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Abstract

It is easily shown that every digraph with m edges has a directed cut of
size at least m/4, and that 1/4 cannot be replaced by any larger constant.
We investigate the size of a largest directed cut in acyclic digraphs, and
prove a number of related results concerning cuts in digraphs and acyclic
digraphs.

1 Introduction

Results on maximum cuts in an undirected graph have a huge literature (see
Poljak and Tuza [21] and Laurent [19]), and the extremal Max Cut problem is
now quite well understood. Given a graph and a partition of its vertex set into
sets X, Y , a cut (X, Y ) means the edge set E(X, Y ) with one endpoint in X
and the other endpoint in Y . The size of the cut (X, Y ) is e(X, Y ) = |E(X, Y )|.
Similarly, we write e(X) for the number of edges with both ends in X. For
a graph G, f(G) denotes the maximum of e(X, Y ) over all cuts (X, Y ) of G
and f(m) is the minimum value of f(G) taken over all graphs with m edges.
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It is easily seen that every graph with m edges has a cut of size at least m/2.
Edwards [12] improved on this, showing that

f(m) ≥ m

2
+

√
m

8
+

1
64

− 1
8
, (1)

with equality for complete graphs of odd order; in fact, the same bound holds
for multigraphs. From the other side, Alon [2] proved that there is a constant
c > 0 such that

f(m) ≤ m

2
+

√
m

8
+ cm1/4 (2)

for every m, and showed that the O(m1/4) term is necessary: there is a constant
c′ > 0 such that f(m) ≥ m/2 +

√
m/8 + c′m1/4 for infinitely many m. (For

further work, see [4] and [8].) A lower bound in terms of size and order was
proved by Edwards [12], who showed that if G is a connected graph with m
edges then

f(G) ≥ m

2
+
|G| − 1

4
. (3)

In this paper we concentrate on cuts in directed graphs. Let X, Y be a
partition of the vertex set of a directed graph D. The directed cut (X, Y ) is the
set of edges E(X, Y ) with starting point in X and with endpoint in Y . The
size of the cut (X, Y ) is e(X, Y ) = |E(X, Y )|. As in the undirected case, we
can define g(D) as the maximum of e(X, Y ) over all directed cuts and g(m)
as the minimum of g(D) over all directed graphs D with m edges. Random
bipartitions show instantly that g(m) ≥ m/4. The stronger bound

g(m) ≥ m

4
+

√
m

32
+

1
256

− 1
16

follows from (1); regular orientations of complete graphs of odd order show that
this bound can be achieved. In particular, it follows that g(m) ∼ m/4 (see [8]
for further discussion).

A more delicate extremal problem emerges when we restrict our attention
to acyclic directed graphs (or, equivalently, ordered graphs). Let h(m) be the
minimum of g(G) over all acyclic directed graphs with m edges. Clearly, h(m) ≥
g(m). It is easily seen that h(m) ≥ f(m)/2, and so h(m) ≥ m/4, but it is not
so obvious whether 1/4 can be replaced by a larger constant. For instance, it
is not hard to show that acyclic orientations of random graphs tend to have
rather large directed cuts: for fixed p ∈ (0, 1), almost every G ∈ G(n, p) has
g(G̃) = (1 + o(1))e(G)/2 for every acyclic orientation G̃ of G (while g(G̃) =
(1 + o(1))e(G)/4 for almost every other orientation). Furthermore, while there
are natural families of extremal graphs for f(m) and g(m), there do not appear
to be natural candidates for extremal graphs for h(m).

One motivation for studying h(m) comes from the Hall ratio of graphs (see
[9], and Johnson [11]), ρ(G) = max{|V (H)|/α(H)} where H runs over all in-
duced subgraphs of G. In [9] ρ(G) was studied for Kneser graphs and for My-
cielski graphs, and the study of ρ(G) for shift graphs was proposed in [10]. The
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shift graph SHn (defined by Erdős and Hajnal in [13]) is the underlying graph
of the directed line graph of the transitive tournament on n vertices. The main
open problem ([10]) was whether there is ε > 0 such that ρ(SHn) ≤ (4− ε) for
every n. It is easy to see that the problem is equivalent to deciding whether
h(m) ≥ cm for some c > 1/4.

In Section 2, we give a negative answer to this problem, showing in fact
that h(m) = m/4 + O(m4/5) by giving an explicit construction. Since g(m) =
m/4 + Θ(

√
m), the question arises of whether h(m)−m/4 grows more quickly

than g(m) − m/4. We show that this is indeed the case, proving that h(m) ≥
m/4 + Ω(m3/5).

