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Abstract

We consider the bipartite cut and the judicious partition problems in graphs of girth at least
4. For the bipartite cut problem we show that every graph G with m edges, whose shortest cycle
has length at least r ≥ 4, has a bipartite subgraph with at least m

2 + c(r)m
r
r+1 edges. The order

of the error term in this result is shown to be optimal for r = 5 thus settling a special case of
a conjecture of Erdős. (The result and its optimality for another special case, r = 4, have been
known before.) For judicious partitions, we prove a general result as follows: if a graph G = (V,E)
with m edges has a bipartite cut of size m

2 + δ, then there exists a partition V = V1 ∪ V2 such
that both parts V1, V2 span at most m

4 − (1− o(1)) δ2 +O(
√
m) edges for the case δ = o(m), and

at most
(

1
4 −Ω(1)

)
m edges for δ = Ω(m). This enables one to extend results for the bipartite cut

problem to the corresponding ones for judicious partitioning.

1 Introduction

Many problems in Extremal Graph Theory are instances of the following general setting: given a
fixed graph H or a family of fixed graphs H = {H1, . . . , Hk} and a large graph G = (V,E) on |V | = n

vertices, estimate the extremal values of various graph theoretic parameters of G as functions of n,
assuming G is H-free or more generally (H1, . . . , Hk)-free. Central questions as those of studying
the Turán number ex(n,H) or the Ramsey number R(H,Kn) fall into this category.

In some extremal problems the size of the large graph G = (V,E) is naturally measured by its
number of edges m = |E| rather than by its number of vertices n = |V |. Two such problems are the
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maximal bipartite cut (or Max-Cut) problem, where one seeks to partition the vertex set V into two
disjoint parts V1 and V2 so that the number of edges of G crossing between V1 and V2 is maximal, and
the so-called judicious partition problem, where the task is to find a partition V = V1 ∪V2 such that
both parts V1 and V2 span the smallest possible number of edges. Formally, for a graph G = (V,E)
we define:

f(G) = max{ e(V1, V2) : V = V1 ∪ V2, V1 ∩ V2 = ∅ }

g(G) = min
V=V1∪V2

max{e(V1), e(V2)} ,

where, as usual, e(U,W ) is the number of edges of G between the (disjoint) subsets U,W ⊂ V ,
and e(U) is the number of edges of G spanned by U . Thus, the bipartite cut problem is that of
computing the value of f(G), and the judicious partition problem asks to compute g(G). The above
two functions are closely connected; moreover, bounding from above g(G) supplies immediately a
lower bound for f(G): f(G) ≥ m−2g(G). We provide more extensive background information about
both these problems later in the paper.

Consider a random partition V = V1 ∪ V2, obtained by assigning each vertex v ∈ V to V1 or
V2 with probability 1/2 independently. It is easy to see that each edge of G has probability 1/2 to
cross between V1 and V2, probability 1/4 to fall inside V1, and the same probability 1/4 to fall inside
V2. Therefore the expected number of edges in the cut (V1, V2) is m/2, and each part Vi is expected
to span m/4 edges. While for the bipartite cut problem the above simple argument shows that
every graph G with m edges has a cut of size at least m/2, implying f(G) ≥ m/2, for the judicious
partitioning it is insufficient to derive g(G) ≤ m/4. Still, it indicates that the right answer should
be around m/2 for the bipartite cut problem, and around m/4 for the judicious partition problem.
Therefore, in many cases it is the error term after m/2 or m/4, respectively, we will be interested in.

In this paper we consider the above two extremal problems when the forbidden graphs Hi are
short cycles, or in other words, the graph G is assumed to have girth bounded from below by a
parameter r. (Given a graph G, the girth of G is the length of the shortest cycle in G; in case G is
a forest we set girth(G) =∞). We prove the following results about the bipartite cut problem.

Theorem 1.1 Let r ≥ 4 be a fixed integer. Then there exists a constant c > 0 such that every graph
G with m edges and girth at least r satisfies

f(G) ≥ m

2
+ cm

r
r+1 .

Theorem 1.2 There exists a constant c′ > 0 such that for every integer m there exists a graph G

with m edges and girth at least five for which

f(G) ≤ m

2
+ c′m

5
6 .

Thus, the estimate on the error term of Theorem 1.1 is tight up to a constant factor for the case
r = 5. This settles (in a strong form) a special case of a conjecture of Erdős discussed in more details
in the next section. The assertion of Theorem 1.1 and its tightness for r = 4 have been established
by the first author in [2].
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As for judicious partitions, we prove a very general result, connecting the size of an optimal
bipartite cut with the best value of a judicious partition.

Theorem 1.3 Let G = (V,E) be a graph with m edges whose maximal bipartite cut has cardinality
f(G) = m

2 + δ. If δ ≤ m/30, then there exists a partition V = V1 ∪ V2 of the vertex set of G such
that

e(Vi) ≤
m

4
− δ

2
+

10δ2

m
+ 3
√
m , i = 1, 2 .

Therefore, if δ = o(m) but δ �
√
m, it follows that g(G) = m/4 − (1 − o(1))δ/2. The case of

large δ is covered by the following complementary theorem.

