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Abstract

We present a simple, explicit construction of an in-
finite family F of bounded-degree ’unique-neighbor’ ex-
panders Γ; i.e., there are strictly positive constants α
and ε, such that all Γ = (X,E(Γ)) ∈ F satisfy the
following property. For each subset S of X with no
more than α|X| vertices, there are at least ε|S| vertices
in X \ S that are adjacent in Γ to exactly one vertex
in S. The construction of F is simple to specify, and
each Γ ∈ F is 6-regular. We then extend the technique
and present easy to describe explicit infinite families
of 4-regular and 3-regular unique-neighbor expanders,
as well as explicit families of bipartite graphs with non
equal color classes and similar properties. This has sev-
eral applications and settles an open problem considered
by various researchers.

1 Introduction

We call a graph Γ = (X,E(Γ)) an (α, ε)-unique
neighbor expander if, for each subset S of X such that
|S| ≤ α|X|, there are at least ε|S| vertices in X \ S
that are adjacent to exactly one vertex in S. The con-
struction of an infinite family of (α, ε)-unique neigh-
bor expanders for some positive α, ε has been an open
question for a while (see [2], [11]), perhaps because
the ’second eigenvalue’ method, which has been the
main tool used in guaranteeing the expansion prop-
erties of a graph (see [1], [12]), does not appear to
be strong enough to prove that an infinite family of

∗Institute for Advanced Study, Princeton, NJ 08540, USA
and Department of Mathematics, Tel Aviv University, Tel Aviv
69978, Israel. E-mail: nogaa@post.tau.ac.il. Research supported
in part by a State of New Jersey grant, by a USA Israeli BSF
grant, by a grant from the Israel Science Foundation and by the
Hermann Minkowski Minerva Center for Geometry at Tel Aviv
University.
†Institute for Advanced Study, Princeton, NJ 08540. Re-

search supported by NSF grant CCR98210-58. E-mail:
mrc@ias.edu.

bounded-degree graphs are unique-neighbor expanders
(see [7]). Here we answer this question by first pre-
senting, for strictly positive constants α and ε, explicit
infinite families F , F ′, and F ′′ of 6-regular, 4-regular,
and 3-regular unique-neighbor expanders. We further
present a simple, explicit family G of bounded-degree
bipartite graphs Γ with sides X and Y , where Y is a
constant fraction smaller than X, and for every subset
S of X with no more than α|X| vertices, there are at
least ε|S| vertices in Y adjacent to exactly one vertex
in S. Although these graphs are not unique-neighbor
expanders in the sense defined here (as for some sub-
sets S of Y there are no vertices of X having a unique
neighbor in S), we call them, with a slight abuse of
notation, bipartite unique-neighbor expanders.

The unique-neighbor property of these graphs can
be useful for the design of networks that support very
simple distributed algorithms. Specifically, for any Γ =
(X,Y,E(Γ)) in G and any subset S ofX (whereX is the
larger side) that is no larger than α|X|, there is a simple
algorithm for finding a matching in Γ that saturates
S in O(log |S|) time; at each step, each vertex in S
not already matched pairs up with one of its neighbors
that is unshared with any other vertex in S not already
matched, if such a vertex exists. Thus, these graphs can
be used to significantly simplify the routing networks
and algorithms in [2] and [11].

The classes F ,F ′ and F ′′ are also useful. For exam-
ple, F , F ′, and F ′′ support simple parallel algorithms
for solving a load-balancing problem. More specifically,
first, let Γ be an (α, ε) unique neighbor expander on n
vertices. Next, let us suppose that there is a distri-
bution of pebbles on the vertices of Γ, such that each
vertex of Γ has somewhere between none and d pebbles,
for some d ∈ O(1). Further suppose that there are no
more than αn pebbles total. Then for arbitrary such
distributions, there exists an O(d log n/ε)-step paral-
lel algorithm for redistributing the pebbles among the
vertices of Γ such that each vertex of Γ has at most
1 pebble (at each step, each pebble may either move
across an edge or stay, and at most one pebbel may
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move across an edge during a step). We defer the de-
tails until the full version.

Unique-neighbor expanders can be useful in addi-
tional scenarios, similar to those discussed in [3] and
its references.

