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Abstract 1 Introduction

For a family’H of graphs, a graplé- is H-universalif
G contains every member 6f as a subgraph. For exam-
ple, the complete grapK, is H,-universal for the family
‘H,, of all graphs on at most vertices. The construction
of sparse universal graphs for various families arises in the
study of VLSI circuit design, and received a considerable
amount of attention, see, e.g., [6], [7], [8] and their refer-
H(r, n)-universal graphsG and A on n. and 2n vertices, Ences. Since in some application.s the gost of a vertex is
k (1) ai. 1/r _ |gher than t_hat of an edgeZ one is particularly interested
and withO(n"—""7ee77) andO(n”"  log''" 1) €dges, ré- i ight 74-universal graphs, i.e., graphs whose number of
spectively, such that we can efficiently find a copy of any artices equalsiax ey |V (H)|.
H € H(r,n)in G deterministically. We also achieve sparse Most of the previously known constructions of sparse
universal graphs using random constructions. Finally, we niversal graphs for various families are based on the ex-
show thatlthe bipartite random graghi = G(n, 7, p), with istence of small separators in these families. Since here
p = en~% log"/*" n is fault-tolerant; for a large enough e consider families of graphs that do not necessarily have
constant, even after deleting any-fraction of the edges of  small separators, we need some novel techniques. These
G, the resulting graph is stili{(r, a(a)n, a(a)n)-universal  combine the notion of the strong chromatic number of
for someu : [0,1) — (0, 1]. a graph, introduced in [1], various properties of random
graphs, an embedding technique based on matching the-
orems, developed in [3] and [17], a structure result on
sparse regular pairs proved in [12], a sparse version of Sze-
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for the number of edges of afiy(r, n)-universal graph (on

any number of vertices). lfn is odd, simply observe that

anH(r,n)-universal graph is als#((r, n — 1)-universal.
Having just lower-bounded/(r,n), we now focus on

upper-boundingV (r, n), with both explicit and random-

ized constructions. It follows from the celebrated Blow-up

Lemma [14] thatM (r,n) = o(n?). Via explicit construc-

tions we obtain stronger upper-bounds, of the forfim®,

for some strictly positives that depends only on as stated

in the following theorem. (Note tha/ (1,n) = |n/2].)

Theorem 1.1 There exists an absolute constant 0 such
that for everyr > 2 andn > ng(r) there is an explicitly
describedH (r, n)-universal graphG with . vertices and at
mostn2—¢/71°2" edges, such that we can find a copy of any
H € H(r,n) in G in deterministic polynomial time (in).

Thus, in view of the ultimate lower bound, the above con-

struction is not too far from being best possible. We can also

It turns out that the same random graph enjoys a related
property. For a real number, where0 < a < 1, we say
that a graphG is a-fault-tolerantwith respect to a family
of graphsH, if every subgraph ofF with at least al —

« fraction of the edges of7 is H-universal. In general,
restricting to bipartite graphs is unavoidable here, as for any
graphG, there is a bipartite subgragh’ of G with at least
half the edges of-.

Theorem 1.5 For everyr > 2 and0 < « < 1 there exist
constants: > 0 andC > 0 such that.a.s.G(n, n,p) is a-
fault-tolerant with respect t&<(r, [n/C], |n/C]), where
p = c(logn/n)'/?". Consequently, fon > ny(r) there
is a bipartite graphG with n vertices in each color class
and at moscn?~1/27(logn)'/?" edges, which is-fault-
tolerant with respect t@<(r, |[n/C|, [n/C]).

The rest of this extended abstract is organized as follows.

describe an even smaller explicit construction (although In Section 2 we sketch the proof of Theorem 1.1. In Sec-

here the number of vertices is larger.)

Theorem 1.2 For eachr, there is a finite(r) such that
for eachn there is an explicitly describe#((r,n) univer-
sal graphA, with at mostp(r)n2~+ log'/" n edges an@n
vertices.

In fact, almost every graph o2n vertices that has as
many edges ad = A(r,n) has isH(r,n)-universal, as

tion 3 we describé\, and present a proof of a proposition
with much of the power of Theorem 1.2. In Section 4 we
prove Theorems 1.3 and 1.4. In Section 5, we discuss The-
orem 1.5. Finally, Section 6 contains some concluding re-
marks.

