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Abstract. Let H be a family of graphs. We say that G is H-universal if,
for each H ∈ H, the graph G contains a subgraph isomorphic to H. Let
H(k, n) denote the family of graphs on n vertices with maximum degree
at most k. For each fixed k and each n sufficiently large, we explicitly
construct an H(k, n)-universal graph Γ (k, n) with O(n2−2/k(logn)1+8/k)
edges. This is optimal up to a small polylogarithmic factor, as Ω(n2−2/k)
is a lower bound for the number of edges in any such graph.

En route, we use the probabilistic method in a rather unusual way. After
presenting a deterministic construction of the graph Γ (k, n), we prove,
using a probabilistic argument, that Γ (k, n) is H(k, n)-universal. So we
use the probabilistic method to prove that an explicit construction satis-
fies certain properties, rather than showing the existence of a construction
that satisfies these properties.
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1 Introduction and main result

For a family H of graphs, a graph G is H-universal if, for each H ∈ H, the
graph G contains a subgraph isomorphic to H. Thus, for example, the complete
graph Kn is Hn-universal, where Hn is the family of all graphs on at most n
vertices. The construction of sparse universal graphs for various families arises
in the study of VLSI circuit design, and has received a considerable amount of
attention.

For example, as discussed in [5], page 308, universal graphs are of interest to
chip manufacturers. It is very expensive to design computer chips, but relatively
inexpensive to make many copies of a computer chip with the same design. This
encourages manufacturers to make their chip designs configurable, in the sense
that the entire chip is prefabricated except for the last layer, and a final layer
of metal is then added corresponding to the circuitry of a customer’s particular
specification. Hence, most of the design costs can be spread out over many
customers. We may view the circuitry of a computer chip as a graph, and may
also model the problem of designing chips with fewer wires that are configurable
for a particular family of applications as designing smaller universal graphs for
a particular family of graphs.

Also, as discussed in [12], we may model data structures and circuits as
graphs. The problem of designing, say, an efficient single circuit that can be
specialized for a variety of other circuits can be viewed as constructing a small
universal graph. With these applications in mind, we note that, given a family H
of graphs, it is often desirable to find an H-universal graph with small number
of edges.

Motivated by such practical applications, universal graphs for several dif-
ferent families of graphs have been studied by numerous researchers since the
1960s. For example, extensive research exists on universal graphs for forests [4],
[7], [8], [9], [10], [13], and for planar and other sparse graphs [1], [3], [4], [6], [11],
[16].

Here we construct near-optimum universal graphs for families of bounded-
degree graphs. More specifically, for all positive integers k and n, let H(k, n)
denote the family of all graphs on n vertices with maximum degree at most k.
By the size of a graph we always mean the number of its edges. Several tech-
niques were introduced in [2] to obtain, for fixed k, both randomized and explicit
constructions of H(k, n)-universal graphs of size O(n2− 1

k log1/k n), thereby set-
ting a new upper bound for the minimum possible size of an H(k, n)-universal
graph. In addition, a (simple) lower-bound of Ω(n2− 2

k ) was also established.
However, closing the gap between the upper and lower bounds was left as an
open problem.

Here we almost completely close this gap by presenting an explicit construc-
tion of an H(k, n)-universal graph Γ (k, n) of size O(n2− 2

k log1+8/k n). We de-
scribe the construction of Γ (k, n) in the next paragraph.

Construction of Γ (k, n): Let us set q ≡ log(kn/8 log4 n), and s = q/k; so q
= log n− 4 log log n+O(1), and s is just slightly smaller than (log n)/k. For the
sake of simplicity let us omit all floor and ceiling signs, and assume that s and



q are integers; this will not affect our arguments. Unless otherwise stated, our
logarithms are to the base 2. Let Γ ′(k, n) = Γ ′ be the graph with the vectors
in {0, 1}q as its vertex-set; two vertices v and w are adjacent in Γ ′ if and only
if there exist two distinct indices j′, j′′ ∈ {1, 2, ..., k} such that the (tk + j)-th
coordinate of v agrees with the (tk + j)-th coordinate of w, for all but at most
one of the pairs of integers (j, t), where j = j′, j′′ and t ∈ {0, ..., s− 1}. To form
Γ (k, n) from Γ ′(k, n), replace each vertex v in Γ ′ with a clique Vv of 64q4/k =
Θ
(
(log n)4/k

