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Abstract

For any positive integersr and n, let H(r, n) denote
the family of graphs onn vertices with maximum degree
r, and letH(r, n, n) denote the family of bipartite graphs
H on 2n vertices withn vertices in each vertex class, and
with maximum degreer. On one hand, we note that any
H(r, n)-universal graph must haveΩ(n2−2/r) edges. On
the other hand, for anyn ≥ n0(r), we explicitly construct
H(r, n)-universal graphsG and Λ on n and 2n vertices,

and withO(n2−Ω( 1
r log r )) andO(n2− 1

r log1/r n) edges, re-
spectively, such that we can efficiently find a copy of any
H ∈ H(r, n) inG deterministically. We also achieve sparse
universal graphs using random constructions. Finally, we
show that the bipartite random graphG = G(n, n, p), with
p = cn−

1
2r log1/2r n is fault-tolerant; for a large enough

constantc, even after deleting anyα-fraction of the edges of
G, the resulting graph is stillH(r, a(α)n, a(α)n)-universal
for somea : [0, 1)→ (0, 1].
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1 Introduction

For a familyH of graphs, a graphG is H-universalif
G contains every member ofH as a subgraph. For exam-
ple, the complete graphKn isHn-universal for the family
Hn of all graphs on at mostn vertices. The construction
of sparse universal graphs for various families arises in the
study of VLSI circuit design, and received a considerable
amount of attention, see, e.g., [6], [7], [8] and their refer-
ences. Since in some applications the cost of a vertex is
higher than that of an edge, one is particularly interested
in tight H-universal graphs, i.e., graphs whose number of
vertices equalsmaxH∈H |V (H)|.

Most of the previously known constructions of sparse
universal graphs for various families are based on the ex-
istence of small separators in these families. Since here
we consider families of graphs that do not necessarily have
small separators, we need some novel techniques. These
combine the notion of the strong chromatic number of
a graph, introduced in [1], various properties of random
graphs, an embedding technique based on matching the-
orems, developed in [3] and [17], a structure result on
sparse regular pairs proved in [12], a sparse version of Sze-
meŕedi’s regularity lemma, and a hypergraph packing result
from [16].

Let H(r, n) denote the family of all (pairwise noniso-
morphic) graphs onn vertices in which every degree is at
mostr. We claim that the minimum numberM of edges in
anyH(r, n)-universal graph must be at leastΩ(n2−2/r) for
r ≥ 2. This lower bound follows from the obvious inequal-
ity
∑
i≤rn/2

(
M
i

)
≥ |H(r, n)| and the well known (see, e.g.,

[11], Cor. 9.8, page 239) asymptotic formula for the number
Lr,n of all labelledr-regular graphs onn vertices,nr even:

Lr,n = (1 + o(1))
√

2e−(r2−1)/4

(
rr/2

er/2r!

)n
nrn/2.

LetM(r, n) = M be the minimum number of edges in an

H(r, n)-universal graph. The inequalities
(
M
i

)
≤
(

2eM
i

)i
for i ≤ rn/2 and |H(r, n)| ≥ Lr,n/n! yield the claimed
lower bound

M(r, n) = Ω(n2−2/r)
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for the number of edges of anyH(r, n)-universal graph (on
any number of vertices). Ifrn is odd, simply observe that
anH(r, n)-universal graph is alsoH(r, n− 1)-universal.

Having just lower-boundedM(r, n), we now focus on
upper-boundingM(r, n), with both explicit and random-
ized constructions. It follows from the celebrated Blow-up
Lemma [14] thatM(r, n) = o(n2). Via explicit construc-
tions we obtain stronger upper-bounds, of the formn2−a,
for some strictly positivea that depends only onr, as stated
in the following theorem. (Note thatM(1, n) = bn/2c.)

Theorem 1.1 There exists an absolute constantc > 0 such
that for everyr ≥ 2 andn > n0(r) there is an explicitly
describedH(r, n)-universal graphG withn vertices and at
mostn2−c/r log r edges, such that we can find a copy of any
H ∈ H(r, n) in G in deterministic polynomial time (inn).

Thus, in view of the ultimate lower bound, the above con-
struction is not too far from being best possible. We can also
describe an even smaller explicit construction (although
here the number of vertices is larger.)

Theorem 1.2 For eachr, there is a finiteφ(r) such that
for eachn there is an explicitly describedH(r, n) univer-
sal graphΛ, with at mostφ(r)n2− 1

r log1/r n edges and2n
vertices.

In fact, almost every graph on2n vertices that has as
many edges asΛ = Λ(r, n) has isH(r, n)-universal, as
the next theorem implies. We say that a random graph pos-
sesses a property asymptotically almost surely, and write
a.a.s., if the probability of the event in question tends to 1
asn→∞.

Theorem 1.3 For everyε > 0 there exists a positive con-
stant c = c(ε) such that, for everyr ≥ 2, the random
graphG(d(1 + ε)ne, p) with p = cn−1/r(log n)1/r a.a.s.
isH(r, n)-universal. Consequently, forn > n0(r) there is
anH(r, n)-universal graphG with d(1+ε)ne vertices and,
say, at most(1 + ε)2cn2−1/r(log n)1/r edges.