Theorem 1.4 Let G = (V,E) be a graph with m edges whose maximal bipartite cut has cardinality
c(G) = m

2 + δ. If δ ≥ m/30 and m is large enough, then there exists a partition V = V1 ∪ V2 of the
vertex set of G such that

e(Vi) ≤
m

4
− m

100
, i = 1, 2 .

Combining the above two theorems with Theorem 1.1 we immediately get the following estimate
on the judicious partition problem for graphs with given girth:

Corollary 1.5 Let r ≥ 4 be a fixed integer. Then there exists a constant c > 0 such that every graph
G with m edges and girth at least r satisfies:

g(G) ≤ m

4
− cm

r
r+1 .

Obviously, the above mentioned tightness results for Theorem 1.1 for r = 4, 5 carry over to
tightness results for Corollary 1.5.

The rest of the paper is organized as follows. In Section 2 we discuss the bipartite cut problem,
first surveying necessary background and then proving Theorems 1.1 and 1.2. Section 3 is devoted to
the judicious partition problem, there we first cover relevant previous developments and then prove
Theorems 1.3 and 1.4. Section 4, the last section of the paper, contains some concluding remarks
and a discussion of related open problems.

In the course of the paper, we will make no serious attempt to optimize the absolute constants
involved. For the sake of simplicity of presentation we will drop occasionally floor and ceiling signs
whenever these are not crucial.

2 Bipartite cuts

2.1 Background

As we indicated in the introduction, it is quite easy to show that every graph G = (V,E) with
m edges contains a bipartite cut (V1, V2) spanning at least m/2 edges. This elementary result can
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be improved by providing a more accurate estimate for the error term after the main term m/2.
Edwards [9], [10] proved the essentially best possible result that every graph G with m edges satisfies

f(G) ≥ m

2
+

√
m

8
+

1
64
− 1

8
.

This result is easily seen to be tight in case G is a complete graph on an odd number of vertices, that
is, whenever m =

(
k
2

)
for some odd integer k. Estimates on the second error term for other values of

m can be found in [2], [3], [7].
The problem of estimating the minimum possible size of the maximum cut in graphs without

short cycles has been raised by Paul Erdős in one of his numerous problem papers [11]. There he
introduced the function

fr(m) = min{f(G) : |E(G)| = m, girth(G) ≥ r}

and conjectured that for every r ≥ 4 there exists a constant cr > 0 such that for every ε > 0
m

2
+mcr−ε < fr(m) <

m

2
+mcr+ε

provided m > m(ε). He also mentioned that together with Lovász they proved that
m

2
+ c2m

c′′r < fr(m) <
m

2
+ c1m

c′r ,

where c′r and c′′r are greater than 1/2 and less than one for all r > 3 and tend to one as r tends to
infinity. (In this statement we have corrected an apparent typo in Erdős’ paper.)

The case r = 4, i.e. the case of triangle-free graphs has attracted most of the attention so far.
After a series of papers by various researchers ([11], [13], [15]) the first author proved in [2] that if
G is a triangle-free graph with m edges, then

f(G) ≥ m

2
+ cm4/5

for some absolute positive constant c. In the same paper [2] the error term of the above estimate
is shown to be tight by showing that for every m > 0 there exists a triangle-free graph G with m

edges for which f(G) ≤ m
2 + c0m

4/5, for an absolute constant c0 > 0. This upper bound is based on
a construction of regular triangle-free graphs with extremal spectral properties, given in [1].

Here we generalize the above stated bounds for the case of graphs of higher girth. The proof of
the lower bound of Theorem 1.1, given in next subsection, utilizes techniques from several previous
papers on the subject. We are able to provide a matching upper bound for the case of r = 5, i.e. for
graphs without 3- and 4-cycles, thus settling the above mentioned problem of Erdős for this case as
well. This result (Theorem 1.2) is proven in Subsection 2.3, where, following the method in [2], we
use spectral properties to estimate from above the size of a maximal bipartite cut.

2.2 Lower bound

In this subsection we obtain a lower bound on the size of the maximum bipartite subgraphs of graphs
with girth at least r. We need the following simple lemma from [11], whose short proof is included
here for the sake of completeness.
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Lemma 2.1 Let G be a graph with m edges and chromatic number t. Then G contains a bipartite
subgraph with at least t+1

2t m = m
2 + m

2t edges.

Proof. Since the chromatic number of G is t we can decompose its vertex set into t independent
subsets V1, . . . , Vt. Partition these subsets randomly into two parts, containing b t2c and d t2e sets Vi
respectively. Let H be a bipartite subgraph of G whose color classes are the above two parts. Note
that for every fixed edge e of G the probability that its ends lie in distinct classes of H is

Pr
(
e ∈ E(H)

)
=
b t2cd

t
2e(

t
2

) ≥
t2−1

4
t(t−1)

2

=
t+ 1

2t
.

By linearity of expectation, the expected number of edges in H is at least t+1
2t m. This completes the

proof. �

Next we need a result of Shearer [15], which provides a very useful lower bound on the size of a
maximum bipartite subgraph in a triangle-free graph.

Proposition 2.2 Let G be a triangle free graph with m edges, and let d1, . . . , dn be the degrees of
the vertices in G. Then

f(G) ≥ m

2
+

1
8
√

2

n∑
i=1

√
di.

