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Abstract

We consider the problem of super-resolution reconstruction (SRR) in MRI. Subpixel-shifted MR images were taken in several fields of

view (FOVs) to reconstruct a high-resolution image. A novel algorithm is presented. The algorithm can be applied locally and guarantees

perfect reconstruction in the absence of noise. Results that demonstrate resolution improvement are given for phantom studies (mathematical

model) as well as for MRI studies of a phantom carried out with a GE clinical scanner. The method raises questions that are discussed in the

last section of the paper. Open questions should be answered in order to apply this method for clinical purposes.

D 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this article, we introduce a novel method for resolution

enhancement in MR images. The problem of image

resolution, whether in regular cameras or in MRI, is a

well-studied problem. There are many algorithms and

methods [1–14] that deal with the problem of having low-

resolution images limited by the available hardware and

methods of acquisition. This article introduces a simplified

model of the low-resolution images. Based on this model

and the assumption that we can achieve subpixel shifts of

the images, we present a novel approach and algorithm for

the super-resolution reconstruction (SRR) problem and

show that under some conditions perfect high-resolution

reconstruction is definite (in the absence of noise).

The main contributions of this paper are as follows:

! We give a new novel algorithm for subpixel super-

resolution images. This algorithm has unique error

propagation properties not known for other algo-

rithms and suggests many new directions of study not

previously considered.

! Many experiments have been performed on both

simulated data and on specially constructed phantoms
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devised for super-resolution studies. The simulated

experiments are very good. The actual MRI results

are less satisfactory; we discuss further directions of

study to validate the practicality of our schemes. The

construction of special phantoms for the study of

resolution enhancement is unique to our work.

Clearly, a rigorous method of study is required.

! Despite previous arguments that SRR in MRI is

impossible in various circumstances [1], we argue this

is not true.

We deal with SRR and seek to avoid error propagation

and unnecessary assumptions (see Section 3). Our main

theoretical results appear in (Sections 4 and 5, Lemmas 4.1

and 5.1). In those, we give a localized reconstruction of a

high-resolution image. We attain a resolution enhancement

of factor 3, but our technique can give any desired

improvement at the cost of additional noise.

Structure of the paper. In Section 2, the general SRR

problem is discussed and a review of previous works on

SRR in general and on SRR in MRI is presented. Sections

3-5 present a simplified model and algorithm for one-, two-

as well as for higher dimensional cases. Section 6 includes a

description of the experiment conducted in order to verify

the algorithm. Analysis of the input data is provided in order

to justify the use of the proposed method in the case of MRI.

Experimental results are provided in Section 7. This paper
aging 24 (2006) 133–154
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presents results of model-simulated images as well as

images acquired with a GE MRI scanner of a phantom

designed and constructed for this purpose. Section 8 dis-

cusses unanswered open issues.

1.1. MRI spatial resolution

MRI provides intensities for each voxel. Those intensi-

ties are proportional to the number of nuclei in each voxel

and are affected by the nuclear relaxation times and the

pulse sequence used. Those effects affect the image contrast

[15]. MRI spatial resolution is determined by gradients’
Fig. 1. MRI data acquisition and processing. The figure demonstrates the

steps in generating a single 1�256 line of the MR image. The process

begins from the raw analog input of the MR device and ends with

256 readout points; each represents a pixel in the final image. This process

is repeated 256 times (256 phase encoding steps) to generate the final

256�256 MR image.
intensity, digital imaging filter bandwidth, the number of

breadoutQ points and phase encoding steps. MRI resolution

along the third dimension (Z) in 2-D pulse sequences is

determined by the slice selection pulse. Enhancement of the

spatial resolution may be achieved by (a) shifting the frame

of reference in steps smaller than the pixel or voxel size (this

can be done along one, two and three dimensions) and (b)

carrying out complementary measurements at several fields

of view (FOVs). A more complete description will be given

in the paper.

It is reasonable to assume that the high-resolution

reconstruction procedure to be described does not modify

signal intensity and image contrast, at least in first-order

approximation.

1.2. Definitions and notations

MR Images can be shifted along three orthogonal axes.

Along positive and negative directions: right and left

(X, �X), anterior and posterior (Y, �Y), and superior and

inferior (Z, �Z).

X and Y directions consist of the frequency and phase

encoding directions (or vice versa — operator’s option).

Shifts in the frequency (readout) direction are achieved by

shifting the receiver local oscillator frequency. (The GE

scanner has a 10-MHz clock that enables frequency

modulations in integer multiples of 0.596 Hz.) Shifts in

the phase encoding direction are achieved by changing the

receiver local oscillator phase. Shifts in the Z direction are

achieved by moving the subject along the Z direction or by

varying the transmitter oscillator frequency.

Enhancement of the spatial resolution can also be

accomplished by carrying out measurements at (1) several

bandwidths as FOV can be modified either by modifying

the intensity of the magnetic field gradient or by changing

the bandwidth and (2) by carrying out the measurements at

several digitization rates and several phase encoding steps.

A 2-D spin echo pulse sequence was used. For MR image

creation process (based on GE specifications), see Fig. 1.

1.3. Resolution limitations

Instrumental limitations, signal to noise, and nuclear

relaxation times considerations impose limitations on the

maximum feasible spatial resolution.

Spatial resolution can be enhanced by:

(1) Decreasing the FOV.

(2) Increasing the number of readout points.

(3) Increasing the number of phase encoding steps.

Where:

(1) FOV is limited by (a) gradient strength and (b)

subject dimension in the readout direction.

(2) The number of readout points is limited by the

transverse nuclear relaxation time (T2). Extending

the readout period significantly beyond the trans-

verse relaxation time decreases the signal-to-noise
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ratio (SNR) significantly. The maximum theoretical

number of readout points is limited by the local

oscillator frequency divided by the exciter/receiver

register bit. This limit is impractical since the long

acquisition time decreases the SNR to an unfeasi-

ble degree. Though T2 decay is usually the only

important limit, the amount of available memory for

storing the data also comes up occasionally as a

limiting factor.

(3) The number of phase encoding steps is limited by

the acquisition time. Increasing the number of

phase encoding steps increases the acquisition time,

proportionally.

In this paper, we demonstrate that planar spatial

resolution may be enhanced by (a) carrying out MRI

measurements at three FOVs and (b) shifting the center of

each FOV by a predetermined subpixel distance as will be

further explained in Section 6.2.

The merit of the proposed method is that it circumvents

the limitations of Points 1 and 2 mentioned above.1

MRI applications of the proposed method are as follows:

(1) It has the potential to extend spatial resolution to

microscopic levels for all nuclei.

(2) It enhances the resolution of nuclei with low

gyromagnetic ratio as 17O.