)
vertices, and interconnect each vertex of Vv with each vertex of

Vw if and only if the pair vw is an edge of Γ ′.
Note that, for each fixed k ≥ 3, the graph Γ (k, n) has size at most

kn

16 log4 n

(
k

2

)
(2s)2q−2s+2

(
64q4

k

)2

= O(n2− 2
k (log n)1+8/k),

and only about 8n vertices. Our main result is the following theorem.

Theorem 1. The graph Γ (k, n) is H(k, n)-universal for all k ≥ 3, and n suffi-
ciently large.

The rest of this extended abstract is organized as follows. In §2, we apply a
graph embedding technique to prove that Γ (k, n) is H(k, n)-universal, provided
each member of H satisfies a certain decomposition property (see Lemma 1,
below). This decomposition property is easily satisfied by all graphs in H(k, n)
for k even, and by all graphs in H(k, n) for k odd with chromatic index k,
including all bipartite members of H(k, n) (see Examples 2.3 and 2.4).

The remaining case, i.e. k odd and H of chromatic index k + 1 is, however,
quite troublesome. In §3 we sketch a proof of the existence of a suitable decom-
position of every graph H ∈ H(k, n). Finally, in §4 we show how to turn Γ (k, n)
into an H(k, n)-universal graph Λ(k, n) that has, say, only (1 + ε)n vertices, and
still only O(n2− 2

k (log n)1+8/k) edges.
The techniques in §2 combine combinatorial and probabilistic ideas, the

proofs in §3 are based on tools from matching theory, including Tutte’s Theorem
and the Gallai-Edmonds Structure Theorem, while the result in §4 is obtained
by applying some of the known constructions of expanders and concentrators.
In order to make this abstract more complete, we present some of the more
technical parts of §3 in an appendix.

2 A graph embedding technique

A graph F is (m,M)-path-separable if there exists a collection P of edge disjoint
paths in F , each of length between 2m and 4m such that for every E ⊆ E(F )
which intersects each P ∈ P, every connected component of F \ E has fewer
than M vertices. Thus a graph is path-separable if we may pick in it a collection
of short edge-disjoint paths with the property that any transversal of the edge
sets of these paths breaks up the graph into components of bounded size.



Example 2.1. Every union F of vertex disjoint paths and cycles is (m, 8m)-
path-separable for all positive integers m. Indeed, partition the edge set of each
component of F containing at least 4m edges into paths of lengths between 2m
and 4m.

Example 2.2. A graph in H(k, n) obtained from a union of vertex disjoint
paths and cycles (called later units) by designating one of its components as the
central unit and connecting some of the other components to the center, each
by exactly one edge (called a spoke), will be called a windmill. It is easy to see
that every windmill is (m, 64km2)-path-separable. Again, partition every unit
containing at least 4m edges into paths of lengths between 2m and 4m. After
cutting the paths with a set E, each vertex of the largest piece (of order at most
8m) in what is left of the central unit can be connected with up to k − 1 paths
from the other units, each of length less than 8m.

A graph H ∈ H(k, n) is (2, k,m,M)-decomposable if one can find subgraphs
F1, ..., Fk of H, not necessarily all distinct, such that each Fi is (m,M)-path-
separable, and each edge of H appears in exactly 2 subgraphs Fi. Let us call
F1, ..., Fk a (2, k,m,M)-decomposition of H.

Example 2.3. Every graphH ∈ H(k, n) of chromatic index k is (2, k,m, 8m)-
decomposable into graphs from H(2, n). Indeed, let M1, ...,Mk be matchings
that cover the edges of H. Let F1 = M1 ∪M2, F2 = M2 ∪M3, ..., Fi = Mi ∪
Mi+1, ..., Fk−1 = Mk−1 ∪Mk, Fk = Mk ∪M1.