2 The strong chromatic number and univer-
sal graphs

the next theorem implies. We say that a random graph pos-

sesses a property asymptotically almost surely, and write

a.a.s, if the probability of the event in question tends to 1
asn — oo.

Theorem 1.3 For everye > 0 there exists a positive con-
stantc = c¢(e) such that, for every: > 2, the random
graph G([(1 + ¢)n],p) with p = cn=/"(logn)'/" a.a.s.
is H(r, n)-universal. Consequently, far > nq(r) there is
an™M(r, n)-universal graphG with [(1+¢)n] vertices and,
say, at most1 + £)%cn>~1/"(logn)'/" edges.

A related Ramsey theoretic statement is considered by]fz)I

Kohayakawa, Rdl and Szemédi [13].

With some more work we are able to get rid of the an-
noying factor ofl + ¢, but only in the bipartite case and for
a slightly higher edge density. For> 2 let H(r,n,n) be
the family of bipartite graphs with vertices in each vertex
class and with maximum degree at mostLet G(n,n, p)
be the random bipartite graph withvertices in each color
class and edge probabiligy

Theorem 1.4 There exists an absolute positive constant
such that, for every > 2, a.a.s.G(n,n,p) is H(r,n,n)-
universal, wherep = c(logn/n)'/?". Consequently, for
n > ng(r) there is anH(r,n,n)-universal, bipartite
graph G with n vertices in each color class and at most
2cn?~1/2"(logn)'/?" edges.

The techniques in [8] can be used to constft¢t, n)-
universal graphs witlD(n?/ log® n) edges. To obtain the
better construction needed in the proof of Theorem 1.1 we
combine a new technique with the main result of [1]. This
construction, besides providing graphs with a rather small
number of edges, is simple, and supplies an efficient algo-
rithm for embedding any given member Bf(r,n) in the
graph constructed. The construction is in fact so simple
that forr = 3 and anyn which is a power ofl6, say,
= 16°, it can be described in one (short) sentence, as
lows. The vertices are all vectors of lengthover the
alphabet{1,2,..., 16}, and two are adjacent if and only if
they differ in all coordinates.

Let H be a graph withV (H)| = n. If k dividesn we
say thatH is strongly k-colorable if for any partition of
V(H) into pairwise disjoint set¥, each of cardinalityk
precisely, there is a propérvertex coloring ofH in which
each color class intersects edéhin exactly one vertex. If
k does not divider, we say thaf{ is stronglyk-colorable if
the graph obtained frorff by adding to itk [n/k] — n iso-
lated vertices is strongly-colorable. Thestrong chromatic
numberof H, denoted byy,(H), is the minimumk such
that H is stronglyk-colorable. It is not difficult to check
that if H is strongly k-colorable, thenH is also strongly
(k + 1)-colorable.



The notion of strong chromatic number is studied in [1],

coordinate. When = s, each suclV,, has only one vertex;

where the following result is proved. (It is easy to see that so for anyv € V, put f(v) = w if {v} = V,,; it follows that

if A(H) < 1theny,(H) <2.)

Theorem 2.1 ([1]) For everyr > 2:

(i) There exists an absolute constarguch that ifA(H) <

rtheny,(H) < br.

(i) If A(H) < rtheny,(H) <27+L, |
The constant is very large, so that for small valuesof

the assertion of part (i) is better than that of part (i).

f is injective, and satisfies (a). ]
Notice that by Proposition 2.2 and by Theorem 2.1(ii),
the graphG(16,s) contains every grapli on at most
n = 16° vertices with maximum degrezand has no more
thann!9767 edges. Moreover, by the fact that the proof
of Theorem 2.1(ii) given in [1] provides a linear time algo-
rithm for the corresponding algorithmic problem, the proof
above supplies a®(nlogn) algorithm for finding a copy

We next show how to apply the above result for the con- of any such giver#l in G(16,s). For larger values of,
struction of universal graphs. It is easier to describe the proposition 2.2 and Theorem 2.1(i) supply the assertion of
construction when the number of vertices is a power of the Theorem 1.1 if2 is a power oflbr |, and supply an efficient

maximal strong chromatic number of the graphs with max-

imum degree no greater than The general case will be
given in the full paper. For two integeksands, let G(k, s)
denote the graph whose = k° vertices are all vectors of
lengths over the alphabefl, 2, ..., k}, where two are ad-
jacent if and only if they differ in all coordinates. Note that
G(k,s) is (k — 1)*-regular, and hence its number of edges

IS

< n271/k logk'

1 E_1 logn/logk

Proposition 2.2 For every two positive integers and s,
the graphG(k, s) contains every graplf onn = k° ver-
tices withy(H) < k.