(3) It enhances the spatial resolution in studies of nuclei

with short nuclear relaxation times where the fast

decay limits effective readout time, e.g., 17O.

A more complete description and the mathematical basis

for the method will be presented in the body of this paper.
2. Background

2.1. Super resolution and the MRI

2.1.1. General

Enhancing the resolution of images is a well-studied field

of research. Specifically, for about two decades scientists

have been attempting to enhance the spatial resolution based

on data collected from several low-resolution images taken

from the same scene. This problem is called the super-

resolution problem.

Super-resolution reconstruction The process of combining

several low-resolution images to create a high-

resolution image

Initial image resolution is based on the properties of the

sensor. The sensor can vary from common cameras,

satellites, SAAR radars, MR devices, etc. Each sensor has

its own characteristics that affect the images it produces. In
1 It has the potential to further enhance spatial resolution beyond the

practical limits of (1) increasing the readout and phase encoding steps, (2)

decreasing the FOV and (3) increasing the gradient strength.
order to solve the SRR problem, we must first model the

imaging process. We now describe the common model (see

Refs. [1,5–7,9,10,13,14] and others) for the SRR problem.

Given a set {Yk}N
k =1 of low-resolution images, one can

write the following equation:

Yk ¼ DkBkGkX þ Ek ; k ¼ 1 N Nf g ð2:1:1Þ

where Yk is the kth low-resolution input image, Dk is the

decimation operator for the kth image, Bk is the blur operator

of the kth image, Gk is the geometric transformation operator

for the kth image and Ek is the white additive noise.

The decimation operator, Dk, defines the bsampling rateQ
of the high-resolution scene used to create the low-

resolution input images.

The blur operator, Bk, sometimes referred as the point

spread function (PSF), is defined by the physical properties

of the imaging device and differs from one image to the

next. Usually, the blur is modeled as a low-pass filtering

over the breal-worldQ scenario.
The geometric transformation, Gk, operator brings all the

input images to the same base point (reference grid) so they

could be combined. In cases where Gk is unknown,

registration algorithms are applied to compute the geometric

transformation of the image.

White additive noise, Ek, always exists due to the nature

of the imaging device.

2.1.2. Simplifying the model

In this paper, we use a simplified model to solve the SRR

problem. In Section 6, we present justification for using the

simplified model based on the process done by the MR

device. To compare the model to previous works, one can

think of the following adjustments on the general model:

(1) Our analysis is based on three types of decima-

tion operators. The input consists of low-resolu-

tion images, with pixels of dimension (also noted

as pixel resolution): 3�3, 4�4 and 5�5. We will

use these images to reconstruct a 1�1 high-

resolution image.

(2) Based on Ref. [1], we can assume the PSF is space

invariant and the same for all images (taken with

the same resolution). Moreover, in Ref. [1] the PSF

was modeled using box and Gaussian functions.

Our basic model assumes box-type blur (uniform-

ly). In Section 7.3, we discuss the result of applying

other types of blur operators.

(3) In this paper, we assume we have exact knowledge

as to the offset of each given image (based on the

MRI device being used); thus, there is no need for

registration in our model. In our experiment,

subpixel shifts were implemented by changing the

receiver oscillator frequency. However, see discus-

sion in Section 2.2.3.

(4) We will show that in the absence of noise our

algorithm gives perfect reconstruction of the desired
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high-resolution image. We also discuss the effect of

noise on the algorithm and demand certain proper-

ties to minimize the effect of noise on the result.

One might also consider applying denoising filter-

ing on the images; such filtering may be applied on

the input LR images as preprocessing action or on

the final HR image. Such techniques may give

better results when applied over the final image due

to SNR considerations.

2.2. Previous work

2.2.1. General super resolution

The super-resolution problem was extensively addressed

in the literature during the last two decades. In this chapter,

we will discuss the main reconstruction techniques that are

in use. These methods can be classified as follows:

(1) Frequency domain techniques.

(2) Iterative algorithms.

(3) Statistical methods.

Frequency domain techniques are based on the general-

ized sampling theorem laid by Papoulis [16] and Yen [17].

The first SRR algorithm was suggested by Tsai and Huang

[2]; they assumed nonblurred and nonnoisy images. The

technique is based on utilizing aliasing effects of band-

limited signals. Their work was followed by Kim et al. [3]

using least-squares minimization on noisy and blurred

images. Ur and Gross [4] proposed a spatial domain method

where the high-resolution image was created using interpo-

lation over the low-resolution images; they assumed known

2-D translations and uniform invariant blur. Most frequency

domain methods are based on transforming the input images

to the frequency domain [using 2-D discrete Fourier

transform (DFT)], combining the spectral data and returning

the output image (after applying 2-D IDFT). Because the

images are reconstructed in the frequency domain, these

methods have brecursiveQ properties, and new samples can be

combined into the final reconstructed image as they arrive.

The main SRR iterative algorithm is iterative back

projection (IBP) proposed by Irani and Peleg [5,6]. In this

algorithm, the high-resolution output image, X
U
, is built

iteratively to best describe the input sample images, Yk. In

every step of the algorithm they generate (using the

common model, see Section 2.1.1) a set of low-resolution

images (back projected), Yk̄. The back projection is done

using the current best guess, X
U
, as the high-resolution

scene. In each step, the algorithm refines the best guess X
U

such that Yk̄ better describes Yk.

Other iterative methods were suggested such as the

projection onto convex sets (POCS) algorithm, proposed by

Patti et al. [7]. The POCS algorithm resembles IBP and

assumes known convex constraints on the solution so the

iterative algorithm updates the current best guess according

to these constraints. Elad and Feuer [8,9] presented a

generalized model for the super-resolution problem and
analyzed it under the maximum likelihood estimator (ML),

maximum a posteriori probability estimator and POCS

methods. The analysis assumes prior knowledge of the

model operators (i.e., space-varying blur, geometric trans-

formation, additive gaussian noise and measurements

resolutions). Elad and Feuer [8] proposed a hybrid algorithm

that combines the simple ML and the POCS methods. Later,

Elad and Hel-Or [10] proposed a new method that separates

the treatment to deblurring and measurement fusion to

create an efficient SRR algorithm for the case of space-

invariant blur and pure translation motions.

Statistical methods seek the high-resolution image with

maximal probability to bcreateQ the low-resolution input

images (according to the imaging model). Such algorithms

were presented by Cheeseman et al. [11] who used the Bayes’

theorem and by Shekarforoush and Chellappa [12] who used

the Markov random field to model and solve the problem.

2.2.2. Super-resolution in MRI

To the best of our knowledge, the idea of attaining

subpixel resolution in MRI first appeared in 1997 (see Ref.