Example 2.4. If k is an even integer, then every graph H ∈ H(k, n) is
(2, k,m, 8m)-decomposable into graphs from H(2, n). This time, by the Petersen
Theorem (see, e.g., [15], p. 218), every such graph can be covered by k/2 sub-
graphs F1, ..., Fk/2, where Fi ∈ H(2, n) for all i. Set Fk/2+j = Fj , j = 1, . . . , k/2.

As far as we know, for odd k, it is still open as to whether or not every graph
H ∈ H(k, n) has a (2, k,m,O(m))-decomposition. However, for all integers k and
m, we will prove in the next section that every such graph has a (2, k,m, 64km2)-
decomposition. This, and Lemma 1, will imply Theorem 1. Indeed, 64sq = 64ks2,
since we set s to be q/k.

In the remainder of this section we prove Lemma 1.

Lemma 1. If H ∈ H(k, n) is (2, k, s, 64sq)-decomposable, then Γ (k, n) ⊃ H.

Proof of Lemma 1. Let F1, ..., Fk be a (2, k, s, 64sq)-decomposition of H.
Define Fi for all i = k + 1, ..., q, by setting Ftk+j = Fj for each j ∈ {1, ..., k},
and each t ∈ {1, ..., s − 1}. Trivially, for each edge e ∈ E(H), there are two
distinct indices j′, j′′ ∈ {1, ..., k} such that e ∈ Ftk+j for each j = j′, j′′ and
t ∈ {0, 1, ..., s− 1}.

Let Pi be a family of paths which exhibits the (s, 64sq)-path-separability of
Fi, i = 1, . . . , q. The following fact is crucial.

Claim 2 There exist subsets Ei ⊆ Fi, i = 1, . . . , q, such that
(i) for all 1 ≤ i < j ≤ q, we have Ei ∩ Ej = ∅, and
(ii) for all i = 1, . . . , q, we have Ei ∩ P 6= ∅, for each P ∈ Pi.



Proof of Claim 2. Consider an auxiliary bipartite graph B with the paths from
(the multiset)

⋃q
i Pi on one side (red vertices) and the edges of H on the other

(blue vertices), where the edges of B connect the edges of H with the paths
they belong to. In this graph, the degree of every red vertex is at least 2s (the
length of the path), while the degree of every blue vertex is at most 2s (since
every edge of H belongs to exactly 2s graphs Fi and, for given i, to at most one
path from Pi). Hence, by Hall’s matching theorem, one can assign to each path
a different edge. The edges assigned to the paths of Pi form the desired set Ei,
i = 1, . . . , q. ut

Continuing with the proof of Lemma 1, let Ei ⊆ Fi, i = 1, ..., q, satisfy (i)
and (ii) of Claim 2, and let Li = Fi \ Ei for each i = 1, ..., q. Then, clearly,

(a) for each edge e ∈ E(H), there exist two distinct indices j′, j′′ ∈ {1, 2, ..., k}
such that e ∈ Lkt+j for all but at most one of the pairs of integers (j, t), where
j = j′, j′′ and t ∈ {0, ..., s− 1}, and

(b) each connected component of each Li has at most 64sq vertices.

Recall that Γ (k, n) = Γ is constructed by blowing up the vertices of another
graph Γ ′(k, n) = Γ ′. Now, we will show the existence of an embedding f :
V (H)→ V (Γ ′) = {0, 1}q such that

(I) if xy ∈ H, then f(x) = f(y), or f(x)f(y) ∈ Γ ′ , and
(II) |f−1(v)| ≤ 64q4/k for each v ∈ Γ ′.

This will prove that H is a subgraph of Γ .
For each i = 1, ..., q, let Ci denote the set of connected components of Li, and

let a function fi : Ci → {0, 1} be given. We now specify f : for each x ∈ V (H),
let f(x) be such that the i-th coordinate of f(x) is fi(Ci(x)), where Ci(x) is the
connected component of Li that contains x. Observe that if xy ∈ Li, then clearly,
x and y are in the same connected component of Li, and the i-th component of
f(x) equals the i-th component of f(y). Hence, by (a) and the construction of
Γ ′, if xy ∈ H then f(x)f(y) ∈ Γ ′, unless f(x) = f(y). Consequently, f satisfies
condition (I).