In Section 3, we examine maximum cuts in digraphs (acyclic or general)
with degree restrictions. We consider both the class of digraphs with maximum
outdegree at most k and the class of digraphs D(k, l) in which every vertex has
either indegree at most k or outdegree at most l. (For instance, D(0, 0) is the
class of bipartite graphs with all edges directed from one vertex class to the
other.) We also note a characterization of graphs that have an orientation lying
in one of these classes.

Finally, in Section 4, we consider the problem of covering the edges of a
digraph with as few cuts as possible.

2 Max Directed Cut for acyclic digraphs

The first aim of this section is to construct an acyclic digraph with m edges and
no directed cut of size greater than (1 + o(1))m/4.

Theorem 1. For m ≥ 1,

h(m) =
m

4
+ O(m4/5).

Proof. Fix n ≥ 1 and let r = bn1/3c. We construct an acyclic digraph D′

with m = m(n) = (1 + o(1))n5/3 edges, and no directed cut of size more than
m/4 + O(m4/5).

We first define a digraph D as follows. By a well known theorem of Singer
[22] there is a set A of r natural numbers such that all differences a − b, with
a, b ∈ A and a 6= b, are distinct and maxA ≤ (1 + o(1))r2. We define the
digraph D to have vertex set Zn, and directed edges from i + a to i + b, for all
i ∈ Zn, and all a, b ∈ A with a < b (here sums are written modulo n). By the
construction of A, there are no multiple edges, and so e(D) = n

(
r
2

)
.

Let G be the underlying graph of D. Since G is a union of n copies of Kr

(where the ith copy has vertex set {i + a : a ∈ A}), we have

f(G) ≤ nf(Kr) ≤
nr2

4
.

Since D is Eulerian, it follows that

g(D) =
1
2
f(G) ≤ nr2

8
.
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We now modify D to obtain an acyclic digraph D′ by deleting all edges ij
with i > j (where we identify the vertices of Zn with the integers 0, . . . , n− 1).
Since max A ≤ (1 + o(1))r2, we have deleted at most

(1 + o(1))r2

(
r

2

)
≤ (1 + o(1))

r4

2

edges. Thus D′ is acyclic, has

m ≥ n

(
r

2

)
− (1 + o(1))

r4

2
=

nr2

2
− nr

2
− (1 + o(1))

r4

2

edges, and

g(D′) ≤ nr2

8

≤ m

4
+

nr

8
+ (1 + o(1))

r4

8

≤ m

4
+ (1 + o(1))

n4/3

4
.

A simple calculation shows that m = (1 + o(1))n5/3/2, and so

g(D′) ≤ m

4
+ (1 + o(1))

m4/5

2
.

The construction is easily extended to other values of m by deleting edges.

We note that the constants in the proof above could be improved at several
points. For instance, it follows from eigenvalue techniques that no bipartition
will split all the copies of Kr in a balanced way, and our estimates elsewhere
are crude. However, it is probably not worth pursuing this, as the exponent 4/5
may well not be optimal.

We have now shown that h(m) = (1 + o(1))m/4, but the question remains
of how h(m) compares with g(m). The interest here is in the o(m) term: in
other words, how much better do we do than the trivial m/4? We know that
g(m)−m/4 = Θ(

√
m). Here we show that h(m)−m/4 is rather larger.

Theorem 2. For m ≥ 1,

h(m) ≥ m

4
+ Ω(m3/5).

Proof. Let D be an acyclic digraph with m edges. Identifying one vertex from
each component, we may assume that the underlying graph of D is connected.
Let G be the underlying multigraph of D, and let n = |D| = |G|. It is known
that (3) holds for connected multigraphs (see, for instance, [20]), and so

f(G) ≥ m

2
+

n− 1
4

.
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Therefore
g(D) ≥ m

4
+

n− 1
8

. (4)

Now let
γ : V (D) → [−n/2, n/2) ∩ Z

be an injective order-preserving map (i.e. if uv ∈ E(D) then γ(u) > γ(v)). We
define the length of an edge uv ∈ E(D) to be the positive integer γ(u)− γ(v).

Consider a random directed cut (V +, V −) of D, where each u ∈ V (D) inde-
pendently belongs to V + with probability

1
2

+
γ(u)m
10n3

.