[18]). The techniques mentioned in Ref. [18] include using

various pixel shifts and varying the pixel sizes, using a

variety of physical techniques. Thus, our paper should be

viewed as giving a model and algorithm within the

framework of Ref. [18]. Super resolution in MRI is a new

field of study, Peled and Yeshurun [13] suggested an

applicable SRR algorithm for MRI. They used spatially

subpixel-shifted images of diffusion-weighted imaging and

diffusion tensor imaging in vivo and created new images

with improved resolution. Results are given after applying

IBP [5] and state that optimal algorithm for MRI should be

selected from the available ones based on comparison

analysis. Shortly after the publication of the above paper,

doubts were raised as to the possibilities of applying SRR

for MRI. All images were taken with the same FOV, and the

subpixel shifts were most likely2 generated by means of a

postprocessing step. The Fourier-encoded data given by the

MR device are inherently band limited, thus seemingly

eliminating possible SRR. The improvement in the image

resolution was ascribed to the increase in the reconstructed

image’s SNR. Also noted was that super resolution is

probably possible when non-Fourier encoding is used (i.e.,

conventional slice selection or line-scan imaging).

Similar corollaries as to applying SRR in 2-D MRI were

given by Greenspan et al. [1] who suggested using SRR for

3-D MRI in the slice-select direction using several 2-D low-

resolution images. They showed results that in-plain (2-D)

SRR of Fourier-based MRI is not possible and that every

result made can be replicated using interpolation via zero

padding. In the slice selection, on the other hand, they
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showed that SRR is possible and present an algorithm, also

based on the Irani and Peleg [5] IBP, to create high-

resolution 3-D images.

2.2.3. Fundamental problems with SRR in MRI

We note the following problems with SRR in MRI:

! Shifted images attained by postprocessing steps

cannot add new information, thus eliminating possi-

ble resolution enhancement [13].

! It seemingly follows from the generalized sampling

theorem [16] that subpixel shifts via changing the

receiver oscillator frequency do not add new infor-

mation needed for SRR either.

The argument about image shifts via frequency change is

not quite precise because of the finite sampling (see Section

6.2). However, infinite sampling is not possible, and longer

sampling periods are limited by the relaxation rate of the

nuclear and SNR considerations.

Nonetheless, it is strongly suggested by our work that

physical shifts allow SRR in MRI with the limitation of the

PSF function (see Sections 6.2 and 7.3). We remark that this

point was not clear to us initially and that the MRI

experiments make use of frequency shifts.
3. Modelling the problem

We introduce the following definitions and model:

(1) The subject area is a 1�1 rectilinearly aligned

square whose bottom right corner is at the (x, y)

origin.

(2) The true image is represented as a matrix of real

values associated with squares of a rectilinearly

aligned grid of arbitrarily high resolution. These

values are called the true high-resolution values.

(3) A scan of the image at some arbitrary m�m pixel

resolution, at offset (dx, dy), means that the (i, j)

entry of the scanned image contains the sum of the

values of all high-resolution grid squares enclosed

within the rectilinearly aligned square of side length

1/m and whose bottom left corner is at the point

(dx+i/m, dy+j/m). We will say that the physical

dimensions of the pixel are 1/m�1/m.

(4) Define the maximal resolution to be n, i.e., scans

can only be performed at pixel resolutions m�m,

where mVn.

(5) Define 1/dNn to be the maximal offset resolution.

We can perform scans at offsets (dx, dy), where dx

and dy are integral (not necessarily positive) multi-

ples of d.
(6) We will refer to pixels of an m�m pixel resolution

scan, for m=1/(cd), caZ+, as being a scan of

pixels of dimension c�c. Note that this is not the

same as the physical dimensions of the pixels,

which is 1/m�1/m. The definition of dimensions
c�c follows because we can consider every such

pixel as having a value equal to the sum of c2

component higher resolution pixels (of physical

dimensions d�d) which it overlays.

Our goal is to compute an image of the subject area with

pixel resolution 1/d�1/d, although the maximal pixel

resolution than can be measured during a scan is n�n

and nb1/d.
The assumptions above require justification. One possible

reason that the pixel resolution and the offset resolution are

different could be that the underlying physical mechanisms

underlying both types of resolution are entirely different.

In the context of MRI, it seems (as discussed in Sections

2 and 6.2) that the pixel resolution is limited by the maximal

magnetic gradient one can impose and by the maximum

feasible readout points and phase encoding steps as

discussed in Section 1.3. The offset resolution can be

determined with much higher resolution in (1) the main

magnetic field (Z direction), (2) readout and (3) phase

encoding directions by varying the frequencies of the

transmitter phase, respectively. The technique described in

this work was instigated by the desire to enhance 17O spatial

resolution; however, it is applicable to other nuclei.

Another case where this model may possibly be

applicable is in the context of satellite imaging where the

three-dimensional location in space of the satellite may be

known with higher precision than the underlying resolution

of the image. (In the satellite example, the lower resolution

images required by the model could be obtained simply by

changing the angle at which the camera points to the target).

It also follows from the underlying physical explanation

that varying the gradient of the magnetic field intensity can

be done continuously, justifying the m�m, mbn, lower

resolution scans mentioned in the model.

We introduce two error measures in this paper, and we

seek to minimize both or find an appropriate tradeoff

between them

(1) A reasonable assumption is that the errors are

proportional to the size of the pixel. It therefore

follows that when representing a high-resolution

pixel as a linear combination of low-resolution

pixels, the total area used in the linear combination

(and the coefficients) is small.

(2) Additionally, there may be errors limited to some

physical location (e.g., motion of the subject or

vibration of the scanner), so one additional (but

related) goal is that localized errors should have

only localized effects.

3.1. Multiple offsets of a single-resolution scan

Consider the scan of pixels of dimensions 2�2 seen in

Fig. 2 and at the top of Fig. 3. Imagine that the pattern

continues throughout the infinite grid. Consider any offset

of this scan by (dx, dy), where dx and dy are integral



Fig. 2. Pixels of dimensions 2�2 and 3�3.

Fig. 4. Reconstructing the high-resolution image under assumptions on the

boundary pixels. To simplify notation in this and subsequent figures, we

have scaled everything so that offsets are integers rather than integral

multiples of d.
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multiples of d. The scan will assign all pixels a value of 2,

irrespective of the offset (dx, dy).

Likewise, consider the bottom high-resolution image in

Fig. 3. The pixel scan of this image also has all pixels with

value 2, and so does any scan with pixels of dimensions

2�2 with offsets (dx, dy), dx and dy integral multiples of d.
This means that there is no way we can distinguish

between the top and bottom high-resolution images of Fig. 3

using pixels of dimensions 2�2 and any set of permissible

(dx, dy) offsets. Similar examples can be constructed for

pixels of arbitrary dimensions c�c.