The construction of each Γ in both F and F ′ is a
simple appropriately defined graph product of a ’small’
graph C on 8 vertices with a ’large’ graph Λ ∈ H, where
H is an explicit infinite family of 8-regular Ramanujan
graphs constructed in [9] (see also [8]). The construc-
tion of each 3-regular Γ ∈ F ′′ is a slightly different
graph product of a cycle on 8 vertices with a ’large’
graph Λ ∈ H′′, where H′′ is an explicit infinite family
of 4-regular Ramanujan graphs, also constructed in [9]
and [8]. Finally, the construction of each Γ ∈ G is a
certain graph product of a small graph H with a large
graph Λ ∈ H′, where H′ is an explicit infinite family of
44-regular Ramanujan graphs constructed in [9]. The
graph H is a bipartite graph with 44 vertices on one
side and 21 on the other, and satisfies certain proper-
ties.

To show that each Γ ∈ F is indeed a unique-neighbor
expander, we first present properties of each Λ ∈ H
that were established by Kahale [7], whose analysis
uses the ’second eigenvalue’ method, strengthening the
basic approach of [1]. We later present and establish
a property of an appropriate small graph C. Then
we show that the combined properties of each Λ ∈ H
and C guarantee that each Γ ∈ F is indeed a unique-
neighbor expander. We use similar analysis to show
that each Γ ∈ G is as claimed.

Our results are related to those in the recent pa-
per [4], where the authors construct explicitly, for any
absolute positive constant c < 1, infinite families of
bounded degree bipartite graphs with classes of ver-
tices A and B, with |B| ≤ (1 − c)|A|, in which for
every set S ⊂ A of size at most δ|A| there are many
vertices in B with a unique neighbor in S. In fact,
the construction in [4] provides such graphs in which
every vertex of A has degree d, and every sufficiently
small set S ⊂ A has at least (1 − ε)d|S| neighbors in
B (and hence many of them necessarily have a unique
neighbor in S). However, these constructions do not
have the unique neighbor property, as there are small
subsets of B so that no vertex in A has a unique neigh-
bor in them, and it does not seem that the method can
be extended to construct such graphs. Moreover, the
constants involved in these constructions are large, and
the description in [4] is based on some nontrivial prop-
erties of extractors. Our constructions here are much
simpler, and have much lower degrees.

Our notation is the following. Z denotes the set of
integers. For any positive integer ι, N≤ι denotes the set

of ι+ 1 nonnegative integers no larger than ι. For any
subset V ′ of V (G), G[V ′] denotes the induced subgraph
of G on V ′. A q + 1-regular graph Λ is Ramanujan if
all but one of the eigenvalues of the adjacency matrix
of Λ are no larger than 2

√
q. For a group G and a

subset Σ of G, where π ∈ Σ if and only if π−1 ∈ Σ,
define the Cayley graph Λ′ on G with respect to Σ to
be the |Σ|-regular graph whose vertex-set is G, and
whose edge-set is {{ν, πν}| ν ∈ G and π ∈ Σ}. (Call
the elements π ∈ Σ the generators of Λ′, and Σ the
set of generators of Λ′.) If Σ generates G, then Λ′

is connected; otherwise, the components of Λ′ are the
right cosets of the subgroup of G generated by Σ.

Finally, for every ring R, PGL2(R) denotes the quo-
tient group GL2(R)/Z, where GL2(R) is the group of
2× 2 matrices σ with entries in R such that the deter-
minant of σ is in R×, and Z is the subgroup of GL2(R)
of the form

Z =

{(
λ 0
0 λ

)
| λ ∈ R×

}
, (1)

where R× is the group of elements of R with a multi-
plicative inverse.

The rest of this paper is organized as follows. In §2
we present and analyze F and F ′. In §3 we construct
and analyze F ′′. In §4 we construct and analyze the
family of bipartite expanders G. The final §5 contains
some concluding remarks and open problems.

The proofs in Sections 2 and 3 are short, and are
given here with essentially all details. Due to space
limitations, we omit the somewhat lengthy proof of one
of the lemmas in Section 4, and postpone it to the full
version of the paper.

