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Abstract

Let C be a code of length n over an alphabet of ¢ letters. For a pair of integers
2 <t <u, Cis (t,u)-hashing if for any two subsets T,U C C, satisfying T C U, |T| = t,
|U| = u, there is a coordinate 1 < i < n such that for any x € T, y € U —z, z and y differ
in the i-th coordinate. This definition, generalizing the standard notion of a ¢-hashing
family, is motivated by an application in designing the so-called parent identifying codes,
used in digital fingerprinting. In this paper we provide lower and upper bounds on the
best possible rate of (¢, u)-hashing families for fixed ¢,u and growing n. We also describe
an explicit construction of (¢, u)-hashing families.

1 Introduction

Let @ be an alphabet of size ¢, and let us call any subset C of Q™ an (n, M)-code when
|C| = M. Elements ¢ = (z1,...,2,) of C will be called codewords. As usual, let R = R(C) =
log, M/n denote the rate of C.

For a parameter ¢ > 2 a code C is called t-hashing if for any t distinct codewords
z',...,zt € C there is a coordinate 1 < i < n such that all values wf, 1 <45 <t are
distinct. The concept of a hashing family is certainly between the most central in Computer
Science and Coding Theory, and its numerous applications have been described in the liter-
ature, see, e.g., [10] and its references. An obvious necessary condition for the existence of a
t-hashing family of positive rate is ¢ > ¢, and indeed large hashing codes are known to exist
for this range of parameters (see [9], [13], [14], [16] for bounds on the rate of ¢-hashing families
of growing length).

In this note we consider a different notion of hashing.

Definition 1 Let 2 < t < u be integers. A subset C C Q™ is (t,u)-hashing if for any two
subsets T,U of C such that T C U, |T| =t, |U| = u, there is some coordinate i € {1,...,n}
such that for any © € T and any y € U,y # x, we have x; % y;.
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The concept of (¢,u)-hashing is easily seen to generalize the standard notion of hashing.
Indeed, when u =t + 1, a (¢, u)-hashing family is (¢ 4+ 1)-hashing.

As it turns out the somewhat artificially looking class of (¢, u)-hashing codes is exactly
what is required to show the existence of high rate codes in a relatively well studied class of
codes, called parent-identifying codes. This connection together with known bounds on the
rate of parent-identifying codes is described in the the next section.

2 Parent identifying codes

Let C be an (n, M)-code. Suppose X C C. For any coordinate i define the projection

P(X) = [J {=i}-

zeX

Define the envelope e(X) of X by:
e(X)={z e Q":Vi,z; € P(X)}.

Elements of the envelope e(X) will be called descendants of X. Observe that X C e(X) for
all X, and e(X) = X if | X| = 1.

Given a word s € Q™ (a son) which is a descendant of X, we would like to identify without
ambiguity at least one member of X (a parent). From [4], we have the following definition, a
generalization of the case ¢ = 2 from [11].

Definition 2 For any s € Q™ let Hy(s) be the set of subsets X C C of size at most t such
that s € e(X). We shall say that C has the identifiable parent property of order ¢ (or is a
t-identifying code, or has the t-IPP, for short) if for any s € Q", either Hi(s) =0 or

[ X #0.

XeH(s)

The study of parent identifying codes is motivated by its connection to digital fingerprint-
ing and schemes against software piracy, see, e.g., [8], [7], [17]. Currently there are already
several papers discussing bounds on the size/rate of parent identifying codes. The case of a
fixed length and large alphabet size has been considered in [11], [2], [3], [5], while the case of a
fixed size alphabet and growing length has been treated in [8], [4]. Here we will be concerned
with the latter case.

It is not difficult to prove that if the minimum Hamming distance of C is large enough,
then C must be ¢-identifying: we have [8]:

Proposition 1 If C has minimum Hamming distance d satisfying
d> (1-1/t*)n,
then C is a t-identifying code.

In fact, the condition d/n > 1 — 1/t? guarantees a stronger property: t-traceability ([8]),
namely, that all closest codewords to the produced descendant are part of the coalition pro-
ducing it. It thus insures the ¢-IPP, with the extra feature of a search algorithm linear in

|C.



