,15,9,5)-bbc. O

For small values ofi, a direct construction can be quite simple:

Proposition 4.6 There are (12,6,8,2)-, (12,8,9,2)-, (14,7,10,2)-, and (15,6,10,2)-bbc’s.

Proof. Start with ak-regular graph om vertices, for(k,n) = (4,6), (3,8), (4,7), or (5,6), respec-
tively. The complement of this set system forms the dual of the required bbc. O

Similarly, the complement of the blocks of a 2-(9,12,4,3,1) design forms the dual of a
(12,9,8,3)-bbc.

We employ some constructions from Hadamard designs.Hadlamard 3-desigris a 3-
(4n,2n,n—1) design [1]. Such a design h&s—2 blocks, and they occur it — 1 complementary
pairs. Deleting one point of a @, 2n,n — 1) design produces a@n — 1,2n — 1,n — 1) de-
sign which hasln — 1 blocks and replication numbé&rn — 1. Hence the 2-design Bymmetri¢
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and consequently every two blocks of the 2-design intersect-inl elements. The 3-design can

be recovered from the 2-design by including the complements of the blocks of the 2-design, and
including the blocks with a single new element which is adjoined to each. From this construction,
the 3-design is afn + 1)-(4n,2n, 1) packing. Deleting blocks retains this packing property, but
more importantly deleting complementary pairs of blocks retains the property that the packing is
equireplicate. Indeed if we selegtcomplementary pairs of blocks, the replication numbey; is
whenj > 2n, the packing leads to@y, 4n, j, 2n)-bbc. Using Hadamard designs foE {3,4, 5},

we obtain the following:

Proposition 4.7 There exist (16,12,8,6)-, (16,20,8,10)-, (18,12,9,6)-, (18,16,9,8)-, (18,20,9,10)-,
(20,12,10,6)-, and (20,16,10,8)-bbc’s.

We also need one specific construction:
Proposition 4.8 There exist (18,9,8,4)- and (18,9,10,4)-bbc's.

Proof. The second is the complement of the first. To construct the dual of the first, we begin with
nine points{(7, j) : i,j € Zs}. We include all nine blocks of the forf\i, k), (i, ¢), (j, k), (7,€)}
with i,j, k. ¢ € Zs3, i # j, andk # (. We then add all nine blocks of the form
{(4,7), (i, k), (a,£), (b, )} when{i,a,b} = {j,k,¢} = Z3. This is a 3-(9,4,1) packing with 18
blocks, having constant replication number eight. O

In Table 6, the dual of a (16,38,8,19)-bbc is presented. The method used to obtain this solution
is of independent interest, and is described in [3].

9 10 11 13 14 17 19 21 27 28 29 32 35 |37
9 15 16 17 18 19 20 22 25 27 29 31 32 |34
16 18 19 20 23 24 26 27 28 30 31 34 35 |37
13 16 18 20 21 26 28 29 30 31 32 33 35 |36
9 11 13 20 21 22 24 25 30 31 32 34 35 |36
10 13 14 15 16 20 21 24 27 29 30 32 33 |37
7 11 12 14 17 19 20 22 23 32 33 34 36 |37
9 12 14 15 16 19 23 25 29 30 33 35 36 |37
12 13 15 17 23 25 26 28 29 31 32 34 35 |37
11 15 16 17 18 20 21 22 23 27 28 31 36 |37
10 11 12 18 19 22 24 26 27 29 31 33 35 |36
12 13 15 17 19 24 27 28 30 31 33 34 (36
18 19 20 21 22 23 25 26 28 29 30 33|34
10 11 12 14 15 16 17 18 24 25 26 28 |32
10 12 14 21 22 23 24 25 26 27 30 34 |35
13 16 17 18 21 22 23 24 25 26 33 36 |37

NUCTOWOoOWWUu~NU Do
CoOoO~NRANDRADOOOO TN
= ==
OCOWOOWUIUITNN N O ®

[ERN

=
PNWOFRPMWNOOFRPDNMNNWEDND
[ —
[ERN

OCOOPRrRPOWOWMNENORLRPEPLOOOO
[ERN
=
=
w
=
N

A ww
o N~
0 ~ o
© o o 5

Table 6: Dual of a (16,38,8,19)-bbc
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5 Nonexistence Results

We have presented a large collection of constructions for optimal equireplicate bbc’s, focussing on
those with smaller discriminations in order to use addition to produce those with larger discrimi-
nation. However, not all bbc’s exist; in fact, those with low discrimination appear to be the least
likely to exist. We do not restrict to equireplicate bbc’s in this section. We establish a preliminary
result for small discrimination:

Theorem 5.1 An optimal(v, b, k, 1)-bbc exists only when=k + 1 or k = 1.