Proof:  To prove this proposition, observe that it suffices
to show, for eact = (V, E), the existence of an injective
mappingf : V — {1,..., k}* such that

(@) f(v) and f(v") do not agree on any componentif’ €

E

This is what we do next. Split the vertex détof H arbi-
trarily into disjoint subsets of size each and find a proper

deterministic algorithm that uses the Algorithmic &z
Local Lemma, given in [5] (see also [2]) for finding the re-
quired embeddings as well; with a careful implementation,
the running time is:(log n)¢, wherec = O(1).

To obtain anH(r, n)-universal graph with precisely
vertices, whereu is not a power oflbr|, the construction
has to be slightly modified. The details will be given in the
full version of this paper.

3 A sparse explicitH(r, n)-universal graph

We now explicitly describe the graph promised by
Theorem 1.2. We construét = A(r,n) from I', a graph
on a setV of n/logn vertices. PartitionV into sets
Wi, ...,W,.41 each of cardinalityn = n/[(r + 1) logn].
For eachk, associate each € W, with a vector in
{1,...,m'/"}". For any distinct, ¥/, and anyv € W, and
v’ € Wy, putvy’ € E(T) ifand only if v andv’ agree on at
least one coordinate. Now replace each vertexI” with a
setV,, of 2"r" logn vertices, and for each edge < E(T)
interconnect each vertex ®f, with each vertex o/, and
call the resulting grapli’ = I'(r,n). As we show in the

coloring of H so that each color class contains precisely full version of this paper, the gragh is H(r, n)-universal

one vertex in each of the subsets. &tdenote the set of
vertices colored in this coloring. Note that th&;'s parti-
tion V, and that each of the setsV; is an independent set
of cardiality preciselyn/k = k*~!. Next, split each sel;
arbitrarily into disjoint sets of sizé each, and find another
proper coloring ofH so that each color class contains pre-
cisely one vertex in each of the sets. &} denote the set
of all vertices colored in the first coloring and coloreg
in the second. Note that thHg;’s partition V', each of the
k?* setsV;; is of cardinalityk*~2, and ifij andi’j’ have a
common coordinate, then there is no edgéfofonnecting
a member ofl/;; with a member of;,;,. Let us continue
on with this line of reasoning, for generak s, to partition
V into k! sets each of cardinality*~, and with each such
setV, indexed by a unique € {1, ..., k}!, such that there
is no edge inH betweenV,, andV,. if © andv’ agree on a

and hasp(r)n2~ 7+ log'/" n edges, but ha&"r"n vertices.

To form A from I, let 2 be a bipartite graph with ver-
tex classes/(I”) and a set) of 2n vertices, such that
|Na(S)| > |S| for eachS C V(IV), and such that the max-
imum degree of2 is ¢’ (r), for some finite functior'. It is
well known that we can explicitly construct such @nWe
setV(A) = Q. For each two vertices, v/ in Q, put the
edgevr’ into A if there exist two vertices andv’ such that
v’ € IV, andvo, Vv’ € Q. The following theorem implies
Theorem 1.2.

Theorem 3.1 The graphA(r, n) is H(r, n)-universal.
We will present the proof of Theorem 3.1 in the full ver-

sion of this paper. It is easier to prove the following propo-
sition that has much of the power of Theorem 3.1. Let



I', = I'y(r,n) be a graph on a séf of dn vertices, where
d = 2r? + 1. PartitionV into setsly, ..., Vy, each of cardi-
nality n. For eachk, associate eaah), € V}, with a vectorin
{1,....,n*/7}". For eachk > 0, and for eachy, € Vj, and
v, € Vi, putvgug, € E(T) if and only if vy andv, agree
on at least one component. Now replace each V' with
a setV, of logn vertices, and for each edge € E(T}),
interconnect each vertex W, with each vertex iV, and
call the resulting grapl;, = I'; (r,n). Note thatl’},(r, n)
has(d + 1)n log n vertices andd + 1)rn?~ 7 log” n edges.
We prove the following proposition (using only elementary
arguments).

Proposition 3.2 The grapt';, (r, n) is H(r, n, n)-universal
for eachr, and forn sufficiently large.