It remains to show that there exists such an f with |f−1(v)| ≤ 64q4/k for all
v ∈ V (Γ ′). We apply the probabilistic method. Let each fi be chosen randomly
according to the uniform distribution on {0, 1}Ci . Then f is also random, but
not necessarily uniform on V (Γ ′)V (H). To avoid this problem, we split V (H)
suitably, being guided by the following elementary observation.

Claim 3 Let each fi : Xi → V be drawn uniformly at random, i = 1, . . . , q. Let
Y be a set of vectors in X1× . . .×Xq, such that no two vectors in Y have a com-
mon coordinate. Then, letting yi (i = 1, . . . , q) denote the i-th coordinate of each
y ∈ X1×. . .×Xq, the function f : Y → V q, defined by f(y) = (f1(y1), . . . , fq(yq))
is also drawn according to the uniform distribution on (V q)Y . ut

Let H ′ be the graph obtained from H by connecting every two vertices x and
y which, for some i = 1, . . . , q, are in the same connected component of Li. If Y
is an independent set in H ′, then, by Claim 3, f |Y is distributed uniformly on
V (Γ ′)Y . As the degree of H ′ is smaller than q(64qs) = 64sq2, we can partition



the vertices of H into r = 64sq2 = 64q3/k sets Y1, Y2, . . . , Yr, each independent
in H ′, and so, for each j = 1, . . . , r, f |Yj is distributed uniformly on V (Γ ′)Yj .

In fact, by applying the Hajnal-Szemerédi Theorem [14] to H ′, we can ensure
that Y1, ..., Yr have all equal cardinality (to within 1). So each Yj has cardinality
n/64sq2. Since V (Γ ′) = V has cardinality 2q = kn/8 log4 n, which is at least
kn/10q4 for large enough n, it follows that |Yj |/|V | ≤ 5sk/32 = 5q/32.

To confirm condition (II), it suffices to show that, for each fixed j ∈ {1, . . . , r},
with probability at least 1 − o(1/r), |f−1(v) ∩ Yj | ≤ q for all v ∈ V . Thus, the
following simple, probabilistic fact is just what we need.

Claim 4 Let Y and V be two sets with |Y | ≤ 5q|V |/32 and |V | = 2q. If a
function f : Y → V is chosen uniformly at random, then

Prob(∃v ∈ V : |f−1(v)| > q) = o(1/q3).

Proof of Claim 4. The probability in question can be bounded from above by

|V |
(
|Y |
q

)
|V |−q < |V |

(
15
32

)q
=
(

15
16

)q
= o

(
1
q3

)
.

ut
To finish the proof of Lemma 1 we apply Claim 4 r times, with Y = Yj ,

j = 1, . . . , r, and V = V (Γ ′). ut

3 Windmill decomposition of graphs

In this section we prove the following proposition which together with Lemma 1
completes the proof of Theorem 1.

Proposition 1. For each k ≥ 3, every graph H ∈ H(k, n) is (2, k, s, 64sq)-
decomposable

In view of Examples 2.2–2.4, Proposition 1 is a simple corollary of the next
result and the fact that 64sq = 64s2k. Recall the definition of a windmill given
in Example 2.2. We say that H ∈ H(k, n) is (2, k)-decomposable into windmills
if there exist subgraphs F1, ..., Fk of H, not necessaily all distinct, such that

(i) each edge of H appears in exactly two of the Fi’s, and
(ii) each Fi is a vertex-disjoint collection of windmills.

In this case, the collection F1, ..., Fk is called a (2, k)-decomposition of H into
windmills.

Proposition 2. For each odd k ≥ 3, every graph H of maximum degree at most
k is (2, k)-decomposable into windmills.

Proof. We first present a construction of subgraphs W,F2, ..., F(k−1)/2 of H.
Next we prove that each Fi is a vertex-disjoint collection of windmills (see
Lemma 2, below), and thatW is (2, 3)-decomposable into windmills (see Lemma 2
and Lemma 3).