3.2. Making use of boundary value conditions

If we assume that all high-resolution pixels outside the

subject area have a value of 0 (or some other known value),

then we can make use of multiple scans with the same m�m

pixel resolution to reconstruct the image.

Given that m=1/(cd), caZ+, we can perform c2 scans at

pixel resolution m�m [at offsets (dx, dy)a{(id, jd)|�
1V ibc�1, �1V jbc�1}], from which one can write a

set of linear equations where the variables are the values of
Fig. 3. Two high-resolution patterns that cannot be distinguished by any

shift of a scan with pixels of dimension 2�2.
the underlying high-resolution pixels. We introduce a var-

iable for every high-resolution pixel of physical dimensions

d�d within the subject area. We have a total of (1/d)2 linear
equations, each of which contains up to c2 variables. We

also need to argue that these are indeed linearly indepen-

dent, but this is easy to see — for example, one argument is

that it is easy to perform Gaussian elimination for such a

matrix. See Fig. 4 for a simple example of how four scans

with pixels of dimensions 2�2 allow us to reconstruct the

high-resolution image under the assumption that the

boundary high-resolution pixels are known.

This solution is problematic for the following two

reasons:

(1) It may be unclear that the btrue valueQ of the high-

resolution pixels outside the subject area is really

zero.

(2) We have error propagation throughout the image.

Any single error will propagate throughout the

image. See Fig. 5 for an example of how a single

error propagates throughout the image.

Given the assumption that we do know the values of the

high-resolution pixels outside the study area, we could make

use of additional information available by scanning the

images. What we have not done above is to make use of the



Fig. 5. A single error in one pixel in a single scan changes the reconstruction completely.
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values of d�d physical dimension pixels that partially

overlap the study area on the right and top (we have made

use of those d�d physical dimension pixels that partially

overlap the study area on the left and on the bottom). The

potential advantage of using these additional pixels (and their

associated linear equations) is that we can potentially reduce

the errors arising from a single wrong high-resolution pixel.

This creates what is known as an overdetermined system

of equations [19]. The linear equalities we have added

clearly create linear dependencies between the rows of the

matrix (as the number of rows is greater than the number of

columns). One tool one can use to overcome the issues of

overdetermined systems of equations is to use least-squares

techniques (see Ref. [19]): minimize ||Ax-b||2, where Aa
Rl�k with lzk and baRl.

Unfortunately, while it is true that a single error will be

reduced in size, the least-squares solution to the overdeter-

mined set of linear equations will not prevent the error from

propagating throughout the image and the error will be

reduced in size by no more than a constant factor (due to the

nature of the linear dependencies created).3
3 This is not entirely trivial to see, but if one tries out small examples

this is easy to see.
What we seek therefore is a high-resolution image

construction method that does not suffer from either of the

problems above:

(1) We need not assume anything about the value of

any underlying high-resolution image.

(2) Errors will not propagate throughout the image, but

will remain localized in scope.

We will describe how to compute the value of a single

high-resolution pixel as a function of spatially close low-

resolution pixels (at various offsets). Again, as above, there

will be several different linear combinations of different

low-resolution pixels that will compute the high-resolution

pixel. We can use the least-squares techniques to reduce the

error terms here as well. Unlike the previous solution, error

propagation will be localized.
4. The one-dimensional version of the problem

To simplify notation from this point on, rather than

use offsets that are integral multiples of d, we simply

scale everything so that all offsets are integral. For clarity

of exposition, we introduce a one-dimensional version

of the reconstruction problem. We later build upon this
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one-dimensional reconstruction to obtain two- and three-

dimensional reconstructions. Consider pixels of dimen-

sions 1�x and 1�y for positive integers x and y. Let

gcd(x, y) denote the greatest common divisor of x and y.

It follows from the extended Euclidean algorithm that

there exist integer values a and b such that ax+

by=gcd(x, y).

This means that if we are given all x possible (different)

offsets of the 1�x pixels and all y possible offsets of the

1�y pixels, then we can compute the values of pixels of

dimensions 1�gcd(x, y), at any offset. In particular, this

implies that if gcd(x, y)=1, then we can compute the actual

high-resolution image.

Notation: let v(z, i), iaZ, denote the value of the 1�z

pixel at an offset of i from the origin. We are given the

values of the form v(x, y), 0V jVm�x, and v( y, j),

0V jVm�y. As either aN0 and bb0 or ab0 and bN0,
Fig. 6. One-dimensional reconstruction, p
assume without loss of generality that aN0. To compute the

1�gcd(x, y) pixel at offset i compute

Xa�1

j¼0

v x; iþ xjð Þ �
Xjbj�1

j¼0

v y; iþ 1þ yjð Þ:

An example of this reconstruction is given in Fig. 6.

There may be a problem in that the required pixels are

missing, but note that the signs can be reversed and the pixel

reconstructed by taking any combination of 1�x rectangles

and any combination of 1�y rectangles so that their

difference gives the required 1�gcd(x, y) result.

An alternative interpretation of the expression ax+by=1,

aN0, bb0, is ax=1 mod y, i.e., add multiples of x and

reduce modulo y. This leads to a reconstruction algorithm

that is entirely localized in that errors that appear further

away than x+y high-resolution pixels away from the pixel
ixels of dimensions 1�3 and 1�5.



Fig. 7. Two-dimensional reconstruction, pixels of dimensions 3�3, 4�4 and 5�5.
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being reconstructed do not influence the outcome at all. The

localized reconstruction is also given in Fig. 6.4 The same

can be done in two or more dimensions.

A consequence of this algorithm is the following lemma:
4

as we
Lemma 4.1. Let piu v(1, i) be the true value of the ith

high-resolution pixel. Given a set of equations for high-

resolution pixels derived from pixels of dimensions 1�x

and 1�y at all possible offsets, where x and y are

relatively prime, it is possible to reconstruct pi locally,

i.e., using only linear equations involving pi,. . .,
pi+x+y�1. The coefficients in the linear equations are

limited in size by max{x,y}.
5. Two and more dimensions

Given pixels of size x�x, y�y and z�z, where x, y

and z are pairwise relatively prime, we can likewise
There must be some way to do so for the higher dimensional versions

ll (aside from the obvious — use the 1-D version where appropriate).
reconstruct all the high-resolution pixels. This can be done

while ensuring locality of error propagation.

The error propagation is limited to an area of O(xyz)

high-resolution pixels and that the linear combinations are

all with small (constant) coefficients. That is, if the ratio of

value to error is o(1/xyz), then we can reconstruct

meaningful data in the high-resolution reconstruction.

Additionally, we can compute the same high-resolution

pixel using at least four nonintersecting sets of low-

resolution images, giving some degree of error control.

Given pixels of dimensions x�x and y�y, we can

easily construct pixels of dimensions x�xy and y�xy,

simply by stacking pixels of appropriate sizes one atop

the other.