2 6 and 4-Regular Unique Neighbor
Expanders

In this section we illustrate our basic techniques.
For the rest of this section, let H be the infinite family
of 8-regular Cayley Ramanujan graphs explicitly con-
structed in [9], (see also [8], [5]), and let C be the 3-
regular, 8 vertex graph on N≤7, where ι and ι′ are
adjacent in C if and only if |ι− ι′| equals either 1 or 7,
or 4. We present the construction of F by construct-
ing, for each Λ = (V,E) ∈ H, a graph Γ on |E| vertices,
and then by proving Theorem 2.1 below.

Let Λ = (V,E) be a graph in H. For each vertex
ν ∈ V , let Eν be the set {γ ∈ E| γ is incident to ν},
and let Hν be any graph that has Eν as its vertex-set,
and is isomorphic to C. Finally, let Γ be the graph
whose vertex-set is E, where γ and γ′ are adjacent in
Γ if and only if there exists a ν ∈ V where γ and γ′ are
both incident to ν, and γ and γ′ are adjacent in Hν .
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Theorem 2.1 Γ is an (α, 1/30)-unique-neighbor 6-
regular expander, where α is as in Corollary 2.3 below.

The proof of Theorem 2.1 uses the theorem below,
proved by Kahale [6].

Theorem 2.2 Let Λ̄ = (V̄ , Ē) be a k-regular Ramanu-
jan graph. Then for all δ > 0, and for any nonempty
subset X of size at most k−1/δ|V̄ |, the average degree
d of Λ̄[X] satisfies

d ≤ (1 +
√
k − 1)(1 +O(δ)). (2)

2

This implies the following two corollaries, which we
will use.

Corollary 2.3 Let Λ = (V,E) be a graph in H. There
exists a strictly positive α such that, for any subset S
of E, where |S| ≤ α|E|, the average degree of Λ[VS ] is
at most 38/10, where VS is the set of vertices ν ∈ V
such that ν is incident to at least one edge in S. 2

Corollary 2.4 Let Λ = (V,E) be a graph in H. Then
there exists a positive α such that for any subset V ′ of
V , where |V ′| ≤ 2α|V |, the average degree of Λ[V ′] is
at most 38/10. 2

We also need the following observation about the
graph C presented at the beginning of this section.

Lemma 2.5 Let C be the 3-regular graph on N≤7
where ι and ι′ are adjacent if and only if |ι′ − ι| is
either 1,or 4, or 7. Then, for every nonempty subset J
of N≤7, the quantity |J | + |J ′| is at least 4, where J ′

is the set of vertices ι in N≤7\J such that ι is adjacent
in C to exactly one vertex in J .

The assertion of this lemma is obvious for |J | = 1
and for |J | ≥ 4. For sets J of cardinality 2 or 3 it can
be easily checked. 2

With Corollary 2.3 and Lemma 2.5 at hand we are
now ready to prove Theorem 2.1.

Let S be a subset of E, |S| ≤ α|E|. Let VS be
the set of all endpoints of the members of S in the
graph Λ. By Corollary 2.3 there are at least |VS |/15
vertices ν ∈ VS that have in Λ at most 3 neighbors in
VS . Let ν be such a vertex, and let J be the set of
edges in the induced subgraph of Λ on VS which are
incident with ν. Let J ′ be the set of all vertices of
Hν which are adjacent (in Hν) to a unique vertex of
J . Note that all elements in J ∪ J ′ are in fact edges
of Λ, incident with ν. By Lemma 2.5 |J | + |J ′| ≥ 4,
implying (since ν has at most 3 neighbors in Λ that
are in VS) that there is at least one member γ ∈ J ∪J ′

whose other endpoint (besides ν) does not lie in VS .
Clearly γ 6∈ J (since otherwise γ ∈ S and then both its
ends lie in VS). It follows that γ is not in S, and has
a unique neighbor in S. Thus, altogether, there are at
least |VS |/15 vertices of Γ with a unique neighbor in
S. As the average degree of the induced subgraph of Λ
on VS is at most 4, |VS |/15 ≥ |S|/30, completing the
proof of Theorem 2.1. 2

We next present a family F ′ of 4-regular unique-
neighbor expanders by constructing Γ, and by proving
Theorem 2.6 below.