Proof. If v > 2k, the dual set system has= [v/k] points, and has at least— k + 1 blocks of
size 1. Wherk > 1, some block is repeated and hence the discrimination is®0<If2k, the dual
set system hasv/(v — k)] points, and has at least+ 1 blocks of sizev — 1. Its complement
therefore hag + 1 blocks of size 1, and hence contains a repeated block unlegs= 1. O

When the discrimination is two, the analysis is slightly more complex. We describe one con-
crete example, and then give much briefer arguments thereafter. Let us establish that a (31,8,8,2)-
bbc does not exist. If one were to exist, its dual has eight points. It has 31 blocks, and each must
have size at least two (and at most six). Therebdre 8-8 occurrences of points in blocks. Hence
there are either 30 blocks of size two and one of size four, or there are 29 blocks of size two and
two of size three. In this case, sin@ = 28, there must be eepeated block of size two. But then
the bbc has two identical columns, and its discrimination is zero, a contradiction. In general, the
nonexistence results all arise from an analysis of the cases that can arise, showing that each cannot
have the required discrimination.

Theorem 5.2 An optimal(v, b, k, 2)-bbc exists only if:
1. v <13,v € {29,30}, orv > 33 whenk = §;
2. v <14,v € {32,37,38}, orv > 41 whenk = 9;

3. v < 16,v € {46,47}, orv > 51 whenk = 10.

Proof. First we suppose that> 2k. Thenb = [22]. The dual of the required bbc therefore laas
occurrences of elements distributed acrosdocks, each having size at least two. It follows that
‘most’ blocks have size equal to two. If the dual has a block of size three, then no block of size
two can share both elements with the block of size three. To maximize the number of blocks in the
dual, we therefore construct the dual with the largest possible number of blocks of size four, and
the remaining blocks of size two.

Consider the case whén= 8. Write v = 4s + a with « € {1,2,3,4}. Thenb = 2s + 1, and
bk = 16s + 8. It follows that the number of blocks of size two in the dual, when no blocks of size
three are chosen, is at least— 4 + 2a. Now requiring thatts — 4 + 2a < (g) we obtain that
s(s —7) > 4a — 8. Hences > 7whena € {1,2} ands > 8 whena € {3,4}. Whenk = 9 or
k = 10, the analysis is similar and is omitted.

Whenov < 2k, we use the fact that &, b, k, 2)-bbc is equivalent to &v,b,v — k,2)-bbc.
The remaining cases have= 5 but require more than 10 blocks of size two in the dual of the
complementary bbc. O

13



The restrictions when the discrimination is three are more severe. In this case, the dgal has
points, and it® blocks are almost all of size three. However, two blocks of size three are permitted
to intersect in only one element. This establishes easily that Wkeks, 9,10} and2k < v < 34,
no optimal(v, b, k, 3)-bbc exists. When < 2k, a similar argument excludes € {13,14, 15}
whenk = 8; v € {15,16,17} whenk = 9; andv € {15, 16,17, 18,19} whenk = 10.

Turning to discrimination four, the blocks of size four in the dual form a packing in which
every 3-subset appears in at most one block. Using this fact, we can conclude that no optimal
(v, b, k,4)-bbc exists wheny € {15,16,17} andk = 8; v € {17,18,19,20} andk = 9; or
v € {19,20,21,22} andk = 10. For example, whefw, k) € {(16,8),(18,9), (20, 10)}, the dual
is a 3-(8,4,1) packing with 16, 18, or 20 blocks; but the maximum packing has only 14 blocks.

For discrimination five, the blocks of size five again form a packing in which every 3-subset
appears in at most one block. Whén k) € {(17,8),(19,9), (21, 10), (22,10)}, the dual has
11 points and has at least 14 blocks of size five. Consider thedetheeddesign obtained by
choosing a point containing the maximum number of blocks of size five, selecting all blocks of
size five containing this point, and then deleting the point from each. This is a 2-(10,4,1) packing,
which must have at least 7 blocks by construction. But no 2-(10,4,1) packing with 7 blocks exists.
By complementation, we also eliminate the cases wheh) = (17,9) or (19,10). A similar
argument shows that no (24,12,10,5)-bbc or (26,13,10,5)-bbc exists. A complete exhaustive search
by backtracking established the nonexistence of a (19,12,8,5)-bbc.