Using the one-dimensional version of the problem, we

can construct pixels of dimensions 1�xy. Similarly, this can

be done for pixels of dimensions 1�xz and 1�yz. Given

pixels of dimensions 1�xy and 1�xz, we can compute

pixels of dimensions 1�x as gcd(xy, xz)=x. Similarly, we

can compute pixels of dimensions 1�y from the 1�xy and

1�zy pixels. From the 1�x and 1�y pixels, we can

compute the underlying high-resolution pixels.
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A worked out example using pixels of dimensions 3�3,

4�4 and 5�5 is given in Fig. 7.

This can be generalized to any number k dimensions

using k+1 low-resolution pixels whose dimensions are

relatively prime.

A consequence of the above algorithm is the following

lemma:
Lemma 5.1. Let pi,j be the true value of the high-

resolution pixel with index (i, j). Given a set of equations

for high-resolution pixels derived from pixels of dimen-

sions x�x, y�y and z�z at all possible offsets, where x,

y and z are relatively prime, it is possible to reconstruct

pi,j locally, i.e., using only equations involving

piþd;j
: : : piþd;jþd

v : : : v
pi;j : : : pi;jþd

1
Awhere d ¼ O xyzð Þ:

0
@

he coefficients in the linear equations are limited in size
T

by O(max{x, y, z}).
Fig. 8. Phantom image: (A) front view (in-plane), (B) side view. Spacers

(sheets) width for each cluster is written on the image.
6. Experimental design

Experiments were performed using a GE clinical 1.5-T

MRI scanner, Advantage, version 5.4 (GE Medical System,

Milwaukee, WI). The scanner is equipped with gradient

coils generating gradients with a maximum strength of

10�2 T/m.

Planar and longitudinal spatial resolution enhancement

studies were carried out. In this paper, planar resolution of

phantoms with well-defined regular and simple structure

will be described.

The phantoms (shown in Fig. 8) consisted of plastic

frames made of polycarbonate of thickness of 2.54 mm that

served as spacers between sheets. Ten sheets of identical

thickness were glued between 11 frames to form a cluster.

Five clusters each containing 10 sheets of identical

thickness (from left to right) 1.27, 1.01, 0.50, 0.375 and

0.63 mm were placed in a container. The 0.375-mm sheet

was made of polycarbonate material, and the other sheets

were made of amorphous polyester material. The size of

the sheets was 50�50 mm. The size of the spacers was

53�53 mm. Each frame that served as a spacer between the

sheets had a square hole in it of size of 20�20 mm. The

square holes in the spacers as well as the container were

filled with water. The length of the container was such as to

provide a tight fit of the clusters to the container.

The container was placed horizontally in the x direction of

the magnet. 1H images of the container were obtained using

GE head coil and spin echo pulse sequence, bandwidth of

32 kHz, echo time (the time period between the 908 pulse and
the echo) of 20 ms. And the interval between consecutive

pulse sequence, TR=1000 ms. Averages of four acquisitions

(NEX=4) were obtained, resulting in acquisition time of

17 min and 8 s. Spatial resolution of 256�256 was selected.
The selected mode was brawdataQ=0 and bautolockQ=1.
Those modes provide both the raw data that consist of the

echo of free induction decay (FID) for NEX=4 and the

images reconstructed by the GE software.

Axial slices were obtained at three FOVs: 230.4, 307.2

and 384 mm. Slice thickness was set at 3 mm. Only one

slice was taken; however, the distance between fictitious

slices was set at 10 mm (slice separation=10 mm). The

position of the phantom was the same in all studies.

The center of the FOV was shifted in the right (R) and

posterior (P) directions. Images of all combinations of steps

of 0.3 mm were obtained. Three shifts in the R direction and

three shifts in the P direction for FOV=230.4 mm, resulting

in nine images. Four shifts in the R direction and four in the

P direction for FOV=307.2 mm, resulting in 16 images.

Five shifts in the R direction and five shifts in the

P direction, resulting in 25 images.

To avoid updated scaling for each image, at the end of

each scan the following sequence of commands was used:

bcancelQ, followed by manual bprescanQ, followed by bscanQ.
The FOV was modified through the modify bcv Q option.

6.1. Input images correctness

The input images were divided into three FOVs

corresponding to pixel sizes of 3�3, 4�4 and 5�5. To

assure that the input images are correct, we created a

mathematical model of the phantom. The designed model

was based on the phantom known structure (see Section 6).



Fig. 9. Image reconstructed from MR scanner data at FOV=230.4 mm (top) vs. the mathematical model (bottom). Slice thickness: one voxel.
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We first created a model of one row (the main parameters

were the spacers width and the distance between spacers) in

high-resolution (0.06�0.06 mm), we then applied the

rectangular blur operator and decimated it to the desired

resolution. The model images were compared to the MR

images; the results are shown in Figs. 9–11.

Moreover, we checked for consistencies between the

different FOVs by generating super images (or energy

maps) for each pair of FOVs [at (0,0) offset] and compared

them. The super images of FOVs d1 and d2 consisted of
Fig. 10. Image reconstructed from MR scanner data at FOV=307.2 mm (t
pixel resolution of d1*d2. The intensity of each such

benergy pixelQ is the sum of the underlying pixels of the

original image. The images were compared and found to

match each other (examples are given in Figs. 12–14). We

note that when comparing the super images of two

nonmatching pair of images (selecting two random offsets),

the results were of inferior quality than that of matching

pairs. This result raises a few questions as to the consistency

of the input images. Feasible reasons for the inconsistency

are discussed in Section 7.3.
op) vs. the mathematical model (bottom). Slice thickness: one voxel.



Fig. 11. Image reconstructed from MR scanner data at FOV=384 mm (top) vs. the mathematical model (bottom). Slice thickness: one voxel.
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The images’ SNR values were computed as the mean

of a high-intensity region of interest divided by the

standard deviation of a region of noise (see Ref. [1]). The

measured SNRs were 45, 72 and 108 for FOVs 3, 4 and

5, respectively.

6.2. Bandwidth and resolution analysis

In Refs. [1,13], it was stated that SRR in MRI is not

possible in the in-plane since the Fourier-based MRI is band

limited and that subpixel shifts are done as a postprocessing

step; thus, no new information is gathered. To address these

issues, let us look at each claim and analyze it.

6.2.1. Acquisition of raw data

Raw data are always acquired in the time domain. An RF

pulse is applied, and following the RF pulse the NMR signal

(named: echo of the FID) is acquired as a function of time.

