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Abstract. A hereditary property of graphs is a collection of graphs which is closed
under taking induced subgraphs. The speed of P is the function n 7→ |Pn|, where Pn

denotes the graphs of order n in P. It was shown by Alekseev, and by Bollobás and
Thomason, that if P is a hereditary property of graphs then

|Pn| = 2(1−1/r+o(1))n2/2,

where r = r(P) ∈ N is the so-called ‘colouring number’ of P. However, their results tell
us very little about the structure of a typical graph G ∈ P.

In this paper we describe the structure of almost every graph in a hereditary property
of graphs, P. As a consequence, we derive essentially optimal bounds on the speed of
P, improving the Alekseev-Bollobás-Thomason Theorem, and also generalizing results
of Balogh, Bollobás and Simonovits.

1. Introduction

In this paper we shall describe the structure of almost every graph in an arbitrary
hereditary property of graphs, P . As a corollary, we shall obtain bounds on the speed of
P which improve those proved by Alekseev [1] and Bollobás and Thomason [16, 17], and
generalize a theorem of Balogh, Bollobás and Simonovits [7, 8] on monotone properties
of graphs. We begin with some definitions.

A collection of labelled graphs, P , is called a hereditary property if it is closed under
re-labelling vertices, and under taking induced subgraphs. It is called monotone if it is
moreover closed under taking arbitrary subgraphs. Note that a hereditary property may
be characterized by a (possibly infinite) collection of forbidden induced subgraphs.

Given a property of graphs, P , let Pn = {G ∈ P : |V (G)| = n} denote the graphs
in P with vertex set [n]. The speed of P , introduced in 1976 by Erdős, Kleitman and
Rothschild [21], is the function

n 7→ |Pn|.
The speed is a natural measure of the ‘size’ of a property.
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The possible structures and speeds of a hereditary or monotone property of graphs
have been extensively studied, originally in the special case where a single subgraph
is forbidden, and more recently in general. For example, Erdős, Kleitman and Roth-
schild [21] and Kolaitis, Prömel and Rothschild [28] studied Kr-free graphs, Erdős, Frankl
and Rödl [20] studied monotone properties when a single graph is forbidden, and Prömel
and Steger [33, 34] obtained (amongst other things) very precise results on the structure
of almost all (induced-)C4-free and C5-free graphs. They also were the first to define the
following parameter of a property of graphs, known as the ‘colouring number’ of P , which
will be important in what follows.

First, for each r ∈ N and each vector v ∈ {0, 1}r, define a collection H(r, v) of graphs
as follows. Let G ∈ H(r, v) if V (G) may be partitioned into r sets A1, . . . , Ar such that
G[Aj] is the empty graph if vj = 0, and is the complete graph if vj = 1.

Definition. The colouring number χc(P) of a property of graphs, P , is defined to be

χc(P) := max
{
r ∈ N : H(r, v) ⊂ P for some v ∈ {0, 1}r

}
.

The following result, proved by Alekseev [1] and Bollobás and Thomason [16, 17],
generalizes the Erdős-Frankl-Rödl Theorem to a general hereditary property of graphs.

The Alekseev-Bollobás-Thomason Theorem. Let P be a hereditary property of graphs,
and suppose χc(P) = r. Then

|Pn| = 2(1−1/r+o(1))n2/2.

The Alekseev-Bollobás-Thomason Theorem shows that the set of possible values for
the ‘entropy’ of a hereditary property of graphs,

ent(P) := lim
n→∞

1(
n
2

) log2(|Pn|)

is not continuous, but in fact undergoes a series of discrete ‘jumps’, from 1− 1
r

to 1− 1
r+1

,
where r ∈ N. However, the proofs of Alekseev and of Bollobás and Thomason tell us very
little about the structure of a typical graph G ∈ P . Their theorem also gives rather weak
bounds on the rate of convergence of the entropy as n→∞.

For monotone properties of graphs, these problems were addressed by Balogh, Bollobás
and Simonovits [7, 8, 9] in a series of papers in which they proved very precise structural
results, and obtaining correspondingly precise bounds on the rate of convergence of ent(P).

The following theorem was the main result of [7]. Let ex(n,M) denote the usual
extremal number of a collection of graphs M.

The Balogh-Bollobás-Simonovits Theorem. Let P be a monotone property of graphs,
with colouring number χc(P) = r. Then there exists a family of graphs M (containing a
bipartite graph), and a constant c = c(P), such that the following holds.

For almost all graphs G ∈ P, there exists a partition (A, S1, . . . , Sr) of V (G), such that

(a) |A| 6 c(P),

(b) G[Sj] is M-free for every j ∈ [r],
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and moreover

2(1−1/r)(n2)nex(n/r,M) 6 |Pn| 6 2(1−1/r)(n2)nex(n,M)+cn.