The astute reader will have observed that fewer negative results arise for even discrimination
than for odd, and that as the discrimination increases, the negative results are sparser. Indeed, in
Tables 7 and 8 there are very few negative resultg for5. It is, however, possible to prove such
results. We give examples in the following two theorems.

Theorem 5.3 A (2k, 2d, k, d)-bbc does not exist whehis odd andd < 2k — 1.

Proof. Such a bbc is a 22k, 2d, |d/2]) packing. Hence we require that/2] - (%) > 2d - (%).
Letting d = 2s + 1, we require that(2k — 1) > (2s + 1)(k — 1). Simplifying, 2ks — s >
2ks +k —2s—1,i.e.,s >k —1,ord > 2k — 1. O

For even values aof there is also a nonexistence result.
Theorem 5.4 A (2k, 2d, k, d)-bbc does not exist wheh< k /2.

Proof. The columns of such a bbc aé binary vectors of lengthd so that the Hamming distance
between any pair is at leagt By the pigeonhole principle of them share the same first coordinate,
giving a set oft vectors of lengtl2d — 1 so that the Hamming distance between every pair is at
leastd. Since in each coordinate there are at masy4| pairs of these vectors that differ in this
coordinate, and the sum of distances between all pairs of these vectors is @)Iéa’ﬂ;tfollows

that

(20— VR4 > (24— 1)[K2/4] > (’;) i

implying thatd > k/2, as needed. O
Similar nonexistence results can be derived for other valuesaoid &, providedv > 2k and

v — 2k is small, using the Plotkin bound (see, for example, [6, pp. 41-43]). Since our focus here is

on cases in the range of practical interest, we do not include a detailed study of these results.
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6 Existence of optimal bbc’s

We summarize the existence results for equireplicate optimal bbc’s in the range of primary interest
for the oligo array application. We can assume that addition is applied to all of the basic designs
produced. Then it is an easy matter to verify that all but a handful of parameter sets are settled.
Whenk € {8,9,10} andk < v < 34, we have established existence or nonexistence in all but five
cases, namely whe, k, d) is one of (16,8,17), (18,9,19), (18,9,21), (20,10,21), or (20,10,23).

In [3], we develop a hillclimbing method which is remarkably successful at producing bbc’s,
even optimal ones. Indeed, when the bbc is not equireplicate, we succeeded in producing a large
number of base designs. In Tables 7 and 8, we give a statement of the current result for all pa-
rameter sets witlk € {8,9,10} andk < v < 34. The encoding is as followst denotes the
existence of an optimal equireplicate bbc, which is described in this pamEmotes an unsettled
equireplicate case; denotes a parameter set for which nonexistence of any optimal bbc has been
established)Y denotes a non-equireplicate optimal bbc, found using the algorithm from [3]; and
o denotes an unsettled non-equireplicate case. The majority of entries are obtained by addition of
bbc’s with smaller discrimination; a construction of this type is denotet,dgr ‘implied’. Note
that sometimes an optimal bbc can be implied by the addition of two nonequireplicate optimal
bbc’s.

We present the status only for< d < 40, but it can easily be established that existence is
implied for alld > 40 for all parameter sets in our range, using addition.

The practical consequence of this is that, for large discrimination, the problem appears to be-
come easier. However, only through the direct and computational constructions for small discrim-
ination have we been able to establish such a strong existence result.

7 Concluding Remarks

Optimal balanced binary codes appear, at first glance, to require strong balance conditions leading
to designs. Indeed, when= 2k, the conditions are quite severe and do require the pair-balance
condition of balanced incomplete block designs. However, whénnot near2k, the packing
conditions that are required appear to be much less restrictive than do the conditions on block sizes
and replication numbers. This is the primary reason that the approach here of constructing the
required packings directly appears more fruitful than the approach of starting with block designs
and applying simple transformations.

One might expect that the non-equireplicate cases would be easier in view of the increased
flexibility in choosing replication numbers. In [3], we exploit this flexibility to develop an heuristic
search technique that is very successful.