A related Ramsey theoretic statement is considered by
Kohayakawa, R̈odl and Szemerédi [13].

With some more work we are able to get rid of the an-
noying factor of1 + ε, but only in the bipartite case and for
a slightly higher edge density. Forr ≥ 2 letH(r, n, n) be
the family of bipartite graphs withn vertices in each vertex
class and with maximum degree at mostr. LetG(n, n, p)
be the random bipartite graph withn vertices in each color
class and edge probabilityp.

Theorem 1.4 There exists an absolute positive constantc
such that, for everyr ≥ 2, a.a.s.G(n, n, p) isH(r, n, n)-
universal, wherep = c(log n/n)1/2r. Consequently, for
n > n0(r) there is anH(r, n, n)-universal, bipartite
graphG with n vertices in each color class and at most
2cn2−1/2r(log n)1/2r edges.

It turns out that the same random graph enjoys a related
property. For a real numberα, where0 < α < 1, we say
that a graphG is α-fault-tolerantwith respect to a family
of graphsH, if every subgraph ofG with at least a1 −
α fraction of the edges ofG is H-universal. In general,
restricting to bipartite graphs is unavoidable here, as for any
graphG, there is a bipartite subgraphG′ of G with at least
half the edges ofG.

Theorem 1.5 For everyr ≥ 2 and0 < α < 1 there exist
constantsc > 0 andC > 0 such thata.a.s.G(n, n, p) is α-
fault-tolerant with respect toH(r, bn/Cc, bn/Cc), where
p = c(log n/n)1/2r. Consequently, forn > n0(r) there
is a bipartite graphG with n vertices in each color class
and at most2cn2−1/2r(log n)1/2r edges, which isα-fault-
tolerant with respect toH(r, bn/Cc, bn/Cc).

The rest of this extended abstract is organized as follows.
In Section 2 we sketch the proof of Theorem 1.1. In Sec-
tion 3 we describeΛ, and present a proof of a proposition
with much of the power of Theorem 1.2. In Section 4 we
prove Theorems 1.3 and 1.4. In Section 5, we discuss The-
orem 1.5. Finally, Section 6 contains some concluding re-
marks.

2 The strong chromatic number and univer-
sal graphs

The techniques in [8] can be used to constructH(r, n)-
universal graphs withO(n2/ log2 n) edges. To obtain the
better construction needed in the proof of Theorem 1.1 we
combine a new technique with the main result of [1]. This
construction, besides providing graphs with a rather small
number of edges, is simple, and supplies an efficient algo-
rithm for embedding any given member ofH(r, n) in the
graph constructed. The construction is in fact so simple
that for r = 3 and anyn which is a power of16, say,
n = 16s, it can be described in one (short) sentence, as
follows. The vertices are all vectors of lengths over the
alphabet{1, 2, . . . , 16}, and two are adjacent if and only if
they differ in all coordinates.

Let H be a graph with|V (H)| = n. If k dividesn we
say thatH is strongly k-colorable if for any partition of
V (H) into pairwise disjoint setsVi, each of cardinalityk
precisely, there is a properk-vertex coloring ofH in which
each color class intersects eachVi in exactly one vertex. If
k does not dividen, we say thatH is stronglyk-colorable if
the graph obtained fromH by adding to itkdn/ke − n iso-
lated vertices is stronglyk-colorable. Thestrong chromatic
numberof H, denoted byχs(H), is the minimumk such
thatH is stronglyk-colorable. It is not difficult to check
that if H is stronglyk-colorable, thenH is also strongly
(k + 1)-colorable.
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The notion of strong chromatic number is studied in [1],
where the following result is proved. (It is easy to see that
if ∆(H) ≤ 1 thenχs(H) ≤ 2.)

Theorem 2.1 ([1]) For everyr ≥ 2:
(i) There exists an absolute constantb such that if∆(H) ≤
r thenχs(H) ≤ br.
(ii) If ∆(H) ≤ r thenχs(H) ≤ 2r+1.

The constantb is very large, so that for small values ofr
the assertion of part (ii) is better than that of part (i).

We next show how to apply the above result for the con-
struction of universal graphs. It is easier to describe the
construction when the number of vertices is a power of the
maximal strong chromatic number of the graphs with max-
imum degree no greater thanr. The general case will be
given in the full paper. For two integersk ands, letG(k, s)
denote the graph whosen = ks vertices are all vectors of
lengths over the alphabet{1, 2, . . . , k}, where two are ad-
jacent if and only if they differ in all coordinates. Note that
G(k, s) is (k − 1)s-regular, and hence its number of edges
is

1
2
n(k − 1)s ≤ n2

(
k − 1
k

)logn/ log k

≤ n2−1/k log k.

Proposition 2.2 For every two positive integersk and s,
the graphG(k, s) contains every graphH onn = ks ver-
tices withχs(H) ≤ k.