Proof:  Fix an arbitraryH € H(r,n,n), and letX and
Y be the two vertex classes éf. Add edges betweeX
andY until each vertex irt” has degree exactly, and each
vertex in X has degree at mo&t, and call the resulting
graphH’. We will now show that there exists gh: X U
Y — V such thaif~!(v)| < logn for eachv € V, and
f(z)f(y)is an edge i, if xy is an edge inH’. ThenH’
is a subgraph of}, and sal’} is H(r, n, n)-universal.

We show the existence of such girvia a probabilistic
argument. Letf : X — V; be chosen uniformly from
V¥, whereT* denotes the set of functions frofto 7,
for any setsS and7T. We now extend the domain of
to Y in the following fashion. Each vertex € Y shares
a neighbor inX with at mostd — 1 other suchY’; par-
tition Y into setsY,...,Y; such that no two vertices in
the sameY}, share neighbors iii’. For any ordered-set
S = {z1,..,x.} C X, letus defingy(S) as the vector in
{1,...,n'/7}" whosej-th componentj = 1, ..., r, is thej-
th component off (z,). We now specifyf : Y, — V}, for
eachk. For eachy € Y}, order arbitrarilyNy/ (y), and set
f(y) = g(Nu (y)). If the edgery is in H', thenf(z) f (y)
is an edge il". We make some observations.

Observation 1: fi f~1(v)| < logn for all v € V with
positive probability, thed” is H(r, n, n)-universal.

Observation 2: The setdy/(y) and Ny (y'), with
v,y € Y, and eachy}, are mutually disjoint, and each
has cardinality-. Therefore, sincef : X — Vj is dis-
tributed uniformly onVOX, each resultingf : Y, — Vj is
also distributed uniformly o,

By Observation 2 and elementary probability, for each
k, the probability that there exists @ € V} such that
|f~(v)| > logn is at mostn/[(logn)!] < n=* for n suf-
ficiently large. Since there are at mast- 1 suchk, and
d + 1 < n, the proposition follows by Observation 1. B

4 Random graphs as universal graphs

Consider the probability space of all graphsdiabelled
vertices in which every pair of vertices forms an edge, ran-
domly and independently, with probabilipy We use the
notation G(n,p) to denote a graph chosen randomly ac-
cording to this probability measure; i.e., for any gragh
onn labeled vertices and witln edges P[G(n,p) = G] =

p™(l— p)(g)*m. Similarly, we define the bipartite random
graphG(n,n,p). For any two disjoint sets of verticdg
andVs, we use the notatio&'(V7, V2, p) to denote a graph
chosen according to the probability space in which every
pairwvy, vy Of vertices, such that; € V; andvy € Vs, forms

an edge, randomly and independently, with probablity

It has been shown in [3] that, given a particuldr €
H(r,n), the graphH is a.a.s. a subgraph of7(n,p), for
somep = cn~+ log'/" n, wherec is a sufficiently large
constant independent ef. By a simple averaging argu-
ment, it follows thatG(n, p) a.a.s. containsalmost every
H € H(r,n) as a subgraph. To show that a random graph
G = G((1 + ¢)n,p) a.a.scontainsevery H € H(r,n)
as a subgraph for each fixed> 0, we show, via Lemma
4.1 thatG a.a.s.satisfies certain properties, and then prove,
via Lemma 4.2 that any graph that satisfies these properties
must be™H(r, n)-universal, we use Proposition 4.3 in the
proof of Lemma 4.2.

The proof of Theorem 1.4 is similar in structure to the
proof of Theorem 1.3. We show, via Lemma 4.4 that=
G(n,n,p) a.a.s.satifies certain properties, and then prove,
via Lemma 4.5, that any graph that satisfies these properties
must beH (r, n, n)-universal; we use Proposition 4.6 in the
proof of Lemma 4.5.

We now present the proofs of Theorems 1.3 and Theo-
rems 1.4.

Proof of Theorem 1.3

The next two lemmas suffice to prove Theorem 1.3. A
star (v, S) is a vertexv connected to each member of the
set of verticesS. (We write (v,.5) € G (or (v,S) is a star
in G) ifand only ifvw € E(G) forallw € S.)