By Fourier transform, the time dependence is converted to

frequency dependence. The GE device acquires the signal as
Fig. 12. Left image: Energy map of real MR image with FOV=3. Middle image

difference image; mean error is 5% of the original energy map mean intensity.
a function of time; we repeat the same measurement several

times, in order to obtain an average of the signal and,

consequently, enhance the SNR. Following the data

acquisition, we set the instrument to provide the braw Q data
(in the time domain, average of several pulses) and perform

Fourier transform that provides the final product, the image

(in the frequency domain).

6.2.2. Subpixel shifts

The k-space sampling locations are only determined by

the gradient waveforms on the readout axis that are

applied before and during the readout. The oscillator

frequency change shifts the frequency of the acquired data,

causing the phase of that data to change linearly during

the readout and shifting the reconstructed object location

by subpixel.

The shift is applied in k-space using frequency modula-

tion in a way that cannot be replicated by a postprocessing

mathematical manipulation as described in Ref. [13].
: Energy map of real MR image with FOV=4. Right image: Energy map



Fig. 13. Left image: Energy map of real MR image with FOV=3. Middle image: Energy map of real MR image with FOV=5. Right image: Energy map

difference image; mean error is 5% of the original energy map mean intensity.
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This is different than a postprocessing manipulation

because the shift is applied before the band-limiting filter

(The filter that happens before the A/D sampling and

prevents aliasing; see Fig. 1.) The band-limiting filter bcuts
off Q the object, so applying the frequency shift before the

filter shifts the object before it is cut off. Applying the

frequency shift after the filter shifts the object after it is cut

off. The latter is obviously different and is exactly

equivalent to shifting the object with postprocessing.

We agree that postprocessing manipulation can only

interpolate the signal but (as stated by the authors) cannot

create new information.

6.2.3. k-Space limitations

k-Space is a commonly used presentation of MRI-

acquired raw data. The raw data (in the time domain) have

characteristics similar to those of a Fourier transform:

S(k)=
R
objectq(r)e

�i2pk b rdr. The meaning of this interpreta-

tion (as shown in Fig. 15) is that we collect the data in the

bfrequencyQ domain and use them to reconstruct the original

signal. Let us analyze the characteristics of the two signals

(k-space and image space): the image-space signal, S(x), is

finite (its dimension is the FOV); thus, its spectrum is

infinite. The MR device acquires samples of this spectrum

(named the k-space). k-Space signal is an infinite, band-

limited signal: K(t), �lb tb+l; we acquire N samples of

K(t) sampled at a rate of FsN2d Nyquist frequency from
Fig. 14. Left image: Energy map of real MR image with FOV=4. Middle imag

difference image; mean error is 3% of the original energy map mean intensity.
0b tbTscan. Since we do not have samples of K(t) from

tNTscan and tb0, we cannot fully reconstruct the original

signal S(x).

A generalization of the Nyquist theorem states that under

some general conditions for perfect reconstruction, it is

enough to sample the signal at a rate that is bon the averageQ
higher than the Nyquist rate. Namely, if we can sample the

signal outside the interval at any nonzero rate, we would still

be able to compensate by oversampling within the interval,

such that limTYinf 2T/NVTNyquist. However, since no

samples were acquired outside the above time interval, the

signal cannot be reconstructed from any numerable (even

infinite) number of samples within the interval. It is

interesting to remark, in this context, that the generalization

also implies that if we knew the signal over a continuous

interval (no matter how small that interval is), we would be

able to reconstruct the entire signal (as long as it is band

limited), since in this case we have an innumerably infinite

number of samples, and the baverageQ sample rate in this

case is infinite.

In the case of MRI, we do not have any samples outside

the interval and cannot obtain innumerably infinite number

of samples inside the interval; thus, perfect reconstruction is

not possible. But still, increasing the number of samples

inside the interval can (theoretically) improve the accuracy

of the reconstruction, but the improvement is usually not

overwhelming.
e: energy map of real MR image with FOV=5. Right image: Energy map



Fig. 15. Top: An object bounded by a rectangle of widthWx andWy (FOV).

The signal is finite; thus, its spectrum is infinite. Bottom: Sampling points

of k-space along a 1-D path (one row of the image). k-Space is an infinite

band-limited signal.

Fig. 16. Top row: Original image (pixel resolution 3�3) and its power

spectrum. Middle row: High-resolution image generated by the algorithm

and its power spectrum. Lower row: High-resolution image generated using

bi-cubic low-pass interpolation.
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6.2.4. Pixel resolution

Analyzing the data process (see Fig. 1), we see that the

input bandwidth is limited to 128 kHz due to the anti-

aliasing filter. This bandwidth is sufficient since the

effective output images’ bandwidth is limited to 32 kHz.

Thus, the resolution of each single image is limited by the

Fourier pixel size [DxF] related to the DFT PSF [20]. Fourier

pixel size is given by Dxf =1/(NDk), where N=256 points.

This resolution changes when the FOV is changed according

to Dxf =FOV/N. The algorithm presented in the next section

models DxF, showing that combining several images with

different resolutions at different subpixel shifts allows us to

fully reconstruct a high-resolution image.

Scanner’s frequency resolution is determined by the

bandwidth of the exciter/receiver local oscillator and the

register resolution. For GE scanner, the local oscillator is

10 MHz and the register resolution is 24 bits. The frequency

resolution is therefore 107/224=0.596 Hz. The local

oscillator frequency must be changed in integer multiples

of this frequency.

Field of view can be expressed in two ways: spatial

units or frequency units. The FOVs we used were 384,

307.2 and 230.4 mm (also referred to as 5, 4 and 3). The

FOVs correspond to the bandwidth, which is F16,000 Hz=

32,000 Hz. In frequency units, the resolution is the same for

all three FOVs. We used a resolution of 256�256, which
means that the pixel planar resolution is 32,000/256=

125 Hz. In the current study, which serves as an example,

we demonstrate a threefold planar resolution enhancement

that corresponds to 125 Hz/3=41.7 Hz. The scanner’s

frequency step of 0.596 Hz is more than adequate to

properly describe and achieve the desired resolution.

The above corollaries should suffice to justify the use of

the resolution enhancement model and algorithm in the case

of MR images. To support the above statements, we applied

the resolution enhancement algorithm on the acquired

phantom images.

In Fig. 16, we see an original low-resolution image

(FOV=230.4 mm) and its power spectrum (top row). The

high-resolution reconstructed image (times larger) is shown

in the middle row, and on the bottom row we see a high-

resolution image created using bi-cubic low-pass interpola-

tion. As expected, the bilinear low-pass interpolation

spectrum did not contain high frequencies (due to the low-

pass property of the interpolation). Also, it is clearly

observed that the power spectrum of the high-resolution

reconstructed image contains high frequencies created in the

resolution enhancement process.