The construction of W,F2, ..., F(k−1)/2. Let us assume, without loss of gener-
ality, that H is k-regular, as H is a subgraph of a k-regular graph (that may have
a larger vertex-set). We further assume that H is connected. Recall that a Tutte
set in H is a set S of vertices such that if H − S has m connected components
with an odd number of vertices, then the size of the maximum matching in H is
1
2 (|V (H)|−m+|S|). Let S be a maximal Tutte set of H, and let C = {C1, ..., Cm}
denote the set of odd connected components of H \ S. For any C ∈ C, and any
subgraph F ⊆ H, let δF (C) denote the number of edges in F with exactly one
endpoint in C.

Using the Gallai-Edmonds Structure Theorem (see, e.g., [15], pp. 94-95) and
Hall’s Theorem, one can prove that there exists a collection M∗ of vertex-disjoint
stars of H that satisfies the following properties.
(i) Each s ∈ S is a center of a star χs ∈ M∗, where the χs’s, s ∈ S, are such
that

(†) each such χs has at least one edge,
(a) no χs contains any vertices of S \ {s},
(b) no χs contains any vertices in any even connected component of H \ S,
(c) for each C ∈ C, there is exactly one edge eC that is incident to a vertex

in C, and also belongs to some χs, and
(d) for each s ∈ S, there is at most one C ∈ C such that δH(C) ≥ k and

V (χs) ∩ V (C) is nonempty.
(ii) The subgraph of M∗ induced by the vertices of H not belonging to any χs
as in (i) is a perfect matching.

Note that

(*) M∗[V ′] has maximum degree at most 1 for any set V ′ of vertices disjoint
from S.

Each vertex in H has degree at least 1 in M∗; let F ′1, ..., F
′
(k−1)/2 be subgraphs

with maximum degree at most 2 such that
⋃
j F
′
j = H \M∗. Such subgraphs

exist by the Petersen Theorem (cf. Example 2.4). For each j ≥ 2 in its turn,
we now construct Fj from F ′j as follows. For each C ∈ C such that δF ′

j
(C) = 0,

add eC to F ′j unless it already belongs to Fj′ for some 2 ≤ j′ < j, and call the
resulting graph Fj . Note that

(**) δFj (C) ≤ 1 if δF ′
j
(C) = 0, for each C ∈ C.

Let W = H \ F2 ∪ ... ∪ F(k−1)/2. (Note that W \M∗ = F ′1.)
The next two lemmas describe the structure of the subgraphs W , F2,...,

F(k−1)/2. Their proofs are given in the appendix.

Lemma 2. The graphs W,F2, ..., F(k−1)/2 satisfy the following two conditions.
(i) We can partition V (W ) = V (H) into sets V0, ..., Vt such that

(A) for each j ∈ {1, ..., t}, there is at most one edge ej in W with exactly
one endpoint in Vj (the edges ej will be called the parting edges of W ), and

(B) each W [Vi] has maximum degree 3, and a matching Mi that saturates all
vertices of degree 3 in W [Vi].
(ii) Each Fi is a vertex-disjoint collection of windmills.



Lemma 3. Let H ′ be a graph in H(3, n) that contains a matching M that sat-
urates each vertex of degree 3 in H ′. Then there exist three subgraphs F1, F2, F3,
such that

(i) each edge of H ′ appears in exactly two of the Fi’s;
(ii) F1, F2 have maximum degree 2, and F3 is a collection of vertex disjoint

windmills.

We now use Lemmas 2 and 3 to finish the proof of Proposition 2. Take
two copies of each of the graphs F2, ..., F(k−1)/2 to obtain F2, ..., Fk−2, which
are each vertex-disjoint collections of windmills, by Lemma 2. Therefore, to
prove Proposition 2, all we need to show is that W is (2, 3)-decomposable into
windmills, say, F1, Fk−1, and Fk, and thus obtain a (2, k)-decomposition of H
into vertex-disjoint windmills.