Finally we shall also use the following upper bound, proved by Bondy and Simonovits [8], on the
maximum number of edges in graphs without cycles of a given even length. (We note that in fact we
need here only the simpler, similar estimate, for the maximum number of edges in graphs with no
short cycles at all, but we include this result as it may be helpful in dealing with the related problem
of estimating the maximum cut in graphs without a cycle of a fixed, given length.)

Proposition 2.3 Let l ≥ 2 be an integer and let G be a graph of order n. If G contains no cycle of
length 2l, then the number of edges in G is at most 100ln1+1/l.

Having finished all the necessary preparations we are ready to prove our first theorem.
Proof of Theorem 1.1. To prove the theorem we use the argument from [2] with some additional
ideas. Let r ≥ 4 be a fixed integer and let G be a graph with n vertices, m edges and with girth at
least r. Define d = b100rm

2
r+1 c. First we consider the case when G has no subgraph with minimum

degree greater than d.
In this case it is easy to see that there exists a labeling v1, . . . , vn of the vertices of G so that

for every i, the number of neighbors vj of vi with j < i is at most d. Indeed, let vn be the vertex
of minimal degree in G. Clearly the degree of vn is at most d, delete it from G and repeat this
procedure. Let di denote the degree of vi in G and let d′i be the number of neighbors vj of vi with
j < i. Obviously,

∑n
i=1 d

′
i = m. Since G is triangle-free, by Proposition 2.2 we obtain

f(G) ≥ m

2
+

1
8
√

2

n∑
i=1

√
di ≥

m

2
+

1
8
√

2

n∑
i=1

√
d′i

≥ m

2
+

1
8
√

2

∑n
i=1 d

′
i√

d
=

m

2
+

1
8
√

2
m√
d

=
m

2
+ Ω

(
m

r
r+1

)
,
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as needed.
Now suppose that there exists a subset of vertices U of G of order u such that the induced

subgraph G[U ] of G has minimum degree greater than d. We first prove that in this case r should
be even. Suppose not, i.e., r = 2l + 1 for some integer l ≥ 2. Note that the number of edges
in G[U ] is at least ud/2 and at most the number of edges in G, which is m. This implies that
u ≤ 2m/d. In addition, we have that G[U ] contains no cycle of length 2l. Then using the fact that
d = b100(2l + 1)m

1
l+1 c together with Proposition 2.3, we conclude that the number of edges in this

graph is at most

100lu1+1/l ≤ 100lu
(

2m
d

)1/l

≤ 100lu
(
m

l
l+1

)1/l
<
ud

2
,

a contradiction. Therefore in the rest of the proof we will assume that r is even and set r = 2q + 2
for some integer q ≥ 1.

Next we prove that U contains a subset U ′ such that the induced subgraph G[U ′] spans at least
ud/4 edges and is t-colorable for t = 2u

dq . Indeed, let T be a random subset of U obtained by picking
uniformly at random, with repetitions allowed, t vertices from U . Let x be a fixed vertex of U .
Denote by S(x) the set of vertices in U which are within distance exactly q from x and denote by
sx the size of S(x). Since the minimal degree of G[U ] is greater than d and G[U ] contains no cycle
of length at most 2q + 1, it is easy to see that sx > dq for every x ∈ U . This, together with the
definition of t, implies that the probability that S(x) ∩ T is empty is at most(

1− sx
u

)t
<

(
1− dq

u

)t
≤ e−tdq/u = e−2 <

1
4
.

It follows that for every fixed edge (x, y) of G[U ], the probability that both S(x) and S(y) have
non-empty intersection with T is at least 1/2. Let U ′ be the set of all vertices x in U such that
S(x) ∩ T 6= ∅ and let G[U ′] be the graph induced by U ′. By linearity of expectation the expected
number of edges in G[U ′] is at least e(U ′) ≥ e(U)/2 ≥ ud/4. Hence there exist a particular set T of
size at most t such that the corresponding graph G[U ′] spans at least ud/4 edges.

Fix such sets T and U ′ and define a coloring of G[U ′] in t colors by coloring each vertex x ∈ U ′

by the smallest index of a vertex from T which belongs to S(x). Since G[U ] has no cycles of length
at most 2q + 1, it clearly follows that no edge can have both its endpoints within distance exactly q
from some vertex in T . This proves that the coloring defined above is a proper coloring and the set
U ′ with the required properties indeed exists.

Now by Lemma 2.1, there exists a partition of U ′ into two disjoint subsets U1 and U2 so that

e
(
U1, U2

)
≥ e(U ′)

2
+
e(U ′)

2t
≥ e(U ′)

2
+
ud

2
· d

q

4u
=
e(U ′)

2
+ Ω

(
dq+1

)
=

e(U ′)
2

+ Ω
(
dr/2

)
=
e(U ′)

2
+ Ω

(
m

r
r+1
)
.