For even more precise results see [8] and [9]. Balogh, Bollobás and Simonovits also had
the following (unpublished) conjecture regarding the speed of hereditary graph properties.
Let P i(n,M) denote the collection of induced-M-free graphs on [n].

Conjecture 1 (Balogh, Bollobás, Simonovits). Let P be a hereditary property of graphs,
and suppose that χc(P) = r. Then there exists a family of graphs M (with χc(M) = 1),
and a constant c = c(P), such that

2(1−1/r)(n2)2|P
i(n/r,M)| 6 |Pn| 6 2(1−1/r)(n2)nr|P

i(n/r,M)|+cn.

We remark that, by the results of Prömel and Steger [33, 34], Conjecture 1 holds for
the properties P = {G : C4 66 G} and P = {G : C5 66 G}. (Here, and throughout, we
write H 6 G to mean that H is an induced subgraph of G.) To be precise, they proved
that the vertex set of almost all C4-free graphs can be partitioned into an independent set
and a complete graph, and that for almost every C5-free graph G, either G or G has the
following structure: the vertex set may be partitioned into two classes, V (G) = A∪B, so
that A induces a clique, and B induces a vertex disjoint union of cliques.

Finally, we note that even more precise structural results have been obtained for hered-
itary properties of graphs with much lower speeds, by Balogh, Bollobás and Weinre-
ich [10, 11, 12], and for hereditary properties of other combinatorial structures, see for
example [2, 4, 5, 6, 23, 30]. Note in particular [2], where Sauer’s Lemma (which will be
a crucial tool in our proof) is used. There has also been some important recent progress
on hereditary properties of hypergraphs, by Dotson and Nagle [18] and (independently)
Ishigami [22], who (building on work of Nagle and Rödl [31] and Kohayakawa, Nagle and
Rödl [27]) proved a version of the Alekseev-Bollobás-Thomason Theorem for k-uniform
hypergraphs, and by Person and Schacht [32], who showed that almost every Fano-plane-
free 3-uniform hypergraph is bipartite.

2. Main Results

In this section we state our main results. We begin with a definition.

Definition. For each k ∈ N, the universal graph U(k) is the bipartite graph with parts
A ∼= [2]k and B ∼= [k], and edge set

E
(
U(k)

)
=
{
ab : a ∈ A, b ∈ B and b ∈ a

}
.

A graph G is said to be U(k)-free if there do not exist disjoint subsets A,B ⊂ V (G) such
that G[A,B] = U(k). (G[A,B] denotes the bipartite graph induced by the pair (A,B).)

The following theorem is the main result of this paper.

Theorem 1. Let P be a hereditary property of graphs, with colouring number χc(P) = r.
Then there exist constants k = k(P) ∈ N and ε = ε(P) > 0 such that the following holds.

For almost all graphs G ∈ P, there exists a partition (A, S1, . . . , Sr) of V (G), such that
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(a) |A| 6 n1−ε,

(b) G[Sj] is U(k)-free for every j ∈ [r].

Moreover
2(1−1/r)n2/2 6 |Pn| 6 2(1−1/r)n2/2+n2−ε

for every sufficiently large n ∈ N.

We shall in fact prove, not just that this structural description holds for almost all
graphs G ∈ P , but that the number of graphs in Pn for which it fails is at most

2−n
2−ε|Pn|

if n is sufficiently large. The final part of Theorem 1 is an immediate consequence of
conditions (a) and (b), and the following theorem.

Theorem 2. For each k ∈ N there exists ε = ε(k) > 0 such that the following holds.

There are at most 2n
2−ε

distinct U(k)-free graphs on [n].

The structure of the remainder of the paper is as follows. First, in Section 3, we shall
state the main tools we shall use in the paper: these include the Szemerédi Regularity
Lemma, the Erdős-Simonovits Stability Theorem, and Sauer’s Lemma. In Section 4 we
give a sketch of the proof of our main result in the case χc(P) = 2, and in Section 5
we prove Theorem 2, and deduce our bounds on the speed of P . In Section 6 we prove
various lemmas on U(k)-free graphs, and in Section 7 we prove Theorem 1. In Section 8
we shall show how to prove even sharper results in the bipartite case, and in Section 9,
we finish by stating a couple of questions and open problems.

3. tools

In this section we shall recall some of the important tools we shall use in order to prove
Theorems 1 and 2. In particular, we shall recall the Szemerédi Regularity Lemma [38],
the Erdős-Simonovits Stability Theorem [19, 37], and Sauer’s Lemma [35].