Proof: To prove this proposition, observe that it suffices
to show, for eachH = (V,E), the existence of an injective
mappingf : V → {1, ..., k}s such that
(a) f(v) andf(v′) do not agree on any component ifvv′ ∈
E.
This is what we do next. Split the vertex setV of H arbi-
trarily into disjoint subsets of sizek each and find a proper
coloring ofH so that each color class contains precisely
one vertex in each of the subsets. LetVi denote the set of
vertices coloredi in this coloring. Note that theVi’s parti-
tion V , and that each of thek setsVi is an independent set
of cardiality preciselyn/k = ks−1. Next, split each setVi
arbitrarily into disjoint sets of sizek each, and find another
proper coloring ofH so that each color class contains pre-
cisely one vertex in each of the sets. LetVij denote the set
of all vertices coloredi in the first coloring and coloredj
in the second. Note that theVij ’s partitionV , each of the
k2 setsVij is of cardinalityks−2, and if ij andi′j′ have a
common coordinate, then there is no edge ofH connecting
a member ofVij with a member ofVi′j′ . Let us continue
on with this line of reasoning, for generall ≤ s, to partition
V into kl sets each of cardinalityks−l, and with each such
setVu indexed by a uniqueu ∈ {1, ..., k}l, such that there
is no edge inH betweenVu andVu′ if u andu′ agree on a

coordinate. Whenl = s, each suchVu has only one vertex;
so for anyv ∈ V , putf(v) = u if {v} = Vu; it follows that
f is injective, and satisfies (a).

Notice that by Proposition 2.2 and by Theorem 2.1(ii),
the graphG(16, s) contains every graphH on at most
n = 16s vertices with maximum degree3 and has no more
thann1.9767 edges. Moreover, by the fact that the proof
of Theorem 2.1(ii) given in [1] provides a linear time algo-
rithm for the corresponding algorithmic problem, the proof
above supplies anO(n log n) algorithm for finding a copy
of any such givenH in G(16, s). For larger values ofr,
Proposition 2.2 and Theorem 2.1(i) supply the assertion of
Theorem 1.1 ifn is a power ofbbrc, and supply an efficient
deterministic algorithm that uses the Algorithmic Lovász
Local Lemma, given in [5] (see also [2]) for finding the re-
quired embeddings as well; with a careful implementation,
the running time isn(log n)c, wherec = O(1).

To obtain anH(r, n)-universal graph with preciselyn
vertices, wheren is not a power ofbbrc, the construction
has to be slightly modified. The details will be given in the
full version of this paper.

3 A sparse explicitH(r, n)-universal graph

We now explicitly describe the graphΛ promised by
Theorem 1.2. We constructΛ = Λ(r, n) from Γ, a graph
on a setV of n/ log n vertices. PartitionV into sets
W1, ...,Wr+1 each of cardinalitym = n/[(r + 1) log n].
For eachk, associate eachv ∈ Wk with a vector in
{1, ...,m1/r}r. For any distinctk, k′, and anyv ∈Wk, and
v′ ∈Wk′ , putvv′ ∈ E(Γ) if and only if v andv′ agree on at
least one coordinate. Now replace each vertexv ∈ Γ with a
setVv of 2rrr log n vertices, and for each edgeuv ∈ E(Γ)
interconnect each vertex ofVu with each vertex ofVv, and
call the resulting graphΓ′ = Γ′(r, n). As we show in the
full version of this paper, the graphΓ′ isH(r, n)-universal
and hasϕ(r)n2− 1

r log1/r n edges, but has2rrrn vertices.
To form Λ from Γ′, let Ω be a bipartite graph with ver-

tex classesV (Γ′) and a setQ of 2n vertices, such that
|NΩ(S)| ≥ |S| for eachS ⊂ V (Γ′), and such that the max-
imum degree ofΩ is φ′(r), for some finite functionφ′. It is
well known that we can explicitly construct such anΩ. We
setV (Λ) = Q. For each two verticesν, ν′ in Q, put the
edgeνν′ into Λ if there exist two verticesv andv′ such that
vv′ ∈ Γ′, andνv, ν′v′ ∈ Ω. The following theorem implies
Theorem 1.2.

Theorem 3.1 The graphΛ(r, n) isH(r, n)-universal.

We will present the proof of Theorem 3.1 in the full ver-
sion of this paper. It is easier to prove the following propo-
sition that has much of the power of Theorem 3.1. Let
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Γb = Γb(r, n) be a graph on a setV of dn vertices, where
d = 2r2 + 1. PartitionV into setsV0, ..., Vd, each of cardi-
nalityn. For eachk, associate eachvk ∈ Vk with a vector in
{1, ...., n1/r}r. For eachk > 0, and for eachv0 ∈ V0, and
vk ∈ Vk, put v0vk ∈ E(Γb) if and only if v0 andvk agree
on at least one component. Now replace eachv ∈ V with
a setVv of log n vertices, and for each edgeuv ∈ E(Γb),
interconnect each vertex inVu with each vertex inVv, and
call the resulting graphΓ′b = Γ′b(r, n). Note thatΓ′b(r, n)
has(d+ 1)n log n vertices and(d+ 1)rn2− 1

r log2 n edges.
We prove the following proposition (using only elementary
arguments).

Proposition 3.2 The graphΓ′b(r, n) isH(r, n, n)-universal
for eachr, and forn sufficiently large.