Now we can assign the remaining vertices in V (G)− U ′ one by one either to U1 or to U2, each time
adding a vertex to the subset in which it has more neighbors and breaking ties arbitrarily. This
ensures that at least half of the edges which are not in G[U ′] will lie in the bipartite graph which we
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obtain in the end of this process. Therefore

f(G) ≥ e(G)− e(U ′)
2

+
e(U ′)

2
+ Ω

(
m

r
r+1
)

=
m

2
+ Ω

(
m

r
r+1
)
,

completing the proof of the theorem. �

2.3 Graphs with girth five

In this subsection we show that the lower bound of Theorem 1.1 is tight, up to a constant factor,
for graphs with girth at least 5. To do so we will need the following folklore result, which provides
an upper bound for f(G), for a regular graph G, in terms of the smallest eigenvalue of its adjacency
matrix. For completeness, we include the short proof.

Lemma 2.4 Let G be a d-regular graph (which may have loops) of order n with m = dn/2 edges
and let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of the adjacency matrix of G. Then

f(G) ≤ m

2
− λnn

4
.

Proof. Let A = (aij) be the adjacency matrix of G = (V,E) and let V = {1, . . . , n}. Let
x = (x1, . . . , xn) be any vector with coordinates ±1. Since the graph G is d regular we have

∑
(i,j)∈E

(xi − xj)2 = d
n∑
i=1

x2
i −

∑
i,j

aijxixj = dn− xtAx.

By the variational definition of the eigenvalues of A, for any vector z ∈ Rn, ztAz ≥ λn‖z‖2. Therefore∑
(i,j)∈E

(xi − xj)2 = dn− xtAx ≤ dn− λn‖x‖2 = dn− λnn. (1)

Let V = V1 ∪ V2 be an arbitrary partition of V into two disjoint subsets and let e(V1, V2) be the
number of edges in the bipartite subgraph of G with bipartition (V1, V2). For every vertex v ∈ V (G)
define xv = 1 if v ∈ V1 and xv = −1 if v ∈ V2. Note that for every edge (i, j) of G, (xi − xj)2 = 4 if
this edge has its ends in the distinct parts of the above partition and is zero otherwise. Now using
(1), we conclude that

e(V1, V2) =
1
4

∑
(i,j)∈E

(xi − xj)2 ≤ 1
4

(dn− λnn) =
m

2
− λnn

4
. �

In order to prove Theorem 1.2 we will use the so-called Erdős-Rényi graph [12], arising from the
projective plane PG2(p) over a finite field. Let p be a prime power and let Fp be the finite field
with p elements. Consider the three dimensional vector space F3

p. Two vectors x = (x1, x2, x3) and
y = (y1, y2, y3) in this space are called orthogonal if < x, y >= x1y1 + x2y2 + x3y3 = 0, in which case
we write x ⊥ y. Similarly for any two subsets X,Y in F3

p we write X ⊥ Y iff < x, y >= 0 for any
two vectors x ∈ X and y ∈ Y . Let G be a graph whose vertices are all one dimensional subspaces of
F3
p. Clearly the number of vertices of G is n = (p3 − 1)/(p− 1) = p2 + p+ 1 and we denote them by

7



vi, 1 ≤ i ≤ p2 + p + 1. Two vertices vi and vj are adjacent in G if vi ⊥ vj . Note that G has some
vertices with loops and it is easy to see that all its vertices have degree p+ 1. Thus the total number
of edges in G is e(G) = (p + 1)(p2 + p + 1)/2 =

(
1/2 + o(1)

)
n3/2. Next we briefly summarize the

properties of G we will need later in our proof. This is done in the following simple lemma (which
is essentially known).

Lemma 2.5 Let G be the graph defined above. Then it has the following properties:
(i) For every pair of vertices in G there is exactly one vertex of G adjacent to both of them;
(ii) The largest eigenvalue of the adjacency matrix of G is p+ 1 and all other eigenvalues are ±√p;
(iii) The set V0 of all vertices of G with loops has size at most 2(p+ 1).

Proof. (i) Let vi,vj be two distinct vertices of G, then they span a two dimensional subspace of
F3
p. Thus the set of vectors orthogonal to vi and vj has dimension one and corresponds to a unique

vertex of G adjacent to both vi and vj .
(ii) Let AG be the adjacency matrix of G and let λ1 ≥ λ2 ≥ . . . ≥ λn be its eigenvalues. Since the
graph G is (p+1)-regular we have that λ1 = p+1. Consider now the matrix A2

G. Clearly this matrix
has eigenvalues λ2

1, . . . , λ
2
n. The diagonal entries of A2

G are just the degrees of vertices of G and thus
are equal to p+ 1. In addition, for any i 6= j the ij-th entry of this matrix is simply the number of
vertices adjacent to both vi and vj and by (i) is equal to 1. Using this it is easy to deduce that the
eigenvalues of A2

G are (p+ 1)2 with multiplicity one and p with multiplicity n− 1. This implies that
all eigenvalues of AG except the first one are ±√p.
(iii) By definition, the size of V0 is the number of oner dimensional subspaces of F3

p which are
self orthogonal. Note that any vector (x, y, z) in F3

p, which is self orthogonal satisfies the equation
x2 +y2 +z2 = 0 over Fp. Since for every choice of x and y we can have at most two values for z which
will satisfy the equation, we obtain that the number of non-zero solutions of this equation is at most
2(p2 − 1). Since every one dimensional self orthogonal subspace should contain p− 1 such solutions
and no solution is contained in two different subspaces we conclude that |V0| ≤ 2(p2−1)

p−1 = 2(p + 1).
This completes the proof. �

Remark. Actually one can show that |V0| = p + 1, but for our purposes it is enough to have the
above weaker bound which is easier to prove.