Fig. 17. Cluster 1: spacers width: 2.54 mm; distance between spacers: 1.27 mm. Image description (ordered top to bottom, same for Figs. 18–21): (1) modeled

low-resolution image without noise, FOV=230.4 mm (3�3); (2) modeled low-resolution image with noise (SNR=45), FOV=230.4 mm (3�3); (3) high-

resolution algorithm result (1�1); (4) modeled high-resolution image without noise (1�1); (5) reconstruction of high-resolution image using zero-padding

interpolation (1�1).
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7. Experimental results

The resolution enhancement algorithm was imple-

mented by a Matlab program. The implemented algorithm

differs from the one described in the previous sections
Fig. 18. Cluster 2: spacers width: 2.54 mm
for simplicity reasons. In the program, we directly used
the least-squares method to derive the high-resolution
image. The subject area was divided into small frames
(30�30 pixels). Each frame was reconstructed indepen-
dently by computing a larger high-resolution frame
; distance between spacers: 1.01 mm.



Fig. 19. Cluster 3: spacers width: 2.54 mm; distance between spacers: 0.5 mm.
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(60�60 pixels), taking only the inner 30�30 pixels for the
final image.

There is no known method to estimate the improvement

of image quality by enhancing the image resolution. While

some implementations would be interested in sharper edges

in the image, others may wish to improve SNR at all cost. In

the case of phantom studies, we suggested two measures of

image quality: (1) sheet thickness (based on the phantom

structure they should be equal) and (2) distance between
Fig. 20. Cluster 4: spacers width: 2.54 mm;
spacers (based on the phantom structure they should be equal

within each cluster and vary for each cluster; see Section 6

for details).

7.1. Model results

Experiments were made with a dataset generated by the

mathematical model. The braw Q images were generated

according to the phantom’s specifications; after that they

were blurred and sampled to the desired resolution and FOV.
distance between spacers: 0.375 mm.



Fig. 21. Cluster 5: spacers width: 2.54 mm; distance between spacers: 0.63 mm.
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White noise was also added to match the previously

computed SNR in each FOV (see Section 6.1).

We present the resolution enhancement results for each

cluster in Figs. 17–21; the high-resolution images are

presented next to four reference images for comparison:

(1) Modeled low-resolution image (3�3) without noise.

(2) Modeled low-resolution image with noise (SNR=

45 — same as measured in the real MR image).
Fig. 22. Cluster 1: spacers width: 2.54 mm; distance between spacers: 1.27 mm.

FOV=230.4 mm (3�3); middle up: high-resolution algorithm result (1�1); mid

image using zero-padding interpolation (1�1).
(3) Modeled high-resolution image without noise (see

Section 6.1).

(4) Reconstruction of high-resolution image using

zero-padding interpolation on the modeled low-

resolution image without noise.

The high-resolution images reconstructed by the algo-

rithm match the high-resolution image generated by the

model (the model represents the best possible solution).
Image description (same for Figs. 23–26): top: low-resolution MR image,

dle down: modeled high-resolution image (1�1); bottom: high-resolution



Fig. 23. Cluster 2: spacers width: 2.54 mm; distance between spacers: 1.01 mm.
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Clearly, the algorithm results are superior to those of the

zero-padding interpolation, both in line width and in the

distance between lines.

7.2. Phantom results

High-resolution images of the real phantom images

(created with GE MR device) were generated using the

resolution enhancement algorithm.

Results are presented for each cluster in Figs. 22 – 26; the

high-resolution images are presented next to three reference

images for comparison: (1) true MR low-resolution image

(3�3); (2) modeled high-resolution image (1�1) (see

Section 6.1); and (3) high-resolution image generated using

zero-padding interpolation.

The results of the algorithm on the MRI data were

nondecisive. The algorithm results clearly show resolution

enhancement. Nevertheless, no clear advantage to the

algorithm reconstruction is observed over the zero-padding

interpolation as observed on the model results. We view this

as a major point for further study.

7.3. Discussion

The differences between the results of the modeled

data and the results of the MRI data can be explained by

the following.
5 The true blur can be calculated or simulated by simply taking the 2-D

Fourier transform of the window function that multiplies the k-space data.

For simplicity, we can assume the k-space window is a 2-D btop-hat Q
function with constant radius. The resulting blur would be proportional to a

J1 Bessel function divided by r.
Blur. The model assumes a rectangular (uniform)

blur, while the true blur is unknown.5 In Ref. [1], it

was shown that using a Gaussian-shaped blur SRR

algorithm gives better results. This result conforms with

the following corollaries:

! The raw data (in k-space) is truncated by the MR

device.

! Truncation means multiplying by a rectangular

function.

! The image is convoluted with the Fourier transform

of this rectangular function, resulting in a sync PSF

function.

Experiments were carried out with other blur functions

(Gaussian and sync functions taking only the central part of

the sync with an additional lobe). We note that we observed

a resolution enhancement using the box PSF and that no

other function seemed superior over it.

Based on the model assumptions, each low-resolution

pixel had an area of influence determined by the image

resolution, d. The blur function was applied over d�d high-

resolution pixels within this area. The resolution (and

thus the area of influence) is defined as the width of the

main lobe (or the 3-dB point). In reality, pixels outside

this area also affect the intensity of the pixel, but they are

not modeled.

Modifying the model in a way that would include

the effects of pixels that are outside of the main lobe is

possible. Experiments were carried out with different sizes

of blur function (extending the area of influence beyond

the 3-dB point), but no improvement in image resolution

was observed.



Fig. 24. Cluster 3: spacers width: 2.54 mm; distance between spacers: 0.5 mm.
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Using nonbox blur function or extending the pixel’s

area of influence does not conform with the theoretical

analysis (see Section 4) that shows that full recon-

struction always exists since some submatrices may be-

come singular.

The rectangular blur assumption is correct for the slice

direction when selective excitation is used (i.e., 2-D scans).

This hangs together with the results in Ref. [1] where super

resolution worked (in the z direction) and where the

assumption of a rectangular PSF is more nearly correct.
Fig. 25. Cluster 4: spacers width: 2.54 mm;
A 2-D-imaging case that more nearly satisfies the

assumption of rectangular blur (at least in one direction) is

line-scan imaging (for example, see Ref. [21]). This method

is used for diffusion imaging because of its relative

insensitivity to patient motion on some scanners or on

some anatomy (such as spines) where single-shot EPI does

not work well.

Line-scan imaging might work better (in one direction)

than standard imaging with our resolution enhancement

technique since there is no Fourier encoding in the y
distance between spacers: 0.375 mm.



Fig. 26. Cluster 5: spacers width: 2.54 mm; distance between spacers: 0.63 mm.
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direction. The PSF for the y direction is more nearly a

rectangle (depending on the RF pulses), and so our method

is expected to produce good results.