Proof: Fix an arbitraryH ∈ H(r, n, n), and letX and
Y be the two vertex classes ofH. Add edges betweenX
andY until each vertex inY has degree exactlyr, and each
vertex inX has degree at most2r, and call the resulting
graphH ′. We will now show that there exists anf : X ∪
Y → V such that|f−1(v)| ≤ log n for eachv ∈ V , and
f(x)f(y) is an edge inΓb if xy is an edge inH ′. ThenH ′

is a subgraph ofΓ′b, and soΓ′b isH(r, n, n)-universal.

We show the existence of such anf via a probabilistic
argument. Letf : X → V0 be chosen uniformly from
V X0 , whereTS denotes the set of functions fromS to T ,
for any setsS and T . We now extend the domain off
to Y in the following fashion. Each vertexy ∈ Y shares
a neighbor inX with at mostd − 1 other suchY ; par-
tition Y into setsY1, ..., Yd such that no two vertices in
the sameYk share neighbors inH ′. For any orderedr-set
S = {x1, ..., xr} ⊂ X, let us defineg(S) as the vector in
{1, ..., n1/r}r whosej-th component,j = 1, ..., r, is thej-
th component off(xj). We now specifyf : Yk → Vk for
eachk. For eachy ∈ Yk, order arbitrarilyNH′(y), and set
f(y) = g(NH′(y)). If the edgexy is inH ′, thenf(x)f(y)
is an edge inΓ. We make some observations.

Observation 1: If|f−1(v)| ≤ log n for all v ∈ V with
positive probability, thenΓ′ isH(r, n, n)-universal.

Observation 2: The setsNH′(y) and NH′(y′), with
y, y′ ∈ Yk, and eachYk, are mutually disjoint, and each
has cardinalityr. Therefore, sincef : X → V0 is dis-
tributed uniformly onV X0 , each resultingf : Yk → Vk is
also distributed uniformly onV Ykk .

By Observation 2 and elementary probability, for each
k, the probability that there exists av ∈ Vk such that
|f−1(v)| ≥ log n is at mostn/[(logn)!] < n−4 for n suf-
ficiently large. Since there are at mostd + 1 suchk, and
d+ 1 < n, the proposition follows by Observation 1.

4 Random graphs as universal graphs

Consider the probability space of all graphs onn labelled
vertices in which every pair of vertices forms an edge, ran-
domly and independently, with probabilityp. We use the
notationG(n, p) to denote a graph chosen randomly ac-
cording to this probability measure; i.e., for any graphG
onn labeled vertices and withm edges,P [G(n, p) = G] =
pm(1− p)(

n
2)−m. Similarly, we define the bipartite random

graphG(n, n, p). For any two disjoint sets of verticesV1

andV2, we use the notationG(V1, V2, p) to denote a graph
chosen according to the probability space in which every
pairv1, v2 of vertices, such thatv1 ∈ V1 andv2 ∈ V2, forms
an edge, randomly and independently, with probablilityp.

It has been shown in [3] that, given a particularH ∈
H(r, n), the graphH is a.a.s. a subgraph ofG(n, p), for
somep = cn−

1
r log1/r n, wherec is a sufficiently large

constant independent ofn. By a simple averaging argu-
ment, it follows thatG(n, p) a.a.s. containsalmost every
H ∈ H(r, n) as a subgraph. To show that a random graph
G = G((1 + ε)n, p) a.a.scontainsevery H ∈ H(r, n)
as a subgraph for each fixedε > 0, we show, via Lemma
4.1 thatG a.a.s.satisfies certain properties, and then prove,
via Lemma 4.2 that any graph that satisfies these properties
must beH(r, n)-universal; we use Proposition 4.3 in the
proof of Lemma 4.2.

The proof of Theorem 1.4 is similar in structure to the
proof of Theorem 1.3. We show, via Lemma 4.4 thatG =
G(n, n, p) a.a.s.satifies certain properties, and then prove,
via Lemma 4.5, that any graph that satisfies these properties
must beH(r, n, n)-universal; we use Proposition 4.6 in the
proof of Lemma 4.5.

We now present the proofs of Theorems 1.3 and Theo-
rems 1.4.

Proof of Theorem 1.3
The next two lemmas suffice to prove Theorem 1.3. A

star (v, S) is a vertexv connected to each member of the
set of verticesS. (We write(v, S) ∈ G (or (v, S) is a star
in G) if and only if vw ∈ E(G) for all w ∈ S.)

Lemma 4.1 Fix ε > 0 and setN = (1 + ε)n. Let
W1, ...Wd, whered = r2 + 1, be fixed subsets that par-
tition the vertex-setV of the random graphG(N, p), such
that |Wk| = N/d for eachk. If p = cn−1/r(log n)1/r,
wherec > (4d(r + 1)/ε)1/r, thena.a.s.G(N, p) satisfies
the following properties
(a) There are at most(1 + ε)2cn2− 1

r (log n)1/r edges.
(b) For eachk, and for every collectionS of s ≤ n/d pair-
wise disjoint, non-empty subsets ofV \Wk, each of size at
mostr, and for every setT ⊂Wk of t = N/d− s vertices,
there is at least one star(v, S), wherev ∈ T andS ∈ S.