Let Λ = (V,E) be a graph in H and let Σ be the
set of 8 generators of Λ. Let H be any graph with
vertex-set Σ that is isomorphic to C. Put X = V ×Σ.
Finally, let Γ be the graph on X, where x = (ν, π) and
x′ = (ν′, π′) are adjacent in Γ if and only if either

(I) ν = ν′, and π and π′ are adjacent in H, or
(II) πν = ν′, and ν = π′ν′.

Theorem 2.6 Γ is an (α/4, 1/120)-unique-neighbor
expander and is 4-regular, where α is as in Corollary
2.4.

Proof: For each vertex ν ∈ Λ, let Xν denote the set
{(ν, π) ∈ X| π ∈ Σ}. Clearly:

(A′) each vertex x = (ν, π) in each Xν is adjacent
in Γ to exactly one vertex x′ outside of Xν , namely,
x′ = (πν, π−1).

Let S be a subset of X where |S| ≤ α|X|/4. Let VS
be the set of all vertices ν ∈ V such that Xν ∩ S is
nonempty. Then |VS | is no larger than 2α|V |. Thus, by
Corollary 2.4 there are at least |VS |/15 vertices ν ∈ VS
that have in Λ at most 3 neighbors in VS . Let ν be
such a vertex, let J be the set of edges in the induced
subgraph of Λ on VS which are incident with ν, and let
J ′ be the vertices in Xν \ J that are adjacent in Γ to a
unique vertex in J . Note that Γ[Xν ] is isomorphic to
the graph C described in Lemma 2.5, so |J |+ |J ′| ≥ 4.
Thus, there is at least one vertex (ν, π) in J ∪ J ′ such
that πν 6∈ VS (since ν has at most 3 neighbors in Λ that
are in VS) or equivalently, Xπν ∩ S is empty. Suppose
then that (ν, π) is in J . Then, because Xπν ∩ S is
empty, the vertex (πν, π−1) is not in S, and (ν, π) is
the unique neighbor of (πν, π−1) in S, by (A′). On
the other hand, if (ν, π) is in J ′, then (ν, π) is not in
S. Also, because Xπν ∩ S is empty, all neighbors of
(ν, π) in Γ that are in S are in J . But there is only one
such neighbor, by the definition of J ′. Thus altogether
there are at least |VS |/15 vertices in Γ\S with a unique
neighbor in S. However, |VS |/15 ≥ |S|/120, since there
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are at most 8 vertices in Xν ∩ S for each ν ∈ VS . This
completes the proof. 2

Actually, we can prove that there are at least |S|/20
vertices in Γ \S that have a unique neighbor in S. For
each vertex ν ∈ VS , let Jν be the set Xν ∩ S, and let
J ′ν be the set of vertices in Xν \ Jν that are adjacent
in Γ to exactly one vertex in Jν . Then set fS(ν) =
|Jν ∪ J ′ν |. Next, let δS(ν) be the number of vertices in
VS that are adjacent in Λ to ν. By using the reasoning
used in the proof of Theorem 2.6, we can show that
the number M of vertices in Γ \ S that have a unique
neighbor in S satisfies

M ≥
∑
ν∈VS

(fS(ν)− δS(ν)). (3)

However, fS(ν) ≥ 4 for each ν ∈ VS , but∑
ν∈VS

δS(ν) ≤ 38|VS |/10 ≤ 3.8

4

∑
ν∈VS

fS(ν).

Since
∑
ν∈VS

fS(ν) ≥ |S| we conclude that M ≥
0.2
4

∑
ν∈VS

fS(ν) ≥ |S|20 , as needed.

In fact, as each Λ ∈ H has a simple algebraic con-
struction [5, 8], we can give an explicit, self-contained
description of F ′ as follows. Let l ≥ 3 be any integer.
Set V = PGL2(Z/17lZ). Then, fix an arbitrary square
root ε of −1 in the ring Z/17lZ, and define a 8-element
subset Σ of V where Σ is the set

{(
2 + εa1 a3 + εa3
−a2 + εa3 2− εa1

)
|a1, a2, a3 ∈ {1,−1}

}
.