Subpixel shifts via frequency shifts. As discussed in

Section 6.2, the use of subpixel shifts in the context of

MRI can theoretically improve the reconstruction approx-

imation. These methods usually have serious implementa-

tion implications, which may explain the difference in

the results of the algorithm between the experimental and

the modeled images. Better resolution may be achieved in

the future by the use of physical shifts of the subject area

(instead of changing the receiver oscillator frequency). We

predict the results would be more similar to the ones of the

modeled images. To perform the required physical shift,

special hardware must be built.
Fig. 27. Orientation example. Top row: 3-D phantom image — front view

(on the left) and side view (on the right). Bottom row: 2-D image intensities

as seen by the MRI.
Phantom orientation. In order to receive an accurate

front-view image of the phantom (see Ref. [8]), the phantom

should have been placed in a specific orientation inside the

MRI device. Since the phantom was placed manually, such

accuracy is very difficult to achieve. The effect of imperfect

orientation with x, y and z directions on the final image is

that sharp transitions from low-intensity regions (sheets) and

high-intensity regions (regions containing water) become a

continuous transition. Visual demonstration of the effect is

presented in Fig. 27.

Homogeneity of the phantom. Unfortunately, the con-

structed phantom did not maintain the thin plastic sheets in

a completely flat position. On the other hand, the model is

based on the assumption that the sheets are completely

flat. The model also assumes that the distribution of water

in the spacer cavities is homogenous, whereas in reality

there may be some irregularities in the water distribution in

the cavities.

Imperfect magnetic field. Inhomogeneity of the static

magnetic field (z direction) and nonlinearity of magnetic

field gradients are two reasons that could also affect the

resulting image. Those properties usually vary from one

device to another and are included in the designer

specifications. Such problems can cause the low-resolution

MR images to not reflect the exact phantom, but the

probability of this factor is not high.
8. Conclusions and open problems

We have given a mathematical model for the SRR

problem and associated algorithms with highly useful

properties. We note that our construction gives an improve-



Fig. 29. Upper part: Each gray square in line i, 1V iV3, represents a

variable being covered by S3i and all S5j, 1V jV5. Every variable is

covered by exactly two pairs of scans. Lower part: The same without using

scan S32; all variables are still covered.
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ment factor of 3, but the generality of the method could give

any improvement factor, e.g., had we used low-resolution

pixels with dimensions 17�17, 19�19, 20�20, the im-

provement factor would have been 17. The results seem

unsatisfactory. This may be due to the use of a rectangular

PSF in the data processing and/or the use of frequency

change for subpixel displacement of the images.

There are several open problems that arise in this setting:

(1) Most interesting is that we seem to have a new

type of error control mechanism. While we can

localize the reconstruction operation, it may

actually make sense to use a variety of localized

and nonlocalized reconstructions. The use of least-

squares techniques for a subset of reconstructions

is always possible. An alternative formulation of

these arguments is that if we actually write down

all the linear equalities, then many submatrices

are nonsingular and lead to (partial) solutions of

the variables.

(2) Optimization problems: a good optimization prob-

lem is bwhat is the smallest number of scans we can

do to reconstruct the high resolution image?Q
Because of the redundancy in the equations (as

seen from the fact that many alternative reconstruc-

tions are possible), it may be possible to reduce the

number of scans significantly.

Scan selection problem. We now present a formulation of

the above problem for the one-dimensional case, along with

a motivation that such optimization is feasible.

Definitions:

Variables {xi}; 1V iVn represent high-resolution pixels

Scan Si,j={Si, j
l }; 1V l tn/ib represent a collection of low-

resolution pixels with dimension 1�i and initial offset j;

0V jV i�1. Where Sli; j ¼
Piblþj

p¼ib l�1ð Þþjþ1
xp
� 	

:
Cover Two scans, Si,j, Sk,t, where ipk relatively prime,

bcoverQ a set V of variables if we can reconstruct V

using the 1-D algorithm (see Fig. 28).

Cover degree Ci defined as the number of scan pairs (Si,j,
Fig. 28

and X9.
Sk,t) such that each pair bcoversQ xi. Ci=0 means that

we cannot reconstruct xi based on Lemma 4.1.
. Example of how two scans, S30 and S50, cover the variables X4
Goal: find G scans (offline or online) such that

(a) |G| is minimal.

(b) 8id Ciz1 (this ensures we have enough equations

to solve each variable using the 1-D algorithm).

Greedy algorithm:

1: if 8id Ciz1 then

2: Stop

3: else

4: Select the scan Si,j (from the unselected scans) that

covers the maximal number of uncovered variables.

5: end if

Refinement: if all unselected scans Si,j at one stage

contribute the same, select the one with the lowest i (it

has a chance to cover more variables in the future).

Fig. 29 shows that in the one-dimensional case with

resolutions of 1�5 and 1�3, one 1�3 scan can be removed

(does not matter which) and still all variables are bcoveredQ
Fig. 30. Upper part: Each gray square in line i, 1V iV5, represents a

variable being covered by S5i and all S3j, 1V jV3. Every variable is

covered by exactly two pairs of scans. Lower part: The same without using

scans S51 and S53; all variables are still covered.
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(bcover Q degree z1). The same holds for removing two

1�5 scans (as shown in Fig. 30).

Open questions:

(a) What/how many variables we wish to bcover Q?
or, how do we measure and decide that our result

is good?

(b) What is the contribution (if any) to the validity/

error of the result if a variable is bcoveredQ more

than once?

(c) What will be the value of an uncovered variable

(interpolation/mean of neighbors/noise)?

(d) In the above target function, each scan is bchargedQ
the same. We can think of a weighted version of

the problem where each scan will have a positive

weight e.

(e) The presented formulation of the problem is insuffi-

cient because it lacks the use of previously computed

variables for computing other variables. This can be

shown by looking at the previous 1�5 and 1�3

examples. The presented greedy algorithm yields a

solution that leaves two 1�5 scans out; the optimal

solution is much better leaving out four 1�5 scans.

(3) Another optimization problem is bGiven a set of

scans, what can we reconstruct?Q — This is simply

linear algebra, but if we add the constraints that we

wish to minimize the (maximal, average) error

propagation distance (to be defined, but should be

clear), then we have a new type of decision/

optimization problem. There is also a design

problem: plan a set of scans so that reconstruction

has bgoodQ error localization. Maybe this can be

phrased as a linear programming problem.

(4) An interesting direction, may be more interesting in

practice than in theory, is to make use of random

perturbations in the origin location so as to improve

resolution. The advantages are many — primarily

in that we do not have to set the origin exactly, all

we do is set a random origin. The method should

use a registration algorithm to recognize which

offsets were actually used to generate the image.

9. Contact information

Further information on our work including full datasets

of MR images can be found on: http://www.cs.tau.ac.il/

~fiat/MRI/MRI.htm. Also available is a Matlab software

that fully implements the presented algorithm.
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