Proof: Part (a) follows by the standard estimates for bi-
nomial distributions (or simply by Chebyshev’s inequality).
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To prove the assertion of part (b), note that the probability
that (b) fails to hold is at most

d

n/d∑
s=1

(
N

r

)s(
N/d

s

)
(1− pr)st ≤ d

n/d∑
s=1

[
Nr+1

nεcr/d

]s
= o(1/n3).

Lemma 4.2 LetG = (V,E) be a graph onN ≥ n vertices,
and letd = r2 + 1. LetW1, ...,Wd be disjoint subsets of
V , each of cardinalityN/d. If G andW1, ...,Wd satisfy
the assertion of part (b) of Lemma 4.1, thenG isH(r, n)-
universal.

Proof: We will show that, for eachH ∈ H(r, n), there
exists anf : V (H)→ V such that

(I) f is injective, and
(II) f(x)f(y) ∈ E if xy ∈ E(H).
Thus G is H(r, n)-universal. Fix an arbitraryH ∈

H(r, n). By the Hajnal-Szemerédi Theorem [10] there are
setsY1, ..., Yd that partitionV (H) so that eachYi is a two-
independent set ofH, and|Yi| = n/d for eachi. (We say
that a setY ′ of vertices is a2-independentset in a graph
H ′ if no two vertices inY ′ share a neighbor, and ifY ′ is an
independent set inH ′.)

We will definef recursively on eachYi, i = 1, . . . , d;
let f be any injective embedding fromY1 to W1. For any
i ∈ {1, ...., d−1}, let us now assume that we have extended
f to Y1 ∪ ...∪Yi, thatf(Y1 ∪ ...∪Yi) ⊆W1 ∪ ...∪Wi, and
thatf is still injective. We now extendf toYi+1, specifying
thatf(Yi+1) ⊂Wi+1.

Let us define an auxiliary bipartite graphA(i+1)
f between

Yi+1 andWi+1 where there is an edge betweeny ∈ Yi+1

andw ∈ Wi+1 if and only if f(NH(y) ∩ [Y1 ∪ ... ∪ Yi]) ⊂
NG(w). Suppose thatf(y) = w for somew such that
yw ∈ A

(i+1)
f for eachy ∈ Yi+1, and eachi + 1. Since

eachYi+1 is an independent set inH, that will guarantee
that f satisfies (II). SupposeA(i+1)

f has a matchingMi+1

that saturatesYi+1, for eachi+1, and thatf(y) = w, where
yw ∈ Mi+1, for eachy ∈ Yi+1, and eachi + 1. Thenf
satisfies (I) as well as (II). The next observation follows.

Observation 3: IfA(i+1)
f has a matchingMi+1 that satu-

ratesYi+1, then Lemma 4.2 follows.
We next present Claim 1.
Claim 1: Let f be any injective function that is in

[W1 ∪ ... ∪Wi]
Y1∪...∪Yi . Thene

A
(i+1)
f

(S, T ) > 0 for each

S ⊆ Yi+1, and for eachT ⊆ Wi+1 such that|T | ≥
|Wi+1| − |S|.

(Proof of Claim 1: LetS be any nonempty subset of
Yi+1, and T be any subset ofWi+1 such that|T | =
|Wi+1|−|S|. Let us writeS(y) = f(NH′(y)∩[Y1∪...∪Yi])

for eachy ∈ Yi+1, andS = {S(y) : y ∈ S}. Becausef
is injective andYi+1 is 2-independent inH ′, the setS is a
collection of|S| disjointr-subsets ofW1 ∪ ...∪Wi. There-
fore, becauseG andW1, ...,Wi satisfy the assertion of part
(b) of Lemma 4.1,(w,S(y)) ∈ G, for somey ∈ S and
w ∈ T . But if (w,S(y)) ∈ G, thenyw ∈ A

(i+1)
f , and

Claim 1 follows.)
Thus, by Claim 1 and Proposition 4.3, eachA(i+1)

f has
a matching saturatingYi+1. Therefore, in view of Observa-
tion 3, Lemma 4.2 follows.

Proposition 4.3 Let A = (Y,W,E) be a bipartite graph
such that|Y | = m1 and |W | = m2, with m2 ≥ m1. If
eA(S, T ) > 0 for every two setsS ⊂ Y andT ⊂ W such
that |T | > m2 − |S|, thenA has a matching saturatingY .

From Lemmas 4.1 and 4.2, Theorem 1.3 follows imme-
diately.

Proof of Theorem 1.4
The next two lemmas suffice to prove Theorem 1.4.

Lemma 4.4 LetV1 andV2 be disjoint sets of vertices each
of cardinalityn. Fix subsetsW1, ...,Wr2 that partitionV2

such that|Wk| = n/r2 = m. Then, for allc ≥ 3 andr ≥ 2,
a.a.s.the random bipartite graphG(V1, V2, p), wherep =
c(log n/n)1/2r, satisfies the following properties:
(a) The minimum and maximum degree are within the range
np±

√
n.