(4)
Next, let X = V × Σ, and let τ be an arbitrary

bijection from Σ to N≤7. Finally, let Γ be the graph
on X, where (ν, π) and (ν′, π′) are adjacent in Γ if and
only if either

(I) ν = ν′, and |τπ − τπ′| is either 1,7, or 4, or
(II) πν = ν′, and π′ν = ν.

By the discussion above, Γ is an (α/4, 1/20)-unique
neighbor expander.

3 3-Regular Unique-Neighbor Ex-
panders

In this section we construct an infinite family F ′′
of 3-regular unique-neighbor expanders. To do so, we
use a slightly more exotic graph product of a 4-regular
Ramanujan graph with a cycle on 8 vertices.

For the rest of this section, let C ′′ be the cycle on
N≤7 where ι and ι′ are adjacent in C ′′ if |ι′ − ι| is

either 1 or 7. Let H′′ be the infinite family of 4-regular
Cayley Ramanujan graphs explicitly constructed in [8],
[9]. Although this is not necessary, it will be convenient
to assume that each element π in the generating set Σ
of each of these graphs is of order 2, that is π−1 =
π. We will see later that indeed we can choose such
generating sets. We construct F ′′ by constructing, for
each Λ = (V,E) ∈ H′′, a graph Γ on 4|E| = 8|V |
vertices, and then by proving Theorem 3.1 below.

Let Λ = (V,E) be a graph in H′′, and let us write
the set Σ of 4 generators of Λ as Σ = {π̂1, π̂2, π̂3, π̂4}.
For each ι ∈ N≤7, let πι be a specific element in Σ;
specifically, set

π1 = π5 = π̂1; π2 = π7 = π̂2;

and

π3 = π6 = π̂3; π0 = π4 = π̂4.

Put X = V ×N≤7. Let Γ be the graph on X where
(ν, ι) is adjacent to (ν′, ι′) in Γ if and only if

(I) ν = ν′, and |ι′−ι| is either 1 or 7, or equivalently,
ι′ and ι are adjacent in C ′′, or

(II) ι = ι′, and πιν = ν′, or equivalently, ν = πιν
′.

Theorem 3.1 Γ is a 3-regular (α′′/8, 1/80)-unique-
neighbor expander, where α′′ is as in Corollary 3.2,
stated below.

The proof of Theorem 3.1 uses Corollary 3.2, which
follows from Theorem 2.2.

Corollary 3.2 Let Λ = (V,E) be a graph in H′′.
There exists a strictly positive α′′ such that, for any
subset V ′ of V , where |V ′| ≤ α′′|V |, the average degree
of Λ[V ′] is at most 14/5. 2

We need another lemma, which is similar in spirit
to Lemma 2.5. We first specify 4 subsets J1, J2, J3,
and J4 of N≤7; set J1 = {1, 5}; J2 = {2, 7}; J3 =
{3, 6}, and J4 = {0, 4}. Thus πι= π̂i if and only if
ι is in Ji. For any subset J of N≤7, define the rank
of J , written as r(J), to be the number of Ji that J
intersects. The following lemma can be proved by a
simple case analysis.

Lemma 3.3 Let C ′′ be the cycle on N≤7 where ι and
ι′ are adjacent in C ′′ if and only if |ι′ − ι| is either 1
or 7. Set J1 = {1, 5}; J2 = {2, 7}; J3 = {3, 6}, and
J4 = {0, 4}, and for any subset J of N≤7, define r(J)
to be the number of Ji specified above that J intersects.
Then for every nonempty subset J of N≤7, r(J ∪J ′) is
at least 3, where J ′ is the set of vertices ι in N≤7 \ J
such that ι is adjacent in C ′′ to exactly one vertex in
J . 2
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We now combine Corollary 3.2 and Lemma 3.3 to
complete the proof of Theorem 3.1. For each ν ∈ V ,
let Xν denote the set {(ν, ι)| ι ∈ N≤7}. Clearly:

(A′′), For each vertex ν ∈ V , each x = (ν, ι) ∈ Xν is
adjacent to exactly one vertex x′ outside of Xν ; namely,
x′ = (πιν, ι).