While we have focussed in this paper on cases in the range of practical interest, we expect that
similar conclusions and techniques arise more generally in the existence of bbc’s.
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vl k Existence for discriminatiod, 1 < d < 40
0000000001 1111111112 2222222223 3333333334
1234567890 1234567890 1234567890 1234567890

9| 8|+ [ Tt

10| 8 | .A++UHHT TEREEHE TR

10 O | I TR ORTReeer T

11 8 [ .Y+YHI (e et

11 9 | AYUHINT T T (o

11| 20 | +HIIE TR (e e

12| 8 | A+UHHE e TRt

12 9 | A+UHNE e TR (i

12| 20 | A+HHIE e e (i

13| 8 [ .Y.YAYIYH HITHE Tt

13 9 [ .YYHIIE (e et

13| 20 | YU T TOeeeeene

141 8 | ..YY+YY+L T [ e

141 9 [ .YYIHYHH HH (Oreeer e

14| 20 | AYHUHUNT T Tt

15| 8 ...oY+YYY YU (e e

150 9 | . AY+YHE HHIE Pt

15| 20 | A+ 0+H0E e T (i

16| 8| .....+++ LI+ T

16| 9| ..YYY+YYY WG Tt

16| 10 | .Y.YY+YIHE T Ty e

17| 8 ... Yo+YY YIYIYHIUT [

17 9 ... Yo+YY YIYIYHUL WU W

171 20 | ..YYY+IYD HITHE et

18| 8 | ..+YYolll YU T [

18| 9| .....+++  LLIFE20 20000 T

18| 10 | ...+YYolll YU Tt

19| 8 ..Y.YY+YY UYHIHE  THHE (O

19| 9 ... ooY+Y YYYYYUHIT  THITHE T

1910 ..... ooY+Y YYYYYUHIl  THITE T

20 8| ...+Y+YHL WU TR i

20 9 ..oYoY+Y YYYHHIUT [FIOEEE THEeeem

20| 10| .....+. 4.+ LLLIEL 20200000 T

210 8| ..YYYY+YL YHHHNE TR T

21 9| ..Yo+YY+Hl YU Tt

21110/ ..... 0000+  YYYYYYYYY! W 1

220 8| ...+YYYUL W Tt

220 9 LLYYYYIHE YU Tt

22101 ..... YoYo+ YYYY+IYIYL I T

Table 7: Existence of optimal bbc’s, |
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Existence for discriminatiord, 1 < d < 40

0000000001 1111111112 2222222223 3333333334
1234567890 1234567890 1234567890 1234567890

23| 8] ..YYYY+YY YHIINE [
23| 9 ..YoYYY+Y YU [ECeeer reeeeeeeny
23| 10| ..YOYYYY+ YIYHIIE  [HEe feee
24 | 8 | ...A++++UE W e e
24 | 9 | LLYYAYIED T T
24| 10| ...Y.YolY+ YYU+IYHI  [HEEE feee
25 8 [ LLYYYYHIE I e
25| 9] .. YOoYYY+Y YUYHI (IRt
25|10 | ...+o+YIYL [T e e
26| 8 | ...+YYYHNl [ILCCRRer COCCRReRer reeeeeeeny
26 9| LLYYYYIY  YYIHIE I Heem
26| 10| ...Y.YYYY+  YIYIHHIE T i
27 8| LYYYYAH HHE fier - e
27| 9 | A++UE T e e
27 [ 10 | LYYYYH+ T e
28| 8 | ...+YFYHL e i
28 9 LLYYYYYHE HHHHE T 0
28 | 10 | .YHYYYIH T e
29 8 .Y.YYYY+YL YU [
29[ 91 LLYYYYIHE T T
29| 10| ...YYYYIH+  YYYHIIE (e
30| 8| .Y. YU TR FEERRRReer FEREeeeees
30| 9| .YYHYYHE HHHH T 0
30 | 10 | ...++++UE T e e
31| 8| ...YYYY+YY  YHUHIE [ e
31| 9] .LYYYYIL YHUHE T 0
31| 10| ..YYYYYY+ I e T
32| 8 | ...++++UE [ e e
320 9 1.Y.YYYYYHE e e
32| 10 | ...Y+YYHNl  [HCCRRer CORRRReeer (eeeeeeen
33| 8 .Y.YYYYHI T T 0
33| 9 LLYYEYIEE T e
33| 10| ...YYYYYY+ WY i
34| 8| .Y.AYIYIHI  [IIIeer (OReeeeer (eeeeeeeny
341 9 .LYYYYYHE T T 0
34 | 10 | ...Y+YYHUL [ Heeeeeer e

Table 8: Existence of optimal bbc'’s, Il
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