Let G be the graph constructed above. From assertion (i) of Lemma 2.5 it follows immediately
that G contains no cycles of length 4. In addition every edge (vi,vj) of this graph, for which
vi,vj 6∈ V0, is contained in some cycle of length 3. Indeed, in this case vi,vj have a common
neighbor which is distinct from both of them. Also, using Lemma 2.4 we have

f(G) ≤ e(G)
2
− λnn

4
=
e(G)

2
+
√
pn

4
=
e(G)

2
+O

(
n5/4

)
.

Let H be a graph obtained from G by deleting all edges of G adjacent to vertices in V0, i.e., edges
not contained in any cycle of length 3. By definition, H is a graph of order n which has at least

e(H) ≥ e(G)− (p+ 1)|V0| ≥ e(G)− 2(p+ 1)2 = e(G)−O(n) =
(
1/2 + o(1)

)
n3/2
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edges. Every edge of H is contained in some cycle of length 3 and the maximum bipartite subgraph
of H still has size at most

f(H) ≤ f(G) ≤ e(G)
2

+O
(
n5/4

)
=
e(H)

2
+O

(
n
)

+O
(
n5/4

)
=
e(H)

2
+O

(
n5/4

)
.

Hence to complete the proof of Theorem 1.2 we need to prove the lemma below.

Lemma 2.6 Let H be a graph of order n with e =
(
1/2 + o(1)

)
n3/2 edges and with the following

properties:

• H has no cycles of length 4;

• Every edge of H is contained in some triangle, i.e., cycle of length 3;

• f(H) ≤ e
2 +O

(
n5/4

)
.

Then H contains a subgraph H0 with m = 2e/3 =
(
1/3 + o(1)

)
n3/2 edges and girth at least five, for

which
f(H0) ≤ m

2
+O

(
n5/4

)
=
m

2
+O

(
m5/6

)
.

Proof. First note that since H has no cycle of length 4 every two triangles in H are edge disjoint.
Since every edge of this graph is contained in some triangle we conclude that the set of edges of H
is a union of e/3 edge disjoint triangles. Let H0 be a subgraph of H obtained by deleting uniformly
at random one edge from every triangle in H. Clearly the number of edges in H0 is 2e/3, since
H0 contains precisely two edges from every triangle in H. In addition, H0 is triangle-free, since we
destroyed all triangles in H. This implies that the girth of H0 is at least five.

Next we show that with probability 1− o(1) the new graph contains no large bipartite subgraphs
and thus satisfies the assertion of the lemma. Indeed, let V (H) = V1 ∪ V2 be an arbitrary partition
of V into two disjoint subsets and let t = eH(V1, V2) be the number of edges in the corresponding
bipartite subgraph of H. Note that for every triangle in H either none or two of its edges belong to
the cut (V1, V2). Therefore it follows that the edges of this cut belong to the set of C1, . . . , Ct/2 edge
disjoint triangles. Recall that for every triangle Ci we deleted one of its edges uniformly at random.
Let x′i, 1 ≤ i ≤ t, be the random variable equal to the number of edges of the triangle Ci that belong
to the cut (V1, V2) and were not deleted and let xi = x′i − 1. By definition, we have that xi = 1 with
probability 1/3 (i.e., in case when we delete the edge of Ci not in the cut) and xi = 0 with probability
2/3 (i.e., in case when we delete one of the two edges of Ci that are in the cut). Clearly, the total
number of edges of the graph H0 in the cut (V1, V2) equals eH0(V1, V2) =

∑t/2
i=1 x

′
i = t/2 +

∑t/2
i=1 xi.

Since X =
∑t/2

i=1 xi = eH0(V1, V2)− t/2 is a binomially distributed random variable with parameters
t/2 and 1/3, it follows by the standard estimates for Binomial distributions (see, e.g., [5], Appendix
A) that

Pr
(
X − t

6
> a = cn5/4

)
≤ e−Ω(a2/t) = e−Ω(c2n5/2/t).

9



By picking an appropriate constant c and by using the fact that t ≤ m ≤ O
(
n3/2

)
we conclude that

Pr
(
eH0(V1, V2)− 2

3
t > Ω

(
n5/4

))
= Pr

(
X − t

6
> Ω

(
n5/4

))
< e−n.

Since the total number of partitions of H is at most 2n, this implies that with probability 1 − o(1)
for every partition V = V1 ∪ V2 we have

eH0(V1, V2) ≤ 2
3
eH(V1, V2) +O

(
n5/4

)
.

In particular, since the number of edges in H0 is m = 2e/3 =
(
1/3 + o(1)

)
n3/2 we obtain that with

probability 1− o(1) the size of a maximum bipartite subgraph of H0 satisfies:

f(H0) ≤ 2
3
f(H) +O

(
n5/4

)
=

2
3

(e
2

+O(n5/4)
)

+O
(
n5/4

)
=
m

2
+O

(
n5/4

)
=
m

2
+O

(
m5/6

)
.