Let S be a subset of X; |S| ≤ α′′|V | = α′′|X|/8, and
let VS denote the set {ν ∈ V |Xν ∩ S 6= ∅}. Obviously
|VS | ≤ α′′|V |. By Corollary 3.2, there are at least
|VS |/10 vertices ν ∈ VS such that ν is adjacent in Λ to
at most 2 other vertices in VS . Let ν be one such vertex.
Let J be the set {ι ∈ N≤7| (ν, ι) ∈ Xν ∩ S}, and let J ′

be the set of ι in N≤7 that have a unique neighbor in J
in the graph C ′′. By Lemma 3.3, r(J ∪J ′) is at least 3.
Thus, there exists at least one i ∈ {1, 2, 3, 4}, such that
J ∪ J ′ intersects Ji, where the Ji’s are as defined in
Lemma 3.3, but π̂iν is not in VS (because ν is adjacent
in Λ to only two other vertices in VS), or equivalently,
Xπ̂iν∩S is empty. Let i be such an integer, and let ι be
an element in (J ∪ J ′)∩ Ji. If ι is in J , then (πιν, ι) =
(π̂iν, ι) is a vertex not in S (because Xπ̂iν∩S is empty)
that has, by (A′′), (ν, ι) as its unique neighbor in S.
On the other hand, if ι is in J ′, then (ν, ι) is a vertex
not in S that has a unique neighbor in S. Thus, there
must be at least |VS |/10 vertices in Γ \ S that have
a unique neighbor in S. Since Xν ∩ S has at most 8
vertices of S, |VS |/10 is at least |S|/80, and Theorem
3.1 follows. 2

In fact, using the algebraic construction of H′′ pre-
sented in [5, 8], we can give the following explicit, self
contained construction of F ′′ as follows. Let l be any
integer that is at least 3. Set V = PGL2(Z/17lZ). Let
ε be a square root of −1 in the ring Z/17lZ, and set
π̂1, π̂2, π̂3, and π̂4 to be the following 4 matrices of V .

π̂1 =

(
ε 1 + ε

−1 + ε −ε

)
; (5)

π̂2 =

(
ε 1 + ε

1 + ε −ε

)
; (6)

π̂3 =

(
ε −1− ε

−1− ε −ε

)
; (7)

and

π̂4 =

(
ε −1− ε

1− ε −ε

)
. (8)

Note that π = π−1 for each π ∈ {π̂1, π̂2, π̂3, π̂4}.
For each ι ∈ N≤7, set πι to be one of π̂1, π̂2, π̂3, and

π̂4 as follows:

π1 = π5 = π̂1; π2 = π7 = π̂2;

and

π3 = π6 = π̂3; π0 = π4 = π̂4.

Put X = V ×N≤7. Finally, let Γ be the graph on X
where (ν, ι) is adjacent to (ν′, ι′) in Γ if and only if

(I) ν = ν′, and |ι′ − ι| is either 1 or 7, or
(II) ι = ι′, and πιν = ν′.

Then Γ is a 3-regular (α′′/8, 1/80)-unique neighbor
expander.

4 Bipartite Unique-Neighbor Ex-
panders

In this section we construct, for some strictly pos-
itive α and ε, an infinite family G of bipartite graphs
Γ = (X,Y,E(Γ)) where |X| = 22|Y |/21, that satisfies
the following property: for every subset S of X with no
more than α|X| vertices, there are at least ε|S| vertices
in Y that are adjacent in Γ to exactly one vertex in S.
To do so, we use an appropriate graph product between
a small graph H, and an infinite familyH′ of 44-regular
Cayley Ramanujan graphs explicitly constructed in [9].

First, let H be the bipartite graph with a set W
= {w0, ..., w43} of 43 vertices on one side, and T =
{t0, ..., t20} of 21 vertices on the other side, where wι′

and tι are adjacent in H if and only if ι′ and ι satisfy
either (I) or (II) stated below.