Let Ry(t) = liminfmax R(C}), where the maximum is computed over all t-identifying
n—0o0

codes Cy, of length n.
In [4], the following is proved:

Theorem 1 R,(t) > 0 if and only if t < g — 1.

Barg et al. discovered in [4] a connection between (t,u)-hashing and ¢-IPP. Specifically,
they proved the following:

Lemma 1 Let u = [(t/2+ 1)?)|. If C is (t,u)-hashing then C is a t-identifying code.
They also obtained a lower bound on the rate of (¢, u)-hashing families:

Lemma 2 Let u > t+ 1 and € > 0. Infinite sequences of (t,u)-hashing codes exist for all
rates R such that Y
(g—1)q

(¢ —1)lg" —gl(g —t)» ="

1
R+e< =] log,
By combining Lemmas 1 and 2 one gets the following lower bound on the rate of -
identifying codes:
Theorem 2 Let u = [(t/2+1)?)|. We have

1 (¢ —t)'g"

Ry(t) > 1 .
o) >y ok (¢ —t)lg" — ql(g — t)»*

Our main result here is an improvement of the bounds in Lemma 2 and in Theorem 2. We
also obtain an explicit construction of high rate (¢, u)-hashing families, based on some known
explicit constructions of codes.

3 New bounds for (¢,u)-hashing

In this section we present new bounds on the rate of (¢,u)-hashing families. For simplicity
we consider here only the case of the smallest possible alphabet ¢ = t + 1. We denote
Q=10,...,t}.

Two families A C B C Q" are called separated if there exists a coordinate i, 1 <14 < m, so
that for every a € A and every b € B — a one has a; # b;. Then such a coordinate ¢ is called
separating.

Theorem 3 Letu > t+ 1, g=t+ 1 and ¢ > 0. Infinite sequences of (t,u)-hashing codes
exist for all rates R such that

t(u —t)vt

< .
Rtes G —DmE+ D

Proof. We will apply the probabilistic method with expurgation to (¢,u)-hashing codes.
Choose 2m vectors in Q" independently with repetitions, where each vector ¢ is generated
according to the following distribution: for each coordinate 1 < i < n, Pr[c; = 0] = (u—1)/u,
and Pr[c; = j] = 1/u for j = 1,...,t. The value of m will be chosen later. Denote the



obtained random family by Cy. Now estimate the expected number of non-separated pairs
T C U C Cy, where |T| = t, |U| = u. The probability that a coordinate i separates
T={al,...,a'} and U =T U {b',...,b% 7!} is at least as large as the probability that all a¥
are different and are different from 0, and bé =0,1l=1,...,u—t. The latter probability is

exactly ¢! (%)t (“T_t)u_t = t'(u;# As all coordinates behave independently we get

th(u —t)»=\"
Pr[T,U are not separated]| < (1 - #) .
U

Hence the expected number of non-separated pairs A, B in Cj is at most (2;”) (7;) times the
above expression. We obtain that if

() (- = )

then there exists a code Cyp C Q" of cardinality |Cy| = 2m with at most m non-separated
pairs T C U C Cy, |T| = t, |U| = u. Fix such a code and for each non-separated pair
(T,U) delete one vector from T. Denote the resulting code by C. Then C is (t,u)-hashing
and |C| > m. We infer that for every m satisfying (1), there exists a (¢, u)-separating code
C C Q" of cardinality m. It now remains to solve (1) for m. Observe that

2m\ (u L thu — ) t\" < (2m)“ute*t!(u;9uit",
u t u®

and thus is order to satisfy (1) it is enough to require:

tlu—t)v Tt
2uytmbe wio P <m,

( 1 ﬁ t!(u—t)“*tn
m < e w¥(u—1) .
=\ 2uyl

It follows that there exists a (¢, u)-hashing family of rate

or

1 Inm t(u — )t -
Eln(t +1) o u(u — 1) In(t + 1) o(1),

1
R:—l =
o 05t

as claimed. O

Recalling now Lemma 1 and performing simple asymptotic manipulations we get the
following asymptotic lower bound on the rate of ¢-identifying codes:

Corollary 1 There exists an absolute constant ¢ > 0 such that:

ct!22t
> — 4—t(1+o(1))
Ruil®) 2 propy =1

Theorem 4 Let C C {0,...,t}" be a (t,u)-hashing code. Then

(t+ )N (u—t—1)wt1t
2In(t 4+ 1)(u — 2)u—2

1
—log;; |C| <In3
n

+o(1) .



