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Abstract

We prove that any partition of an n-dimensional discrete box into
nontrivial sub-boxes must consist of at least 2n sub-boxes, and consider
some extensions of this theorem.

1 The theorem

A set of the form
A = A1 ×A2 × · · · ×An,

where A1, A2, . . . , An are finite sets with |Ai| ≥ 2, will be called here an
n-dimensional discrete box. A set of the form B = B1 × B2 × · · · × Bn,
where Bi ⊆ Ai, i = 1, . . . , n, is a sub-box of A. Such a set B is said to be
nontrivial if ∅ 6= Bi 6= Ai for every i.

The following theorem answers a question posed by Kearnes and Kiss [1,
Problem 5.5].
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Theorem 1 Let A be an n-dimensional discrete box, and let {B1, B2, . . . , Bm}
be a partition of A into nontrivial sub-boxes. Then m ≥ 2n.

Proof. Let

Bj = Bj
1 ×B

j
2 × · · · ×B

j
n, j = 1, . . . ,m.

Let us call a sub-box C of A odd if its cardinality is odd. Let O(A) denote
the collection of all odd sub-boxes of A. For j = 1, . . . ,m, define:

Oj(A) = {C ∈ O(A) | C ∩Bj is odd}.

A sub-box is odd if and only if each of its n factors has odd cardinality, and
the nontriviality of the Bj implies that half of the odd cardinality subsets
of Ai intersect Bj

i in an odd number of elements. This implies

|Oj(A)|
|O(A)|

=
1
2n
, j = 1, . . . ,m. (1)

For each C ∈ O(A) the partition {B1, B2, . . . , Bm} induces a partition of C
in which at least one of the parts must have odd cardinality, which implies

m⋃
j=1

Oj(A) = O(A). (2)

It follows from (1) and (2) that m ≥ 2n.

2 Extensions and non-extensions

2.1 Infinite boxes

The theorem remains true if in the definition of an n-dimensional discrete
box we allow the sets A1, A2, . . . , An to be infinite. This follows by consid-
ering the finitely many atoms induced by the partition at hand.

2.2 Partitions mod 2

The theorem remains true, with the same proof, if {B1, B2, . . . , Bm} is only
assumed to be a partition mod 2, that is, {B1, B2, . . . , Bm} is a multi-family
of nontrivial sub-boxes of A such that every point of A is covered an odd
number of times.
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2.3 Conditions for equality

An obvious example of equality in the theorem is obtained by splitting each
Ai into two nonempty parts, and taking B1, B2, . . . , B2n to be the corre-
sponding cells. One can derive from the above proof some conditions that
any example of equality must satisfy, and one might hope that these will
lead to a characterization of all such examples. In particular, one might
naively conjecture that every n-dimensional example of equality may be ob-
tained by splitting one factor into two parts, and further partitioning each of
the two resulting boxes according to some (n− 1)-dimensional examples of
equality. However, the following partition of a 3×3×3 box into 8 nontrivial
sub-boxes, in which none of the factors is split into just two parts, seems to
indicate that examples of equality do not obey a simple construction rule:

A = {1, 2, 3} × {a, b, c} × {α, β, γ}
B1 = {1} × {a} × {α}
B2 = {1} × {a} × {β, γ}
B3 = {1} × {b, c} × {α, β}
B4 = {1, 2} × {b, c} × {γ}
B5 = {2, 3} × {a, b} × {α, β}
B6 = {2, 3} × {a} × {γ}
B7 = {2, 3} × {c} × {α, β}
B8 = {3} × {b, c} × {γ}

2.4 Partition numbers of hypergraphs

If H = (V,E) is a hypergraph (i.e., E is a family of subsets of V ), let us
define the partition number π(H) as the least p such that E contains a
partition {B1, B2, . . . , Bp} of V (letting π(H) =∞ if there is no such p). If
H1 = (V1, E1) and H2 = (V2, E2) are two hypergraphs, let us define their
product H1×H2 to be the hypergraph with vertex-set V1× V2 and edge-set
consisting of all sets of the form B1 ×B2, B1 ∈ E1, B2 ∈ E2.

Clearly, if E consists of all the proper subsets of V and |V | ≥ 2, then the
partition number of H = (V,E) is 2. Our theorem asserts that the product
of n such hypergraphs has partition number 2n. This raises the question
whether the partition number is multiplicative with respect to hypergraph
product. It is easy to see that π(H1×H2) ≤ π(H1) ·π(H2), but the following
example shows that in general equality need not hold.

Let k > 4 be an integer, and let V1 and V2 be two sets of cardinality 3k.
Let E1 consist of all subsets of V1 of cardinality 1 or k+1, and let E2 consist
of all subsets of V2 of cardinality 1 or 2k− 1. Then H1 = (V1, E1) and H2 =
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(V2, E2) satisfy π(H1) = k and π(H2) = k + 2. However, π(H1 ×H2) ≤ 6k.
In order to see this, identify the vertex-set of H1 × H2 with the edge-set
E(K3k,3k) of a complete bipartite graph with 3k vertices on each side. Find
a (k+ 1)-regular subgraph G of K3k,3k, and partition the edge-sets of G and
its bipartite complement into 3k stars each, centered on opposite sides. As
6k < k(k + 2) for k > 4, this is a counterexample to the multiplicativity of
the partition number with respect to hypergraph product.

One may define the mod 2 partition number π(H) in a similar way, by
considering partitions mod 2 (as in subsection 2.2) instead of partitions.
Here, too, multiplicativity fails in general. Let H1 = (V1, E1) and H2 =
(V2, E2) be two copies of a Fano plane (vertices are points, edges are lines).
Then π(Hi) = 3 for i = 1, 2, but π(H1 ×H2) ≤ 7, as shown by the mod 2
partition of V1 × V2 formed by taking the product of each line with itself.

Acknowledgments. The problem solved here was presented in the
open problems session at KCC’99 by Petar Markovic. We are also grateful
to Jeff Kahn for suggesting the point of view taken in subsection 2.4.
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