(Note that, as |γ(u)| ≤ n/2 and m ≤ 2
(
n
2

)
, this is a real number in (0, 1).) Now

consider an edge uv with length l. The probability that u lies in the directed
cut is

P(u ∈ V +, v ∈ V −) =
(

1
2

+
γ(u)m
10n3

) (
1
2
− γ(v)m

10n3

)
=

1
4

+
lm

20n3
− γ(u)γ(v)m2

100n6

≥ 1
4

+
lm

20n3
− m2

400n4
.

It follows that the expected number of edges in the cut is at least

m

4
+

m

20n3
L− m3

400n4
,

where L is the sum of lengths of all edges of D. Since D contains at most n− 1
edges of any given length, we have

L ≥ (n− 1)(1 + 2 + · · ·+ bm/(n− 1)c).

Let α = bm/(n − 1)c ≥ m/2(n − 1) (note that m ≥ n − 1, as the underlying
graph of D is connected). Then

L ≥ (n− 1) · 1
2
α(α + 1) ≥ m2

8(n− 1)
,

so

g(D) ≥ m

4
+

m

20n3
· m2

8(n− 1)
− m3

400n4

≥ m

4
+

m3

320n3(n− 1)
. (5)
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It now follows from (4) and (5) that

g(D) ≥ m

4
+

1
2

(
m3

320n3(n− 1)
+

n− 1
8

)
≥ m

4
+ Ω(m3/5),

where the final inequality follows by minimizing over n.

It would be interesting to know the optimal power of m in the theorems
above.

Problem 1. What is the infimum α0 of α > 0 such that, for m ≥ 1,

h(m) =
m

4
+ O(mα)?

Clearly α0 ∈ [3/5, 4/5], from the two theorems above.
For related results and conjectures concerning undirected graphs, see [2, 3, 5].

3 Maximum directed cuts in digraphs with de-
gree restrictions

The following simple result follows easily from results by a number of authors,
beginning with Andersen, Grant and Linial [6], Locke [17] and Lehel and Tuza
[16] (see [2] for a compact proof): for k an odd integer, every graph with m
edges and maximum degree at most k has a cut of size at least

k + 1
2k

m. (6)

The bound is sharp for unions of complete graphs on k +1 vertices. For even k,
the sharp bound is k+2

2(k+1)m (that is (6) with k + 1 instead of k) and complete
graphs again yield the optimum.

We can obtain similar bounds for digraphs by controlling the chromatic
number.

Lemma 3. Let D be a digraph with m edges and maximum outdegree at most
k. Then the underlying graph of D has chromatic number at most 2k + 1.

Proof. Any digraph with maximum outdegree at most k contains a vertex with
indegree at most k. It follows that the underlying graph of D is 2k-degenerate
(that is, every induced subgraph has a vertex of degree at most 2k), and so has
chromatic number at most 2k + 1.

This is clearly attained when D is an orientation of K2k+1 in which every
vertex has outdegree k. We can now use Lemma 3 to bound the maximum size
of a directed cut.
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Corollary 4. Let D be a digraph with m edges and maximum outdegree at most
k. Then D has a directed cut of size at least

k + 1
4k + 2

m.

Proof. Let G be the underlying multigraph of D (so G may have some double
edges). Then χ(G) ≤ 2k+1, so we can pick a (2k+1)-colouring of G. Identifying
the vertices in each colour class, we obtain an edge-weighted copy K of K2k+1.
Now take a random partition of V (K) into vertex classes of size [k] and [k + 1],
chosen uniformly from all such partitions. The expected weight of the resulting
cut is k+1

2k+1m. Taking a cut with at least this weight yields a corresponding cut
(X, Y ) in G with the same weight. Finally, either (X, Y ) or (Y, X) has weight
at least half of this, as required.

This bound is sharp for k-out-regular orientations of K2k+1, since we then
have e(X, Y ) = e(Y, X) for every cut (X, Y ).

Similar results can be obtained for graphs in which each vertex has a con-
strained indegree or outdegree. We therefore turn to considering D(k, l), the set
of digraphs in which every vertex has indegree at most k or outdegree at most
l. Let us note first that there is a natural characterization of graphs that have
an orientation in D(k, l), using the following theorem ([14], for generalizations
see [15],[7]).

Theorem 5. Let G be a graph with vertex set V and let (dv)v∈V . Then there
is an orientation of G with d+(v) ≤ dv for every vertex v if and only if

e(X) ≤
∑
v∈X

dv (7)

for all X ⊆ V .