To this end we use Lemma 3. Let V0, V1, ... be as in Lemma 2 (i). For each
W [Vj ], let Yj,1, Yj2 , Yj3 be a (2, 3)-decomposition of W [Vj ] into windmills, such
that each Yj,1 and Yj,2 have maximum degree 2; such graphs exist by Lemma 3.
Let E′ denote the set of parting edges in W . Note that F1 = E′ ∪ (

⋃
j Yj,1) and

Fk−1 = E′∪(
⋃
j Yj,2) is a vertex-disjoint collection of windmills, and Fk =

⋃
Yj,3

is also a vertex-disjoint collection of windmills, and that each edge of W appears
in at least 2 of the graphs F1, Fk−1, Fk. This completes the proof of Proposition 2.

ut

4 Universal graphs with fewer vertices

In this section, we sketch a construction of an H(k, n)-universal graph Λ(k, n) =
Λ, which still has O(n2− 2

k (log n)1+8/k) edges, but only has (1 + ε)n vertices, for
any fixed ε > 0.

Let us write V (Γ (k, n)) = V , and let Ω = (V,Q,E) be a bipartite graph
of bounded degree such that |Q| = (1 + ε)n, and |N(X)| ≥ |X| for each subset
X ⊂ V such that |X| ≤ n. It is well-known that such an Ω, usually called a
concentrator, exists, and can be constructed explicitly using the known construc-
tions of bounded-degree expanders. We now construct Λ(k, n), which has Q as
its vertex-set. Let ν and ν′ be vertices in Q. The edge νν′ ∈ Λ if and only if
there exist vertices v, v′ ∈ V such that vv′ ∈ Γ (k, n), and vν, v′ν′ ∈ Ω. We have
|E(Λ)| ≤ |E(Γ )|∆(Ω)2 = O(|E(Γ )|).

The following theorem can be easily deduced from Theorem 1.1.

Theorem 5. Λ(k, n) is H(k, n)-universal for all k ≥ 3, and n sufficiently large.

Proof. Let H ∈ H(k, n). Then, by Theorem 1.1, H ⊂ Γ (k, n). By the expand-
ing property of Ω and by Hall’s Theorem, Ω has a matching f between V (H)
and a subset of Q. Thus, if xy ∈ H then f(x)f(y) ∈ Λ. ut
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A More details for Section 3

Proof of Lemma 2: We first prove (ii), namely, show that each Fi is indeed a
vertex-disjoint collection of windmills. As F ′i is a collection of vertex-disjoint
cycles and paths, each connected component of Fi not containing an edge of
Fi \F ′i is either a path or a cycle. Thus, it remains to show that L is a windmill,
for each L that is a connected component of Fi containing an edge e = xy in
Fi \ F ′i . The edge e is of the form eC , for some C ∈ C; let us assume without
loss of generality that y 6∈ C, but x ∈ C. Note that (a’) both x and y cannot
be in the same connected component of F ′i , since otherwise δF ′

i
(C) > 0, and

e 6∈ Fi. Similarly, (b’) the connected component L′x of F ′i containing x must
be contained in C. But (a’), (b’) and (**), together with the fact that each
connected component of F ′i is either a path or cycle, imply that L must be a
windmill. Thus Lemma 2 (ii) follows.

We now show that W satisfies (i) of Lemma 2.
Claim 3.1: For each C ∈ C, the quantity δH(C) is an odd integer. So if

δH(C) < k, then δH(C) ≤ k − 2.
Claim 3.1 follows from the fact that H is k-regular, with k an odd integer, and
that C has an odd number of vertices.

Claim 3.2: For each C ∈ C, and each i, the quantity δF ′
i
(C) is an even integer.

So if δF ′
i
(C) > 0, then δF ′

i
(C) ≥ 2.

Claim 3.2 follows from the fact that each vertex in C has degree exactly 1 in
M∗, so each vertex in C has degree exactly k− 1 in H \M∗, and so exactly 2 in
each F ′i .