(b) For eachk, everyr-element subsetS0 ofV1, the number
of stars(wk, S0), wherewk ∈Wk, is at leastmpr/2.
(c) For every collectionS of s = mpr/2 pairwise disjoint,
r-element subsets ofV1, and for everys-element subsetT
of V2, there is at least one star(v, S), wherev ∈ T , and
S ∈ S.

Proof: Parts (a-b) follow trivially by Chernoff’s bound.
To prove the assertion (c), observe that there are at most(

n
s

)
nrs < exp{(r + 1)s log n} choices of the setT and

collectionS. Consider an auxiliary bipartite random graph
G(s, s, pr) between the selected setT and thes r-tuples
of S, whose edges are the stars(v, S) of G(n, n, p). The
probability of no edge inG(s, s, pr) is smaller than(1 −
pr)s

2
< exp{−s2pr} ≤ exp{− 32r

2r2 s log n}.

Lemma 4.5 LetV1 andV2 be disjoint sets of vertices, each
of cardinalityn, and letG be a bipartite graph onV1 ∪ V2

with vertex classesV1 andV2. LetW1, ...,Wr2 be subsets
of V2. Suppose thatG andW1, ..,Wr2 satisfy (a)–(c) of
Lemma 4.5. ThenG isH(r, n, n)-universal.

Proof: We will show that for eachH ∈ H(r, n, n) there
exists anf : V (H)→ V1 ∪ V2 such that

(I) f is injective, and
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(II) f(x)f(y) ∈ E(G) if xy ∈ E(H).
Thus,G is H(r, n, n)-universal. Fix an arbitraryH ∈

H(r, n, n) and denote byX andY its two vertex classes.
By the Hajnal-Szemerédi Theorem there is a partitionY =
Y1 ∪ ... ∪ Yr2 , such that eachYi is two-independent inH
and|Yi| = |Wi| for eachi.

We will first choose a suitable bijectionf : X → V1,
and then extendf to Y , by simultaneously specifyingf :
Yi → Wi for all i. Givenf : X → V1, define the auxiliary
graphA(i)

f = (Yi,Wi, E
(i)
f ), where there is an edge inE(i)

f

betweeny ∈ Yi andw ∈ Wi if and only if NG(w) ⊃
f(NH(y)). Suppose eachA(i)

f has a perfect matchingMi.
Then for eachy ∈ Yi, and eachi, setf(y) = w, where
yw ∈ Mi. The resultingf : X ∪ Y → V1 ∪ V2 satisfies (I)
and (II). The next observation follows.

Observation 4: If there exists somef : X → V1 such
that each resultingA(i)

f has a perfect matching, then Lemma
4.5 follows.

To this end, we will use Proposition 4.6, stated below.
Let i be any integer in{1, ..., r2}. We first show that the
degree of eachy ∈ Yi in A(i)

f is at leastδ = mpr/2. We
then show thate

A
(i)
f

(S, T ) > 0 for eachS ⊂ Yi andT ⊂
Wi such that|S| = |T | = δ. We finally show that the degree
of eachw ∈ Wi in A(i)

f is at leastδ for a random bijection
f : X → V1.

Claim 2: For anyf ∈ V X1 , the degree of eachy ∈ A(i)
f

is at leastδ = mpr/2.
(Proof of Claim 2: Letyi be any arbitrary vertex inYi,

and letf be any function inV X1 . Note thatf(NH′(y)))
is a set of cardinality no greater thanr in V1. Therefore,
becauseG andW1, ...,Wr2 satisfy the assertion of part (b)
of Lemma 4.4, there are at leastδ verticeswi ∈ Wi such
that (wi, f(NH(yi))) is a star inG. But yiwi ∈ A

(i)
f if

(wi, f(NH(yi))) ∈ G, so Claim 2 follows.)
Claim 3: For anyf ∈ V X1 that is injective,e

A
(i)
f

(S, T ) >

0 for any subsetS ⊆ Yi and any subsetT ⊆ Wi such that
|S| = |T | = δ.

(Proof of Claim 3: LetS ⊂ Yi, and letT ⊂Wi such that
|S| = |T | = δ, and letf be any function inV X1 that is injec-
tive. Becausef is injective, andYi is 2-independent inH ′,
the collection{f(NH(y)); y ∈ S} is a disjoint collection of
δ sets of size at mostr in V1. Therefore, becauseG satisfies
the assertion of part (c) of Lemma 4.4,(w, f(NH(y))) is a
star inG, for somey ∈ S andw ∈ T . However,yw ∈ A(i)

f

if (w, f(NH(y))) ∈ G, and Claim 3 follows.)
Thus, to prove Lemma 4.5, all we need to show now is

(*) there exists anf such that the degree of eachw ∈Wi in
A

(i)
f is at leastδ for all i ∈ {1, ..., r2}.

Indeed, Claims 2 and 3, and (*) imply, in view of Proposi-
tion 4.6 stated below, that there exists anf : X → V1 such
that eachA(i)

f has a perfect matching; in view of Observa-

tion 4, this proves Lemma 4.5. To show (*) we will apply
the probabilistic method.