Lemma4.lFix ¢ > 0 and setN = (1 + ¢)n. Let
Wi, ..Wy, whered = r? + 1, be fixed subsets that par-
tition the vertex-set” of the random graptG (N, p), such
that || = N/d for eachk. If p = cn='/"(logn)'/",
wherec > (4d(r + 1)/¢)'/7, thena.a.s.G(N, p) satisfies
the following properties

(a) There are at mogtl + £)2cn2~+ (log n)'/" edges.

(b) For eachk, and for every collectio of s < n/d pair-
wise disjoint, non-empty subsetslof\ Wy, each of size at
mostr, and for every sel' C W, of t = N/d — s vertices,
there is at least one stdw, S), wherev € T'and S € S.

Proof: Part (a) follows by the standard estimates for bi-
nomial distributions (or simply by Chebyshev's inequality).



To prove the assertion of part (b), note that the probability for eachy € Y1, andS = {S(y) :

that (b) fails to hold is at most

n/d n/d

Y (= [

=o(1/n%). M

Lemma 4.2 LetG = (V, E) be agraph onV > n vertices,
and letd = 2 + 1. LetW4,..., W, be disjoint subsets of
V, each of cardinalityN/d. If G and W1, ..., W, satisfy
the assertion of part (b) of Lemma 4.1, théns H(r, n)-
universal.

Proof:  We will show that, for eactif € H(r,n), there
exists anf : V(H) — V such that

() fisinjective, and

() f(x)f(y) € Eif zy € E(H).

Thus G is H(r,n)-universal. Fix an arbitraryd €
H(r,n). By the Hajnal-Szemédi Theorem [10] there are
setsYy, ..., Yy that partitionV (H) so that eacly; is a two-
independent set aff, and|Y;| = n/d for eachi. (We say
that a sefY”’ of vertices is a2-independenset in a graph
H' if no two vertices inY”’ share a neighbor, and¥f’ is an
independent set ifl’.)

We will define f recursively on eachy;, i = 1,...,d;
let f be any injective embedding fron to ;. For any

y € S}. Becausef
is injective andY;; is 2-independent ifH’, the setS is a
collection of|S| disjointr-subsets ofV; U ... U W,. There-
fore, becausé’ andWy, ..., W; satisfy the assertion of part
(b) of Lemma 4.1,(w, S(y)) € G, for somey € S and
w € T. Butif (w,S(y) € G, thenyw € A{*, and
Claim 1 follows.)

Thus, by Claim 1 and Proposition 4.3, eaAf]f“) has
a matching saturating; . Therefore, in view of Observa-
tion 3, Lemma 4.2 follows.

Proposition 4.3 Let A = (Y, W, E) be a bipartite graph
such that|Y'| = my and |W| = mg, with mg > m;y. If
ea(S,T) > 0 for every two set$ C Y andT C W such
that|T'| > ms — |S|, thenA has a matching saturatiny.
]

From Lemmas 4.1 and 4.2, Theorem 1.3 follows imme-
diately. |

Proof of Theorem 1.4

The next two lemmas suffice to prove Theorem 1.4.

Lemma 4.4 LetV; and V5 be disjoint sets of vertices each
of cardinalityn. Fix subsetd¥, ..., W, that partition V5
such thaiWy| = n/r? = m. Then, for allc > 3 andr > 2,
a.a.s.the random bipartite grapld=(V1, V5, p), wherep =
c(logn/n)'/?", satisfies the following properties:

(a) The minimum and maximum degree are within the range

np + y/n.

RS {17 ceeny d— 1}, let us now assume that we have extended (b) For eachk, everyr_e|ement Subséo of Vl’ the number

f toY;U...UY;, thatf(Y1 U... UY;) CW,U...uw;, and
that f is still injective. We now extend to Y; 1, specifying
that f(Yiy1) € Wiga.

Let us define an auxiliary bipartite graplﬁ”l) between
Y;+1 andW,; 1, where there is an edge betwegre Y,
andw € W, ifand only if f(Ng(y) N[Y1U...UY;]) C
Ng(w). Suppose thaf(y) = w for somew such that
yw € ASZ’“) for eachy € Y;,1, and each + 1. Since
eachY;; is an independent set i, that will guarantee
that f satisfies (II). Suppose{*" has a matching/;
that saturatey; 1, for eachi+1, and thatf (y) = w, where
yw € M;.,, for eachy € Y;,1, and each + 1. Thenf
satisfies (1) as well as (ll). The next observation follows.

Observation 3: IfA¢"") has a matching/;. ; that satu-
ratesY; .1, then Lemma 4.2 follows.