The following corollary is immediate.

Corollary 6. A graph G with vertex set V has an orientation with maximum
outdegree at most k if and only if e(X) ≤ k|X| for every X ⊆ V . If in addition
e(G) = k|V | then G has a k-out-regular orientation.

We can now characterize graphs with an orientation in D(k, l).

Corollary 7. A graph G with vertex set V has an orientation in D(k, l) if and
only if there is a partition V (G) = V1∪V2 such that e(X) ≤ k|X| for all X ⊆ V1

and e(X) ≤ l|X| for all X ⊆ V2.

Proof. If D is in D(k, l) then let V1 be the set of vertices in D with outdegree at
most k, and let V2 = V (G) \ V1. This partition clearly satisfies the conditions.
Conversely, suppose G is a graph with a partition V1 ∪ V2 satisfying the condi-
tions. By the theorem, we can orient the subgraphs induced by V1 and V2 so
that they have maximum outdegree at most k and at most l respectively. But
then reversing the orientation of the subgraph induced by V1 and orienting all
edges in E(V1, V2) from V1 to V2 gives an orientation in D(k, l).
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A similar result to Corollary 4 can be proved for graphs in D(k, l).

Lemma 8. Every digraph in D(k, l) has an underlying graph with chromatic
number at most 2k + 2l + 2.

Proof. Let U be the set of vertices of indegree at most k and let W be the
remaining vertices. Then the digraph induced by U has indegree at most k, and
its underlying graph is therefore 2k-degenerate and so has chromatic number at
most 2k +1; similarly, the digraph induced by W has outdegrees at most l, and
it follows that its underlying graph has chromatic number at most 2l + 1.

Note that this bound is attained by taking a k-out-regular orientation of
K2k+1 and an l-out-regular orientation of K2l+1, adding all edges between them
and orienting from the first graph to the second.

Corollary 9. Every digraph in D(k, l) with m edges has a directed cut of size
at least

k + l + 2
4k + 4l + 6

m. (8)

Proof. Suppose D ∈ D(k, l) and let G be its underlying multigraph. Then
χ(G) < 2k + 2l + 3, and proceeding as in the proof of Corollary 4, it follows
from Lemma 8 that there is a cut of the desired size.

For an upper bound on the constant in Corollary 9, let t = max{k, l}. A
regular orientation of K2t+1 belongs to D(k, l) and has no directed cut of size
more than

t(t + 1)
2

=
t + 1
4t + 2

e(K2t+1). (9)

Thus, by (8) and (9), we see that the correct bound lies between

1
4

+
1

8k + 8l + 12

and
1
4

+
1

8 max{k, l}+ 4
.

It would be interesting to know the correct value.
The problem is also interesting when we restrict our attention to acyclic

digraphs. For instance, when k = l = 1 we have the following result.

Theorem 10. Every acyclic digraph D ∈ D(1, 1) has a cut of size at least
2|E(D)|/5.

Proof. The proof is by induction on m = |E(D)|. If D is the union of disjoint
directed paths, then D clearly has a directed cut of size dm/2e > 2m/5.

Assume that this is not the case, w.l.o.g. the set L of all vertices with
outdegree at least two is nonempty. Because D is acyclic, the subgraph induced
by L has a vertex x0 with outdegree zero in L, let f1 = x0x1 and f2 = x0x2 be
edges of D for some x1, x2 /∈ L. Note that there is at most one edge entering
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x0 and at most one edge leaving xi, for i = 1, 2; remove those edges from G
together with f1 and f2. By induction, the remaining graph has a cut of size at
least 2(m− 5)/5 that can be extended by f1 and f2 to get a cut of size at least
2m/5 in D.

An extremal digraph for Theorem 10 is given by taking the directed path
(1, 2, 3, 4, 5) with the chord 24.

4 Covering by directed cuts

In previous sections, we concentrated on finding the largest cut that can be
guaranteed in a digraph satisfying various conditions. We now turn to the
problem of covering the edges of a digraph with directed cuts, and in particular
ask for an upper bound on the number of directed cuts required to cover the
edges of graphs in D(k, l).

We start with the complete directed graph on n vertices, in which every pair
of vertices is joined by a pair of edges, one in each direction. Surprisingly,
covering with directed cuts turns out to be closely related to Sperner systems.