For eachw ∈ W , let i be such thatw ∈ Wi. For each
f ∈ V X1 , let Zw be the number of verticesy in Yi such
thatNH(y) ⊂ f−1(NG(w)). Note thatZw is the degree
of w in A

(i)
f , so (*) follows if there exists anf such that

Zw ≥ mpr/2 for all w ∈ W . We now fix an arbitrary
w ∈ W and show thatP (Zw ≥ mpr/2) = 1 − o(1/n), if
f is chosen according to the uniform distribution on the set
of injective functions ofV X1 . Note that this suffices to show
(*). We now compareZw to yet another random variable
Z ′w which is easier to work with.

Let us writew ∈ Wi. Let Xqw be a random subset of
X such that eachx ∈ X belongs toXqw independently
with probability qw = |NG(w)|/n. Let Z ′w = |{y ∈ Yi :
NH(y) ⊆ Xqw}|. Since|Yi| = n/r2 = m, and the sets
NH(y), y ∈ Yi, are mutually disjoint,Z ′w has the binomial
distributionB(m, qrw), with expectationµ = mqrw. How-
ever,qrw ≥ (cn−1/2 log n)/2, sinceG is assumed to satisfy
(a) of Lemma 4.4. Therefore, we note that

µ = mqrw ≥ 2mpr/3�
√
n.

Hence, by Chernoff’s inequality (see e.g. [11], Thm.2.6,
page 26), it follows that

P (Z ′w ≤ mp2/2) ≤ P (Z ′w ≤ 3µ/4)) ≤ exp{−µ/48}

< exp
{
−
√
n
}
.

However, by Pittel’s inequality (see e.g. [11], formula (1.6),
page 17),

P (Zw ≤ mpr/2) ≤
√
|NG(w)|P (Z ′w ≤ mpr/2)

= o(1/n).

So (*) follows, and so does Lemma 4.5, as discussed above.

Proposition 4.6 Let A = (Y,W,E) be a bipartite graph
such that|Y | = |W | = n. If there exists a positive integer
δ such that (a) each vertex inY ∪ W has degree at least
δ in A, and (b)eA(S, T ) > 0 for every two setsS ⊂ Y
andT ⊂ W such that|S| = |T | = δ, thenA has a perfect
matching.

Theorem 1.4 follows immediately from Lemmas 4.4 and
4.5.

5 Fault-tolerance of random bipartite graphs

The proof of Theorem 1.5 is based on a combination of
a sparse version of the regularity lemma with a hypergraph
packing result and several additional ideas. This proof is

6



more complicated than the previous proofs in this paper and
requires three additional lemmas. We describe these lem-
mas here and postpone the actual proof to the full version
of the paper. The first lemma is a special case of Lemma 20
in [12] (with α, γ, k, q replaced, resp., byξ/2, 1/2, r, p).
For a bipartite graphF with vertex classesU andW and
for any non-empty subsetsU ′ ⊂ U andW ′ ⊂ W , we de-
note byeF (U ′,W ′) the number of edges betweenU ′ and
W ′, and by

dp,F (U ′,W ′) =
eF (U ′,W ′)
p|U ′||W ′|

(1)

thep-densityof the pair(U ′,W ′) in F , where0 < p ≤ 1.
In particular, we setdF (U ′,W ′) = d1,F (U ′,W ′). We say
that the pair(U ′,W ′) is (p; ε)-regular inF if

|dp,F (U ′,W ′)− dp,F (U ′′,W ′′)| < ε (2)

for all U ′′ ⊂ U ′ and allW ′′ ⊂ W ′ for which |U ′′| ≥ ε|U ′|
and |W ′′| ≥ ε|W ′|. A pair which is not(p; ε)-regular is
sometimes called(p; ε)-irregular. IfU ′ = U andW ′ = W ,
we then also say thatF is (p; ε)-regular. For a setR ∈ [U ]r

(that is, anr-element subset ofU ), we define itsjoint degree
in F , which we write asdegF (R), as|ÑG(R)|; which is the
number of vertices that are adjacent inF to every vertex in
R. Finally,G[U,W ] stands for the subgraph ofG induced
byU ∪W .

Lemma 5.1 ([12]) For all r ≥ 2, ξ > 0, andη > 0, there
is ε > 0 such that a.a.s.G = G(n, n, p) with p ≥ n−3/5r

satisfies the following property. SupposeU ⊂ V1, W ⊂
V2 are sets of size at leastn2/3, andF is a (p; ε)-regular
subgraph ofG[U,W ] with eF (U,W ) ≥ ξeG(U,W ). Then

∣∣∣∣{R ∈ [U ]r : degF (R) <
1
2

(dF (U,W ))r|W |
}∣∣∣∣

≤ η
(
|U |
r

)
. (3)

Our next tool is the following version of Szemerédi’s
Regularity Lemma (see e.g. [11], page 215, Lemma 8.18).
For 0 < p < 1, b ≥ 1 andβ > 0, call a graphΓ (p; b, β)-
boundedif for every pair of disjoint subsetsU,W ⊂ V (Γ)
with |U |, |W | ≥ β|V (Γ)| we havedp,Γ(U,W ) ≤ b. Fur-
thermore, letΠ = (Π1, . . . ,Πk) be a partition ofV (Γ)
and supposek divides|V (Γ)|. We say that this partition is
(p; Γ, ε, k)-regular if |Π1| = |Π2| = . . . = |Πk| and for all
except at mostε

(
k
2

)
choices of the indices1 ≤ i < j ≤ k,

the pairs(Πi,Πj) are(p; ε)-regular inΓ. In the lemma be-
low we begin with a bipartite graph and obtain a partition
which subdivides the original bipartition.