We next present Claim 1.

Claim 1: Let f be any injective function that is in
Wy U ... UW, "o, Thene 1) (9, T) > 0 for each

S C Yy, and for eachl’ C W;,; such that|T| >
[Wisi] = |S].

(Proof of Claim 1: LetS be any nonempty subset of
Y;+1, and T be any subset o#¥;;; such that|T| =
|[Wit1]|—|S]. LetuswriteS(y) = f(Ng (y)N[Y1U...UY;])

of stars(wy, Sp), wherew;, € Wy, is at leastmp” /2.

(c) For every collectiorS of s = mp” /2 pairwise disjoint,
r-element subsets &f,, and for everys-element subséf
of V4, there is at least one stgw, S), wherev € T, and
Ses.

Proof: Parts (a-b) follow trivially by Chernoff’s bound.

To prove the assertion (c), observe that there are at most
(M)ns < exp{(r + 1)slogn} choices of the sef’ and
collectionS. Consider an auxiliary bipartite random graph
G(s,s,p") between the selected sétand thes r-tuples
of S, whose edges are the stdis S) of G(n,n,p). The
probability of no edge irG(s, s,p") is smaller than(1 —

10’“)32 < exp{—s?p"} < exp{f%slogn}.

Lemma 4.5 LetV; andV; be disjoint sets of vertices, each
of cardinalityn, and letG be a bipartite graph o} U V5
with vertex classe$; and ;. LetW7q, ..., W,2 be subsets
of V5. Suppose thaty and W1, .., W,. satisfy (a)—(c) of
Lemma 4.5. The6 is H(r, n, n)-universal.

Proof:  We will show that for eactH € H(r,n,n) there
exists anf : V(H) — V; U V4 such that
() f isinjective, and



(1) f(2)f(y) € E(G)if zy € E(H).

Thus, G is H(r,n,n)-universal. Fix an arbitraryd <
H(r,n,n) and denote byX andY its two vertex classes.
By the Hajnal-Szemédi Theorem there is a partitidn =
Y1 U ... UY,2, such that eacly; is two-independent it
and|Y;| = |W;| for eachi.

We will first choose a suitable bijectiof : X — Vi,
and then extend to Y, by simultaneously specifying :
Y; — W; foralli. Givenf : X — V7, define the auxiliary
graphA?) = (Y;, W;, Ej(f)), where there is an edge }.ﬁ}l)
betweeny € Y; andw € W; if and only if Ng(w) D
f(Ng(y)). Suppose eaclzt(f”) has a perfect matchingy;.
Then for eachy € Y;, and each, setf(y) = w, where
yw € M;. The resultingf : X UY — V; U V4 satisfies (1)
and (I1). The next observation follows.

Observation 4: If there exists sonfe: X — V; such
that each resultin@;’) has a perfect matching, then Lemma
4.5 follows.

To this end, we will use Proposition 4.6, stated below.
Let i be any integer in1,...,72}. We first show that the
degree of eacly € Y; in Agf) is at leasth = mp" /2. We
then show thaéA;n(S, T) > 0 for eachS C Y; andT C

W, suchthatS| = |T| = §. We finally show that the degree
of eachw € W; in ASZ) is at leas® for a random bijection
f:X -V

Claim 2: For anyf € VX, the degree of each € Agﬁ‘)
is at least = mp" /2.

(Proof of Claim 2: Lety; be any arbitrary vertex if;,
and letf be any function inV;X. Note thatf(Ng(y)))
is a set of cardinality no greater thanin V;. Therefore,
because&r andW, ..., W,2 satisfy the assertion of part (b)
of Lemma 4.4, there are at leaswerticesw; € W, such
that (w;, f(Nu(y;))) is a star inG. But y;w; € Agf) if
(wi, f(Nu(yi))) € G, so Claim 2 follows.)

Claim 3: Foranyf € V;* thatis injectivee , (S, T) >
0 for any subsef C Y; and any subsef’ C I/IZ such that
|S| =T = é.

(Proof of Claim 3: LetS C Y;, and letl” ¢ W; such that
|S| = |T| = &, and letf be any function ifl/;* that is injec-
tive. Becausg is injective, andY; is 2-independent if’,
the collectior{ f (N (y)); y € S} is a disjoint collection of
6 sets of size at mostin V;. Therefore, becausg satisfies
the assertion of part (c) of Lemma 44y, f(Ng(y))) is a
star inG, for somey € S andw € T. Howeveryw € Agf)
if (w, f(Nu(y))) € G, and Claim 3 follows.)