This completes the proof of the lemma. �

Finally by taking disjoint copies of appropriate graphs H0 from the above lemma and by adding,
if needed, a small number of isolated edges it is easy to deduce from Lemma 2.6 that there exists an
absolute positive constant c′ so that for every m there exists a graph G with girth at least five and
m edges, satisfying

f(G) ≤ m

2
+ c′m

5
6 .

This shows that for r = 5 the exponent 5/6 in Theorem 1.1 cannot be improved and completes the
proof of Theorem 1.2. �

3 Judicious partitions

3.1 Background

It is easy to prove that a partition (V1, V2) of a graph G = (V,E) with m edges, for which every
vertex v ∈ V has at least as many neighbors of the opposite color as of its own color, is such that
e(V1), e(V2) ≤ 1

2e(V1, V2), and therefore e(V1), e(V2) ≤ m/3. Since a partition with the maximal
number of crossing edges clearly has the above property, we get that g(G) ≤ m/3. This bound is
optimal as shown by the example of a complete graph K3. However, for large values of m one can
expect to do much better. The probabilistic reasoning, described in the introduction, indicates that
the right answer for growing m should be around m/4. And indeed Porter [14] proved in 1992 that
every graph with m ≥ 1 edges has a bipartition in which each class contains at most m/4 +

√
m/8

edges. The best possible bound for a general graph has been obtained by the second author and
Scott in [6], where it was proved that for a graph G with m edges

g(G) ≤ m

4
+

√
m

32
+

1
256
− 1

16
,

i.e. exactly one half of the Edwards bound for bipartite cuts. (In fact, it was proven in [6] that
there exists a partition (V1, V2) meeting both the bound of Edwards for bipartite cuts and the above

10



stated bound for judicious partitions). This bound is exact for complete graphs of odd order. To the
best of our knowledge, the judicious partitioning problem for graphs with forbidden subgraphs has
not been considered in the literature.

The problems of bounding bipartite cuts and judicious partitions are closely related. Hence a
rather natural approach to the (probably more complicated) judicious partitioning problem would
be to derive bounds for judicious partitions from those on bipartite cuts. This approach is carried
out in our Theorem 1.3, where it is proven that if a general graph G with m edges has a bipartite
cut with m/2 + δ edges, i.e., with a surplus δ over the trivial m/2 bound, then this surplus can be
divided almost equally between the two parts of the cut, resulting in a partition in which both parts
span about m/4− δ/2 + o(δ) +O(

√
m) edges. (Observe that the O(

√
m) correction term is needed

in this estimate due to the optimality of the above stated result of [6]). Moreover, as we are about
to show, the proof starts with an optimal bipartite cut and proceeds by moving vertices between the
two parts V1 and V2 so as to balance the number of edges spanned by them, while maintaining the
almost optimality of the bipartite cut between V1 and V2. For the case of δ linear in m Theorem 1.4
shows that g(G) is smaller than m/4 by an additive factor linear in m. Thus Theorems 1.3 and 1.4
form a bridge between the two problems considered in this paper and enable one to derive results on
the judicious partition problem by looking at the corresponding bipartite cut problem. Combining
this with Theorem 1.1 results in Corollary 1.5, bounding from above the value of an optimal judicious
partition in graphs without short cycles.

The proofs of Theorems 1.3 and 1.4 are given in the next subsection.

3.2 Proofs of Theorems 1.3 and 1.4

Proof of Theorem 1.3. The main ingredient of the proof is the following lemma.

Lemma 3.1 Let G = (V,E) be a graph with m edges and with a maximal bipartite cut of cardinality
c(G) = m

2 +δ, where δ ≤ m
30 . Suppose V = V1∪V2 is a partition of V (G) for which d(v, V1) ≤ d(v, V2)

for every vertex v ∈ V1. If e(V1) ≥ m
4 −

δ
2 , then there exists a vertex v ∈ V1 such that d(v, V1) ≤ 3

√
m

and d(v, V2) ≤
(
1 + 10δ

m

)
d(v, V1).

Proof. We prove the lemma by showing that the total degree of vertices of V1 violating any of the
required conditions does not reach the total degree of vertices in V1.

Let first T1 = {v ∈ V1 : d(v, V1) > 3
√
m}. Observe that as d(v, V1) ≤ d(v, V2) for every vertex

v ∈ V1, if follows that

2e(V1) =
∑
v∈V1

d(v, V1) ≤
∑
v∈V1

d(v, V2) = e(V1, V2) ,

implying e(V1) ≤ m/3. Thus |T1| ≤ 2e(V1)/(3
√
m) ≤ 2

√
m/9. Therefore the set T1 spans at most

2m/81 edges. As in the summation
∑

v∈T1
d(v, V1) the edges spanned by T1 are counted twice and

every other edge inside V1 is counted at most once, we get:∑
v∈T1

d(v, V1) ≤ e(V1) + e(T1) ≤ e(V1) +
2m
81

. (2)

11



Define now T2 =
{
v ∈ V1 : d(v, V2) >

(
1 + 10δ

m

)
d(v, V1)

}
. Then

e(V1, V2) =
∑
v∈T2

d(v, V2) +
∑

v∈V1\T2

d(v, V2) >
(

1 +
10δ
m

)∑
v∈T2

d(v, V1) +
∑

v∈V1\T2

d(v, V1)

=
∑
v∈V1

d(v, V1) +
10δ
m

∑
v∈T2

d(v, V1) = 2e(V1) +
10δ
m

∑
v∈T2

d(v, V1) ,

implying: ∑
v∈T2

d(v, V1) <
m

10δ
(e(V1, V2)− 2e(V1)) .