Proof. The argument here borrows some ideas from the proof of Nilli [16] for the upper
bound for hashing. We first prove the following claim.

Claim 1 If C contains subsets Ty C Uy of cardinalities |Ty| = t—1, |Uy| = u—2, respectively,
such that (To, Uy) has at most p separating coordinates, then |C| —u + 2 < 3¥.

Claim proof. Fix such Ty, Uy and assume to the contrary that |C| —u + 2 > 3#. Let
I C [n] be the set of coordinates separating Ty and Up. Then |I| < u. For each i € I set
Qi = {a; : a € Ty}. Obviously, |Q;| =t —1 and thus |Q \ Q;| = 2. By the pigeonhole principle
it follows that the set C \ Uy contains two distinct vectors c',c? so that for every i € I,
ct=c2e€Q\Q;orc,cl €Q;. DefineT =TyU{c'}, U=UyU{c!,c?}. We claim that the
pair (T, U) violates the condition of (¢,u)-hashing. Indeed, if a coordinate i separates T' and
U then it already separates Ty and Uy and thus i € I. But then, if ¢! = ¢7, then, as ¢! € T
and ¢ € U\ T, i does not separate T and U. In the second case cl1 € Q;, and hence ¢' € T
and cl1 coincides with a; for some a € T;. The obtained contradiction establishes the result.

O

Returning to the proof of the theorem, we now show that there exists a pair (Tp, Up) as in
the above claim with few separating coordinates. To this end, we choose Ty and Uy at random

(with repetitions) and estimate from above the expected number of coordinates separating
_ |{ceCici=5}]

Ty and Up. Fix a coordinate 4 and for all 0 < j < ¢ denote p; = e i.e., p; is the
frequency of symbol j in coordinate 7. Then
Pr[i separates Ty and Up] = Z (t—1)! Hpj(l - ij)“_t_l )
ICQ,|I|=t-1 JjeI jeI

By the arithmetic-geometric means inequality, for a fixed I C Q, |I| =1t — 1,

[Tw—t—1p)- 1= p)—" - < (w=t =12 jerpi + (=t =1 =~ 2 jerPi)

u—2

3
jel jel

)u—t—l < (u—t—1)v—t-1

w=2)i= Hence the probability that ¢ is

implying that [];c;pj(1 — 3 ;erp;
separating is at most

t+1 (u—t—1)"=1  (t+ 1) (uw—t 1)t
(t—1)! =
t—1 (u —2)v—2 2 (u —2)v—2
By linearity of expectation there exists a pair (Tp,Uy) with Ty C Uy C C, |Ty| = t — 1,
) (u—t—1)v—t-1t
(u—2)v—2
estimate into Claim 1 gives the required upper bound on C. O

|Uo| = u — 2, and with at most p = (H; n separating coordinates. Plugging this

It is instructive to compare the upper and the lower bounds for (%, u)-hashing families
given by Theorems 4 and 3, respectively. One can easily see that for large ¢, both bounds on
the rate are exponentially small in ¢, while their ratio is (up to negligible terms)

In3(t+ 1) (u—t—1)vt! H(u — )it 1
2In(t+ 1)(u — 2)u—2 . (uu(u —1)In(t + 1))

_ In3 (u —t— 1)u—t—1 'u,“(u — 1) t u—1 u—2
R IR A i i e R b (u—z)
- o,



and thus is only polynomial in case u is polynomial in ¢ (as happens for example when applying
(t,u)-hashing families for constructing codes with the identifying parent property, see Lemma
1). Thus, the obtained bounds for (¢, u)-hashing nearly match each other.

Comparing the lower bounds of Lemma 2 and Theorem 3, one can easily show that in
case u is quadratic in ¢ the bound of Theorem 3 is exponentially better than that of Lemma
2. For t-identifying codes over an alphabet of t+1 elements we get here that the best possible
rate is ¢t~ *(11°(1)) whereas the lower bound that follows from Lemma 2 is only 0%

4 Explicit constructions

Concatenation, see e.g. [15], is a powerful method to construct infinite families of codes with
a required property by combining a “seed” code with the property over a small alphabet,
together with an appropriate code over a larger alphabet (whose size is the size of the seed).