(I) ι′ ≤ 24, and either ι = 20, or b ι
′

5 cb
ι
5c ≡ ι − ι′

(mod 5).
(II) ι′ ≥ 25, and ι′ − 25 = ι.
We construct G by constructing for each Λ =

(V,X) ∈ H′, a graph Γ with |X| vertices on one side
and 21|X|/22 vertices on the other. Then we prove
Theorem 4.1 stated below. First, let us write the 44
generators of Λ as π0, ..., π43. Next, let Γ be the bipar-
tite graph where one side is the edge-set X of Λ, and
the other side is V× N≤20, which we write as Y , and
where γ ∈ X and 〈ν, ι〉 ∈ Y are adjacent in Γ if and
only if γ is incident to ν, and there exists an ι′ ∈ N≤43
where wι′ is adjacent to tι in H, and γ is incident to
πι′ν.

Theorem 4.1 The graph Γ = (X,Y,E(Γ)) satisfies
the following properties.

(i) Let α and ε are as in Corollary 4.2. Then, for
each subset S of X of no more than α|X| vertices, there
are at least ε|S| vertices in Y that are adjacent in Γ to
exactly one vertex in S.

(ii) |X| = 22|Y |/21.
(iii) Γ has maximum degree 25, and no more than

7|X| edges.
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The proof of Theorem 4.1 uses Corollary 4.2 and
Lemma 4.3. Corollary 4.2 follows from Theorem 2.2.

Corollary 4.2 Let Λ = (V,X) be a graph in H′. Then
there exists strictly positive constants α and ε such that,
for any subset S of E such that |S| ≤ α|X|, there are
at least ε|S| vertices in Λ that are incident to at least
1, but no more than 7, edges of S. 2

Lemma 4.3 The graph H satisfies the following prop-
erty
(**): if U is any nonempty subset of W that has no
more than 7 vertices, there is at least one vertex in T
that is adjacent in H to exactly one vertex in U .

The proof of Lemma 4.3 requires some detailed ar-
guments and will be given in the full version of the
paper.

We now use Corollary 4.2 and Lemma 4.3 to prove
Theorem 4.1. Let ν be an arbitrary vertex in V . Let
Xν denote the set of 44 vertices γ ∈ X such that γ
is incident to ν. Let Yν denote the set of 21 vertices
〈ν, ι〉 ∈ Y , where ι ∈ {0, 1, ..., 20}. We note that
(A) for each vertex ν in Λ every vertex in Yν is adjacent
only to vertices in Xν .
Furthermore,
(B) Γ[Xν ∪ Yν ] is isomorphic to H, where Xν maps to
W , and Yν maps to T .

Let S be any subset of X, |S| ≤ α|X|. By Corollary
4.2, there is a set Q of at least ε|S| vertices ν ∈ Λ
such that 1 ≤ |S ∩Xν | ≤ 7. By (B) and Lemma 4.3,
for each ν ∈ Q, there is at least one vertex v ∈ Yν
that is adjacent in Γ to exactly one vertex in S ∩Xν .
Thus, from (A), v is adjacent in Γ to exactly one vertex
in S. Therefore, there must be at least |Q| ≥ ε|S|
vertices in Y that are adjacent in Γ to exactly one
vertex in S because the sets Yν are pairwise disjoint.
This completes the proof of Theorem 4.1, part (i). The
assertions of parts (ii) and (iii) follow easily from the
construction.

5 Concluding Remarks

We have described several explicit families of low
degree unique-neighbor expanders. In fact, by taking
the double covers of the graphs in §3 and by omitting
an appropriate sparse set of vertices in one of the sides,
we can get explicitly infinite families of bipartite graphs
with maximum degree 3, that have a property similar
to the graphs constructed in §4 : there are some ab-
solute positive constants δ1, δ2, δ3 such that for every
graph in the family with classes of vertices A and B,
|B| ≤ (1 − δ1)|A| and every set S ⊂ A of size at most

δ2|A| has at least δ3|S| vertices in B with a unique
neighbor in S.

A related problem to the one considered here and
in [4], is that of constructing, for every ε > 0 an ex-
plicit infinite family of d-regular graphs G = (V,E),
where each set S ⊂ V of size at most δ|V | has at
least (1 − ε)d|S| neighbors, where here d = d(ε) and
δ = δ(ε). The techniques here and in [4] do not sup-
ply such families and the problem of finding such an
explicit construction remains open.

Acknowledgment The first author thanks Ori
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