Thus, to prove Lemma 4.5, all we need to show now is
(*) there exists arf such that the degree of eache W; in
Agf) is at leas® for all i € {1, ...,r%}.

Indeed, Claims 2 and 3, and (*) imply, in view of Proposi-
tion 4.6 stated below, that there existsjan X — V; such
that eachAEZ) has a perfect matching; in view of Observa-

tion 4, this proves Lemma 4.5. To show (*) we will apply
the probabilistic method.

For eachw € W, let: be such thatv € W;. For each
f € V%, let Z, be the number of verticeg in Y; such
that Ny (y) € f~'(Ng(w)). Note thatZ, is the degree
of w in Agf), so (*) follows if there exists arf such that
Zyw > mp"/2 for all w € W. We now fix an arbitrary
w € W and show tha(Z,, > mp"/2) =1 — o(1/n), if
f is chosen according to the uniform distribution on the set
of injective functions of/;X. Note that this suffices to show
(*). We now compareZ,, to yet another random variable
Z!, which is easier to work with.

Let us writew € W;. Let X, be a random subset of
X such that eaclr € X belongs toX,, independently
with probability g, = |[Ng(w)|/n. LetZ!, = |{y € Y; :
Nu(y) € X,,}. SincelY;| = n/r? = m, and the sets
Ny (y), y € Y;, are mutually disjointZ/, has the binomial
distribution B(m, ¢7,), with expectatiorn = mg!,. How-
ever,q", > (cn™'/?logn)/2, sinceG is assumed to satisfy
(a) of Lemma 4.4. Therefore, we note that

w=mqy, >2mp" /3> /n.

Hence, by Chernoff's inequality (see e.g. [11], Thm.2.6,
page 26), it follows that

P(Z,, <mp?/2) < P(Z;, < 3p/4)) < exp{—p/48}

<exp{—vn} .

However, by Pittel's inequality (see e.g. [11], formula (1.6),
page 17),

P(Zy < mp"2) < ING@)IP(Z, < mp' /2)
=o(1/n).

So (*) follows, and so does Lemma 4.5, as discussed above.

Proposition 4.6 Let A = (Y, W, E) be a bipartite graph
such thatY| = |W| = n. If there exists a positive integer
0 such that (a) each vertex i U W has degree at least
din A, and (b)ea(S,T) > 0 for every two set$ C Y
andT C W such thatlS| = |T| = 4, thenA has a perfect
matching. ]

Theorem 1.4 follows immediately from Lemmas 4.4 and
4.5. |

5 Fault-tolerance of random bipartite graphs

The proof of Theorem 1.5 is based on a combination of
a sparse version of the regularity lemma with a hypergraph
packing result and several additional ideas. This proof is



more complicated than the previous proofs in this paper andLemma 5.2 Forall ¢ > 0, b > 1 andky > 0 there ex-
requires three additional lemmas. We describe these lemdist 3 > 0 and K such that the following holds. For ev-
mas here and postpone the actual proof to the full versionery choice of the scaling factgr, and a(p; b, 3)-bounded
of the paper. The firstlemma is a special case of Lemma 20bipartite graphI" on a vertex sel/ = V; U V4, where

in [12] (with «,~,k, g replaced, resp., b§/2,1/2,r, p).
For a bipartite graptF’ with vertex classe$’ and W and
for any non-empty subsets’ ¢ U andW’ C W, we de-
note byer(U’, W') the number of edges betweéf and
W', and by

- GF(U/, W/)

dy (U, W) =
rr W =

1)
the p-densityof the pair(U’, W’) in F, where0 < p < 1.
In particular, we setlp(U’,W') = dq,p(U’,W'). We say
that the paifU’, W) is (p; €)-regular inF' if

|dp,F(U/7 W/)

—d, p(U", W")| <& 2

forall U"” c U’ and allW” c W’ for which |U"| > ¢|U’|
and|W"| > |W’|. A pair which is not(p; ¢)-regular is
sometimes callefp; ¢)-irregular. IfU’ = U andWW’' = W,
we then also say thd is (p; €)-regular. For a seR € [U]"
(thatis, an--element subset df ), we define itgoint degree
in F, which we write aslegr(R), as|Ng (R)|; which is the
number of vertices that are adjacentHrto every vertex in
R. Finally, G[U, W] stands for the subgraph 6f induced
byUuWw.