Theorem 11. The minimal number of directed cuts required to cover the edges
of the complete directed graph on n vertices is equal to

c(n) := min
{

k :
(

k

bk/2c

)
≥ n

}
= log2 n +

1
2

log2 log2 n + O(1).

Proof. Given a sequence S of directed cuts (X1, Y1), . . . , (Xm, Ym) of the com-
plete digraph with vertex set V , let us associate with each vertex v the set
S(v) = {i : v ∈ Xi}. Then S covers the edges of the complete digraph if and
only if {Sv}v∈V forms an antichain. The bound in the theorem then follows
from Sperner’s Lemma.

We note here that Theorem 11 and its subsequent applications can be derived
from Exercise 9.26 (b) in [18] (attributed to A. Hajnal), or from the results in
[1]. It follows immediately from the theorem that any digraph whose underlying
graph has chromatic number at most n can be covered by c(n) ∼ log2 n directed
cuts, as we can use a colouring of the underlying graph to group the vertices of
our digraph. On the other hand, any graph with chromatic number n requires
at least log2 n cuts to be covered, since we can colour its vertices with sets S as
in the proof above.

Lemma 12. Let D be a digraph in which every vertex has outdegree at most k.
Then the edges of D can be covered with at most c(2k + 1) cuts.

Proof. Since the underlying graph of D is at most (2k + 1)-chromatic, we can
identify vertices of D to obtain an edge-weighted copy of the complete digraph
with 2k + 1 vertices, which can be covered with c(2k + 1) directed cuts.
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We now concentrate on graphs in D(k, l). When k = l = 1 we have the
following result.

Theorem 13. The edge set of any G ∈ D(1, 1) can be partitioned into at most
three cuts.

Proof. Let V0 be the set of all vertices of outdegree at most 1, and set V1 =
V (D) \ V0. Every component of the subgraph induced by V0 is either an in-
branching, defined as a rooted tree with all edges directed towards the root, or
a function graph defined as an in-branching extended with one root edge leaving
the root. Similarly, every connected component of the subgraph induced by V1

is an out-branching or a function graph with all edges reversed.
The set of edges of a branching considered as a bipartite graph has a natural

bipartition into two directed cuts. Use colours 1 and 2 to colour these cuts in
every component induced by V0 and by V1; the root edges will get a new colour
3. Every edge from V0 to V1 connects roots of two branching components; they
will be coloured 3 as well. For any edge going from x ∈ V1 to y ∈ V0 we choose
a colour different from the colour of the edge entering x and that of leaving y.
Each colour class is obviously a directed cut, finishing the proof.

The directed path (1, 2, 3, 4, 5) with the chord 24 (or odd directed cycles)
cannot be decomposed into two directed cuts, showing that Theorem 13 is sharp.
For larger k and l, we have the following result.

Theorem 14. Every D ∈ D(k, l) can be covered by at most c(2k + 2l + 2)
directed cuts.

Proof. As the underlying graph of every digraph in D(k, l) is at most (2k+2l+2)-
chromatic, we can identify vertices of D to obtain an edge-weighted copy of the
complete digraph with 2k+2l+2 vertices, which can be covered with c(2k+2l+2)
directed cuts.

For acyclic digraphs we can do (very slightly) better.

Theorem 15. Every acyclic digraph in D(k, l) can be covered with at most
c(k + l + 2) directed cuts.

Proof. We first note that the underlying graph of any acyclic graph D in D(k, l)
is at most k + l +2-chromatic. Indeed, let U be the set of vertices with indegree
at most k and let W be the remaining vertices. Consider the digraph D′ induced
by U . Since G is acyclic, every subgraph of D′ has a vertex with outdegree 0,
and so the underlying graph of D′ is k-degenerate and has chromatic number
at most k + 1. Similarly, the digraph induced by W has chromatic number at
most l + 1, and so the underlying graph is (k + l + 2)-colourable. The proof is
completed as before.

The bounds in Lemma 12 and Theorem 14 are within O(1) of being optimal,
as can be seen (from Theorem 11) by looking at complete directed graphs, and
it would be interesting to know the correct values. The bound in Theorem 15
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may be less good: a lower bound of log2(k + l + 1) comes from looking at the
transitive tournament Tk+l+1, which still leaves a gap of O(log log(k + l + 1)).
A good starting point is the following problem, which may not be too difficult.

Problem 2. What is the smallest d(k) such that every acyclic digraph with
maximum outdegree at most k can be covered by d(k) directed cuts?
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