Observe that e(V1, V2) ≤ c(G) = m
2 + δ and that by the lemma assumption e(V1) ≥ m

4 −
δ
2 . Hence∑

v∈T2

d(v, V1) <
m

10δ

(
m

2
+ δ − 2

(
m

4
− δ

2

))
=
m

5
. (3)

From (2) and (3) we derive:∑
v∈T1∪T2

d(v, V1) < e(V1) +
2m
81

+
m

5
< e(V1) + 0.23m . (4)

On the other hand, recalling our assumption on δ, we can see that∑
v∈V1

d(v, V1) = 2e(V1) ≥ e(V1) +
m

4
− δ

2
≥ e(V1) +

m

4
− m

60
> e(V1) + 0.23m . (5)

Comparing (4) and (5) shows that not all vertices of V1 are in the union of T1 and T2. It follows from
the definitions of T1 and T2 that any vertex in V1 \ (T1 ∪ T2) meets the requirements of the lemma.
�

We now prove Theorem 1.3. Let V = U1 ∪ U2 be a partition of V satisfying e(U1, U2) = c(G) =
m
2 + δ and e(U1) ≥ e(U2). Clearly for every vertex u ∈ U1, d(u, U1) ≤ d(u, U2), as otherwise moving
u from U1 to U2 would create a bipartite cut of size larger than e(U1, U2) = c(G). We will achieve a
partition with the desired properties by starting from (U1, U2) and by moving a number of vertices
from U1 to U2 in order to balance the number of edges spanned by those subsets. Lemma 3.1 will
help us to maintain the size of the cut almost unchanged. Formally, we start by assigning V1 = U1,
V2 = U2. Then, as long as e(V1) ≥ m

4 −
δ
2 +3

√
m, we find a vertex vi ∈ V1, for which d(vi, V1) ≤ 3

√
m

and d(vi, V2) ≤
(
1 + 10δ

m

)
d(vi, V1) and transfer it to V2. It is easy to see that the conditions of

Lemma 3.1 still apply and therefore such a vertex indeed can be found. We denote d(vi, V1) = ai,
d(vi, V2) = bi. Note that bi ≤

(
1 + 10δ

m

)
ai.

Let us look at the final partition (V1, V2) after the above described process has terminated.
Suppose the vertices moved from V1 to V2 are v1, . . . , vt. Clearly,

e(V1) <
m

4
− δ

2
+ 3
√
m . (6)

We now estimate from above the number of edges in V2. To this end, denote e(U1) = m1, then
e(U2) = m− e(U1, U2)− e(U1) = m

2 − δ −m1. As 2e(U1) ≤ e(U1, U2) = m
2 + δ, we get m1 ≤ m

4 + δ
2 .

12



Notice that while moving a vertex vi from V1 to V2 during the process, we deleted ai edges from V1

and added bi edges to V2. Therefore for the final partition (V1, V2) we get:

e(V1) = e(U1)−
t∑
i=1

ai = m1 −
t∑
i=1

ai , (7)

e(V2) = e(U2) +
t∑
i=1

bi =
m

2
− δ −m1 +

t∑
i=1

bi ≤
m

2
− δ −m1 +

(
1 +

10δ
m

) t∑
i=1

ai . (8)

As each time we moved from V1 to V2 a vertex vi with d(vi, V1) ≤ 3
√
m, it follows that in the final

partition (V1, V2), e(V1) ≥ m
4 −

δ
2 , since (6) was violated just before the last step. Hence from (7)

t∑
i=1

ai = m1 − e(V1) ≤ m1 −
m

4
+
δ

2
.

Therefore it follows from (8) that

e(V2) ≤ m

2
− δ −m1 +

(
1 +

10δ
m

)(
m1 −

m

4
+
δ

2

)
=

m

4
− δ

2
+

10δ
m

(
m1 −

m

4
+
δ

2

)
≤ m

4
− δ

2
+

10δ2

m
.

This together with (6) establishes the theorem. �

Proof of Theorem 1.4. The proof here is similar to that of Theorem 1.3, with parameters tuned
so as to guarantee the error term m/100.

We claim that the desired partition can be obtained using the following procedure. Start with an
optimal bipartite cut V = U1 ∪U2, for which e(U1, U2) = c(G) = m

2 + δ and e(U1) ≥ e(U2). Initialize
V1 = U1, U2 = V2, and then, as long as V1 contains a vertex vi for which

d(vi, V1) ≤ m/400 (9)

and

d(vi, V2) ≤

(
1 +

δ + m
50

23m
100

)
d(vi, V1) , (10)

move vi to V2.
Let us show first that the algorithm terminates successfully, i.e. reaches the stage where e(V1) ≤

m
4 −

m
100 . To do so we need to show that as long as the last condition is not fulfilled a required

vertex vi ∈ V1, satisfying conditions (9) and (10) exists. Suppose we are at some intermediate
stage and the current partition is (V1, V2). Define T1 = {v ∈ V1 : d(v, V1) ≥ m/400}. Then, as
e(V1) ≤ m/3, |T1| ≤ 2e(V1)/(m/400) ≤ (2m/3)/(m/400) = 800/3, and therefore T spans at most
(800/3)2/2 < 36000 edges. Hence similarly to the proof of Theorem 1.3,∑

v∈T1

d(v, V1) ≤ e(V1) + e(T1) < e(V1) + 36000 . (11)
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Set now

T2 = {v ∈ V1 : d(v, V2) >

(
1 +

δ + m
50

23m
100

)
d(v, V1)} .