Claim 3.3: All but one of s’s neighbors in M∗ ∩W are in some C ∈ C such
that δW (C) ≤ 1.
Proof of Claim 3.3: From the definition of M∗ and Claim 3.1, all but one of
s’s neighbors in M∗ are in some C ∈ C such that δH(C) ≤ k − 2. But by
definition of the Fi’s, and Claim 3.2, for each such C, either δH\(F2∪...∪Fi)(C) ≤
δH\(F2∪...∪Fi−1)(C) − 2 for each i, or eC ∈ Fi, and therefore, eC 6∈ W , and so
Claim 3.3 follows.

Claim 3.4: Let V0 be the set of vertices v such that either v ∈ S, or v ∈
C ∈ C such that δW (C) > 1, or v is in any even-sized connected component of
H \ S. Then (1) each vertex in W [V0] has degree at most 3, and (2) W [V0] has
a matching covering all vertices of degree 3 in W [V0].
Proof of Claim 3.4: By Claim 3.3, M∗[V0] is a matching. Since W [V0]\M∗ ⊆ F ′1,
which has maximum degree 2, both (1) and (2) follow.

Claim 3.5: For each Cij ∈ C′ = {Ci1 , ..., Cil} ⊆ C such that δW (Cij ) ≤ 1 for
each j ∈ {1, .., l}, let Vj denote the set of vertices of Cij . The graph W [Vj ] has
a matching that saturates all vertices of degree 3 in W [Vj ].
Proof of Claim 3.5: M∗[Vj ] is a matching by (*), and W [V0] \M∗ ⊆ F ′1, which
has maximum degree 2.

Lemma 2 follows from Claim 3.6.
Claim 3.6: W satisfies (i) of Lemma 2.

Proof of Claim 3.6: Use Claims 3.4 and 3.5. ut



Proof of Lemma 3: The idea is to find a subset M1 of M , and a matching M2 that
is a subset of H ′\M , such that F2 = (M \M1) ∪ ((H ′\M)\M2) has maximum
degree 2, and F3 = (H ′\M) ∪M1 is a vertex-disjoint collection of windmills.
Then let

F1 = M ∪M2; F2 = (M\M1) ∪ ((H ′\M)\M2); F3 = (H ′\M) ∪M1.

Each edge of H ′ appears in exactly two of the Fi’s, and hence this will imply
Lemma 3.

We now describe how to find M1 and M2. Let us add edges to H ′ \M to
obtain a graph F3, consisting of vertex-disjoint windmills, such that

(i) the units of the windmills in F3 are the connected components of H ′ \M ,
and

(ii) each odd cycle C of H ′ \M such that each v ∈ C has degree 3, is a unit
of a windmill in F3 with at least two units.

To find such an F3, contract each connected component C of H ′\M to a
single vertex vC ; call the resulting graph G, and take any subgraph of G with
the fewest possible edges such that each such vC has positive degree if vC has
positive degree in G; the resulting graph corresponds to such an F3. Let the set
of edges that are the spokes of the windmills in F3 be M1; note that M1 ⊆ M ,
and that F3 = (H ′ \M)∪M1. Note also that each odd cycle of H ′ \M contains
a vertex v such that v has degree exactly 2 in H ′ \M1, and degree exactly zero
in M \M1.

Let us now specify M2 ⊆ H ′\M . Let C be a connected component of H ′\M .
If C is a path or an even cycle, let M2 ∩ C be any matching such that C \M2

is also a matching. If C is an odd cycle, let v be a vertex in C that has degree
exactly 2 in H ′ \M1, and let M2 be a matching of C such that the only vertex
of C that has degree 2 in C \M2 is v.

One can check that the maximum degree of each vertex in F1 and in F2

is 2; Indeed, F1 is the union of two matchings. Each vertex on a path or even
cycle C of H ′ \M has degree at most 1 in M \M1, and degree at most 1 in
(H ′ \M) \M2, while each vertex on an odd cycle C of H ′ \M having degree 2
in (H ′ \M)\M2 has degree 0 in M\M1. Because each vertex of H ′ has degree
at most 2 in H ′ \M , each vertex of H ′ has degree at most 2 in F2. Finally, as
we have already established that F3 is a collection of vertex-disjoint windmills,
Lemma 3 follows. ut