Let C; be an (N, M) code over U, where [U| = 4ut; let Cy (the seed) be an (n,4ut) code
over Q, |Q| =t+ 1. We fix a bijection ¢ : U — Cs.

Denoting by C; * Cy the concatenation of C; and Cs, obtained by replacing in codewords
of Cy every occurrence of a symbol a € U by its image ¢(a) in Cy, we have the following
result:

Proposition 2 If Cy is (t,u)-hashing of rate Ry and Cs is (t,u)-hashing of rate Ra, then
C1 x Cy is a (t,u)-hashing (Nn, M) code of rate Ry Ry over Q.

Proof. The fact that the rate of the concatenation is the product of the rates of concatenated
codes is standard and easy to verify. It thus remains to check that the concatenation Cy % Co
is indeed (¢,u)-hashing. Let U C Cy % Cy, |U| = u, T C U, |T| = t. Let a',...,a’ be
the codewords of C; corresponding to those of T, and let b!,...,b"~* be the codewords of C;
corresponding to U\T. As C is (¢, u)-hashing there exists a coordinate 1 <4 < N in which all
symbols a},...,al € U are distinct and disjoint from the set {b},...,b% "} C U of cardinality
at most u — t. As Cy is (¢,u)-hashing as well, there is a coordinate 1 < j < n, where all
symbols (¢(a}));,--., (¢(al)); are distinct and disjoint from the set {(A(b}));, - - -, (p(b¥*));}-
Hence in coordinate n(i — 1) + 5 all codewords of T' are pairwise distinct and disjoint from
those of U \ T O

It is easy to check that if the minimum distance of a code of length N is at least (1— %)N ,
then this code is a (¢, u)-hashing. Indeed, for any sets T' C U of codewords, |T'| =t, |U| = u,

there are at most 7 )
T —|T])] =N < N
((5) + 71~ 17) 2o <

coordinates in which some member of T' coincides with another member of U. Thus, there
is a separating coordinate, as needed. In [1] the authors describe an explicit construction of
codes of length N over an alphabet of size g with minimum distance (1 — §)N and rate at
least

)
Mazs<u<i-1/4c(1 — Hg(p))(1 — ;)
where c is an absolute positive constant, and H,(z) = —zlog, z—(1—x) log,(1—x)+z log,(g—

1). Taking g = 4ut, 6 =1 — % =1- % we obtain the following, by substituting 4 =1 — % in
the above estimate:



Proposition 3 There exists an explicit (t,u)-hashing family over an alphabet of size 4ut of

rate @(m)

For the seed C now, we use the following general trivial construction:

Proposition 4 For every t, there exists a (t,u)-hashing ((4gt),4ut) code over Q.

Proof. Write as columns all binary vectors of weight ¢ and length 4ut; then, in every column,
replace the ¢ ones by all the non-zero elements of Q. The 4ut rows thus obtained are the
required codewords. 0

Putting the above three propositions together we get the following result.

Theorem 5 There exists an absolute constant ¢ > 0 such that for all 2 <t < u there is an
explicit construction of a (t,u)-hashing code over an alphabet of size t + 1 of rate R > u™.

Corollary 2 Fort large enough there is a constructive infinite sequence of t-identifying codes
over an alphabet of size t + 1 of rate t—9®),

Proof. Choose u = |(t/2 + 1)?]| and apply Lemma 1 and Theorem 5. O

5 Concluding remarks

The construction in Proposition 3 can be performed using other known explicit codes, and in
particular using the celebrated algebraic geometry codes described in [18], [12] (which supply
a similar estimate).

We have mostly considered here the minimal possible alphabet size (¢ = ¢+ 1). On the
other hand, for large ¢, the asymptotic rates are known: the non-constructive approach yields
the lower bound R > (1 + o(1))/(u — 1) for the rates of both (¢,u) and u-hashing families.

This coincides with the upper bound for codes with the ¢-IPP proved in [5] and in [3].
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