Lemma5.1 ([12]) Forall » > 2, ¢ > 0, andn > 0, there
ise > 0 such that a.a.sG = G(n,n,p) withp > n=3/5"
satisfies the following property. Suppo8ecC Vi, W C
V, are sets of size at least/?, and F is a (p; ¢)-regular
subgraph olG[U, W] with e (U, W) > &eq (U, W). Then

{rewy : dosem < Sarwwyw |
)

Our next tool is the following version of Szengeli's
Regularity Lemma (see e.g. [11], page 215, Lemma 8.18).
For0 < p < 1,b> 1andg > 0, call a graph’ (p; b, 8)-
boundedf for every pair of disjoint subsets, W C V(T)
with |U|, W] > B|V(T')| we haved, r (U, W) < b. Fur-
thermore, letll = (II4,...,II;) be a partition ofV(T")
and supposé divides|V (I")|. We say that this partition is
(p; T, e, k)-regularif [II;| = |II| = ... = |II;| and for all
except at mos&(’;) choices of the indices < i < j < k,
the pairs(Il;, II;) are(p; )-regular inI". In the lemma be-
low we begin with a bipartite graph and obtain a partition
which subdivides the original bipartition.

<

@)
|

[Vi| = |Va| is divisible by K, there exists a subparti-
tion II = (I1,...,II;, 113, ..., II?) of (V4,Va) which is
(p; T, €, 2k)-regular for some: < K. |

We also need a hypergraph packing result. Givem-an
uniform hypergraps on m vertices and; > 0, we define
a recursive family ofj-uniform hypergraphsB;?, forj =
r,r—1,...,1. SetB] = B and, given3], defineB; ,
as the family of all(; — 1)-tuplesJ which are contained in
more thanym j-tuples of B7, or in other words, for which
deggn (J) > nm.

The hypergraph packing result that we need is a special
case of Theorem 2 from [16]; this was proved only for bi-
jections f, which is the tightest case. However, the proof
can be literally repeated step by step also in a more relaxed
setting when the hypergrapt has fewer vertices thal.

We say that a one-to-one functigh: V(NV) — V(B) isa
packingof A" andB, if B # f(IV) for everyB € B and ev-
ery N € N; or shortly, f(N)NB = 0, wheref(N) denotes
the image of the hypergrapt. We say thaif” is obtained
from f’ by aswitchingif there exists a paifv, w} such that
F/(@) = f"(w), f'(w) = f(v), andf'(u) = f(u) for all

u ¢ {v,w}.

Lemma 5.3 ([16]) For all integersr > 2, and for allo >
0, there existy > 0 andm, such that the following holds.
If A" and B are twor-uniform hypergraphs on, respm;
andms vertices,mg < m1 < ma, satisfyingA(N) < r
and Bi") = (), then at least half of al(m3),,, one-to-one
functionsf’ : V(N) — V(B) can be turned into a packing
f of NV and B by a sequence of at mastn, switchings.ll

The derivation of Theorem 1.5 from these lemmas will
be given in the full version of the paper.

6 Concluding remarks

It would be interesting to close the gap between the upper
and the lower bound for the minimum possible number of
edges in ar(r, n)-universal graph om vertices. Note
that the lower bound holds even for the number of edges of
any graph that contains a reasonable fraction of-adigular
graphs om vertices (whemrn is even).

The application of the Hajnal-Szengeki theorem in the
proofs of Theorems 1.3-1.5 is not essential, but is con-
venient. Instead one could use the (algorithmic) packing
lemma of Sauer and Spencer [18] (we would patcand the
union of2r2 + 2 cliques of ordern /(212 + 2), doubling the
number of rounds). Thus, our proofs can be made algorith-
mic in the sense that, for example, if indeed a given gi@ph



satisfies the assertions of Lemma 4.1, then one can find arj15] V. Rédl, A. Ruchski, Perfect matchings isrregular

embedding of any member 6{(r,n) in G in polynomial
time, using some standard matching algorithms. However,
the problem of checking whether a given graplsatisfies

graphs and the Blow-up Lemm&ombinatorical9
(3) (1999) 437-452.

these assertions does not seem to be solvable by a polynd16] V- Rodl, A. Ruchski and A. Taraz, Hypergraph pack-

mial time algorithm.
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