Lemma 5.2 For all ε > 0, b ≥ 1 and k0 > 0 there ex-
ist β > 0 andK such that the following holds. For ev-
ery choice of the scaling factorp, and a(p; b, β)-bounded
bipartite graphΓ on a vertex setV = V1 ∪ V2, where
|V1| = |V2| is divisible byK!, there exists a subparti-
tion Π = (Π1

1, . . . ,Π
1
k,Π

2
1, . . . ,Π

2
k) of (V1, V2) which is

(p; Γ, ε, 2k)-regular for somek ≤ K.

We also need a hypergraph packing result. Given anr-
uniform hypergraphB onm vertices andη > 0, we define
a recursive family ofj-uniform hypergraphsBηj , for j =
r, r − 1, . . . , 1. SetBηr = B and, givenBηj , defineBηj−1

as the family of all(j − 1)-tuplesJ which are contained in
more thanηm j-tuples ofBηj , or in other words, for which
degBη

j
(J) > ηm.

The hypergraph packing result that we need is a special
case of Theorem 2 from [16]; this was proved only for bi-
jectionsf , which is the tightest case. However, the proof
can be literally repeated step by step also in a more relaxed
setting when the hypergraphN has fewer vertices thanB.
We say that a one-to-one functionf : V (N ) → V (B) is a
packingofN andB, if B 6= f(N) for everyB ∈ B and ev-
eryN ∈ N ; or shortly,f(N )∩B = ∅, wheref(N ) denotes
the image of the hypergraphN . We say thatf ′′ is obtained
from f ′ by aswitchingif there exists a pair{v, w} such that
f ′(v) = f ′′(w), f ′(w) = f ′′(v), andf ′(u) = f ′′(u) for all
u 6∈ {v, w}.

Lemma 5.3 ([16]) For all integersr ≥ 2, and for allσ >
0, there existη > 0 andm0 such that the following holds.
If N andB are twor-uniform hypergraphs on, resp.,m1

andm2 vertices,m0 ≤ m1 ≤ m2, satisfying∆(N ) ≤ r

andB(η)
1 = ∅, then at least half of all(m2)m1 one-to-one

functionsf ′ : V (N )→ V (B) can be turned into a packing
f ofN andB by a sequence of at mostσm2 switchings.

The derivation of Theorem 1.5 from these lemmas will
be given in the full version of the paper.

6 Concluding remarks

It would be interesting to close the gap between the upper
and the lower bound for the minimum possible number of
edges in anH(r, n)-universal graph onn vertices. Note
that the lower bound holds even for the number of edges of
any graph that contains a reasonable fraction of allr-regular
graphs onn vertices (whenrn is even).

The application of the Hajnal-Szemerédi theorem in the
proofs of Theorems 1.3–1.5 is not essential, but is con-
venient. Instead one could use the (algorithmic) packing
lemma of Sauer and Spencer [18] (we would packH and the
union of2r2 + 2 cliques of ordern/(2r2 + 2), doubling the
number of rounds). Thus, our proofs can be made algorith-
mic in the sense that, for example, if indeed a given graphG
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satisfies the assertions of Lemma 4.1, then one can find an
embedding of any member ofH(r, n) in G in polynomial
time, using some standard matching algorithms. However,
the problem of checking whether a given graphG satisfies
these assertions does not seem to be solvable by a polyno-
mial time algorithm.

References

[1] N. Alon, The strong chromatic number of a graph,
Random Structures and Algorithms3 (1992), 1–7.

[2] N. Alon, A parallel algorithmic version of the local
lemma,Random Structures and Algorithms2 (1991),
367–378. Also: Proc.32nd Annual FOCS, IEEE
(1991), 586–593.

[3] N. Alon and Z. F̈uredi, Spanning subgraphs of random
graphs,Graphs and Combinatorics8 (1992), 91–94.

[4] N. Alon and R. Yuster, Threshold functions forH-
factors,Combinatorics, Probability and Computing2
(1993), 137–144.

[5] J. Beck, An algorithmic approach to the Lovász Local
Lemma,Random Structures and Algorithms2 (1991),
343–365.

[6] S. N. Bhatt, F. Chung, F. T. Leighton and A. Rosen-
berg, Universal graphs for bounded-degree trees and
planar graphs,SIAM J. Disc. Math.2 (1989), 145–155.

[7] M. R. Capalbo, A small universal graph for bounded-
degree planar graphs, Proc. SODA (1999), 150–154.

[8] M. R. Capalbo and S. R. Kosaraju, Small universal
graphs, Proc. STOC (1999), 741–749.

[9] P. Erd̋os and A. Renyi, On random matrices,Publ.
Math. Inst. Hung. Acad. Sci.8 (1964), 455–461

[10] A. Hajnal and E. Szemerédi, Proof of a conjecture of
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