Then, again as in the proof of Theorem 1.3, we get:

∑
v∈T2

d(v, V1) <
23m
100

δ + m
50

(e(V1, V2)− 2e(V1))

≤
23m
100

δ + m
50

(m
2

+ δ − 2
(m

4
− m

100

))
=

23m
100

. (12)

Therefore, from (11) and (12) we get∑
v∈T1∪T2

d(v, V1) < e(V1) + 36000 +
23m
100

< e(V1) + 0.24m < 2e(V1)

for sufficiently large m, and hence V1 \ (T1 ∪ T2) 6= ∅, implying the existence of a vertex with the
required properties.

Let us now estimate the number of edges spanned by the final sets V1 and V2. Obviously,

e(V1) ≤ m

4
− m

100
. (13)

Denote e(U1) = m1, then m1 ≤ e(U1, U2)/2 = m
4 + δ

2 . Suppose we transferred from V1 to V2

vertices v1, . . . , vt, whose degrees (at the time of movement) were ai = d(vi, V1) and bi = d(vi, V2).
As in the end e(V1) ≥ m

4 −
m

100 −
m

400 = 19m
80 , we get:

t∑
i=1

ai ≤ m1 −
19m
80

,

implying:
t∑
i=1

bi ≤

(
1 +

δ + m
50

23m
100

)(
m1 −

19m
80

)
.

Therefore:

e(V2) =
m

2
− δ −m1 +

t∑
i=1

bi <
m

2
− δ −m1 +

(
1 +

δ + m
50

23m
100

)(
m1 −

19m
80

)

=
21m
80
− δ +

(
δ + m

50

) (
m1 − 19m

80

)
23m
80

≤ 21m
80
− δ +

(
δ + m

50

) (
δ
2 + m

80

)
23m
80

.

We may assume that δ ≤ 13m
50 , as otherwise the initial partition (U1, U2) satisfies the theorem

requirements. An easy check shows that for every δ in the interval
[
m
30 ,

13m
50

]
the expression in the

last display, viewed as a quadratic function of the parameter δ, is strictly less than 0.24m. This
together with (13) completes the proof of Theorem 1.4. �
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4 Concluding remarks

• The following conjecture seems plausible

Conjecture 4.1 For every r ≥ 4, there exist c1 = c1(r), c2 = c2(r) > 0 so that

m

2
+ c1m

r
r+1 < fr(m) <

m

2
+ c2m

r
r+1 .

Note that by Theorem 1.1 the lower bound indeed holds, and by the results of [2] and by our
results here, the upper bound also holds for r = 4, 5. Moreover, the construction in [1] can be
generalized to provide, for every even value of r, graphs with m edges in which the maximum
bipartite subgraph is of size at most m

2 + c3m
r
r+1 , which contain no odd cycles of length smaller

than r. Unfortunately, these graphs do have short even cycles, and therefore do not prove the
upper bound of the above conjecture as stated, though they do provide further indication that
its assertion holds.

• It is not difficult to use some of the techniques given here and show that for every fixed graph
H there exists a constant ε = ε(H) > 0 such that for any H-free graph G with m edges
f(G) ≥ m

2 + Ω(m1/2+ε). (One can for example first show that the chromatic number of a
Kr-free graph G with m edges satisfies χ(G) = O(m

1
2
−δ) for some δ = δ(r) > 0 by applying

known bounds on the off-diagonal Ramsey numbers R(Kr,Kn), and then invoke Lemma 2.1.)
Using the results in [4] we can in fact obtain some explicit reasonable estimates for certain
specific graphs H. However, we suspect that in fact much more is true, and for any H-free
graph G with m edges, f(G) ≥ m

2 + Ω(m3/4+ε). It is worth noting that the random graph
G = G(n, p), satisfies, almost surely, f(G) ≥ n2p

4 + Ω(n
√
np) for every p = p(n) satisfying, say,

p ≤ 1/2. To see that this is the case fix an ordering v1, v2, . . . , vn of the set of vertices V of
G, and construct the cut V = V1 ∪ V2 greedily, by putting each vertex vi in its turn in the
part which adds more edges to the constructed bipartite graph. Since we can expose the edges
from vi to all previous vertices only after we have already partitioned these vertices, there is an
expected discrepancy of Ω(

√
(i− 1)p) between the number of edges from vi to the two parts

constructed so far, implying the desired estimate. Note that even for p = 1/2 this gives that
almost surely f(G) = n2

4 + Ω(n3/2) = m
2 + Ω(m3/4), and it is easy to see that the error term

here (and for all other reasonable values of p) is tight.
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