Let G be a graph, let A,B ⊂ V (G) with A ∩ B = ∅, and let ε > 0. We write d(A,B)
for the density of the bipartite graph G[A,B]. We say that the pair (A,B) is ε-regular if

|d(A,B)− d(X, Y )| < ε

for every X ⊂ A and Y ⊂ B with |X| > ε|A| and |Y | > ε|B|.
Definition. A partition A1 ∪ . . . ∪ Ak of V (G) is said to be a Szemerédi partition of G
for ε if |A1| 6 . . . 6 |Ak| 6 |A1|+ 1, and all but εk2 of the pairs (Ai, Aj) are ε-regular.

Szemerédi’s Regularity Lemma (Szemerédi, 1976). Let ε > 0 and m ∈ N. There
exists an M = M(m, ε) ∈ N such that, given any graph G, there exists a Szemerédi
partition of G for ε into k parts, for some m 6 k 6M .

We shall also need the following ‘refinement’ version of Szemerédi’s Lemma. Let G be
a graph and P = (U1, . . . , Ut) be a partition of V (G). A Szemerédi refinement of the
partition P for ε is a refinement of the partition P which is also a Szemerédi partition of
G for ε.
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Szemerédi’s Lemma: refinement version. Let ε > 0 and m ∈ N. There exists an
M = M(m, ε) ∈ N such that, given any graph G, and any partition P of V (G) into
at most m parts, there exists a Szemerédi refinement of P for ε into k parts, for some
m 6 k 6M .

Let Tr(n) denote the Turán graph, and tr(n) = e(Tr(n)) the Turán number, as usual.

Erdős-Simonovits Stability Theorem (Erdős, Simonovits, 1968). For each r ∈ N and
ε > 0, there exists a δ > 0 such that the following holds. Let G be a graph, and suppose
that Kr+1 6⊂ G, but

e(G) > tr(n) − δn2.

Then we can change G into Tr(n) by switching at most εn2 edges.

We say a set X ⊂ [n] is shattered by a family of subsets A ⊂ P(n) if for every set
B ⊂ X, there exists an A ∈ A such that B ∩X = A.

Sauer’s Lemma (Sauer, 1972). Let A ⊂ P(n), and suppose that

|A| >
k−1∑
i=0

(
n

i

)
.

Then there exists a k-set X ⊂ [n] which is shattered by A.

Given A,B ⊂ V (G), we shall also write A → B to mean A ‘shatters’ B, i.e., that
G[A′, B] = U(k) for some A′ ⊂ A, where k = |B|. Note that A → B if and only if the
family of sets A = {Γ(v) ∩B : v ∈ A} shatters B.

Given ε, δ > 0, a pair (A,B) of subsets A,B ⊂ V (G) is said to be (ε, δ)-grey if the
graph G[A,B] is ε-regular and has density δ 6 d(A,B) 6 1− δ.

The following Embedding Lemma is well-known (see [29], Theorem 2.1).

Embedding Lemma. Let δ > 0, and let H be a graph on r vertices. There exist ε > 0
and n0 = n0(ε, δ, r) ∈ N such that the following holds.

Let G be a graph on vertex set A1 ∪ . . . ∪ Ar, where |Aj| > n0 for each j ∈ [r]. Then
there exist distinct vertices vk ∈ Ak for each k ∈ [r] such that, whenever the pair (Ai, Aj)
is (ε, δ)-grey, we have

vivj ∈ E(G) ⇔ ij ∈ E(H).

We shall also use the following simple result, known as the Slicing Lemma (see [29],
Fact 1.5).

The Slicing Lemma. If (A,B) is (ε, δ)-grey and X ⊂ A, Y ⊂ B with |X| > α|A| and
|Y | > α|B|, then the pair (X, Y ) is (ε′, δ′)-grey, where ε′ = 2ε/α and δ′ = δ/α− ε.

Finally, we make a trivial observation.

Observation 3. Let P be a hereditary property of graphs, and suppose χc(P) = r. Then

|Pn| > 2(1−1/r+o(1))n2/2.

Proof. By definition: there are this many graphs in H(r, v). �
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As noted in the introduction, Alekseev [1] and Bollobás and Thomason [16, 17] inde-
pendently proved the corresponding upper bound.

4. Sketch of the proof

Before proving Theorem 1, let us a give a brief (and imprecise) sketch of the proof. For
simplicity we shall only consider the case χc(P) = 2.

Let ε, δ, γ, α > 0 be sufficiently small, with ε � δ � γ � α, and let G ∈ Pn, where n
is sufficiently large. We shall say that the bipartite subgraph of G induced by a pair of
sets is grey if it is (ε, δ)-grey, i.e., it is ε-regular and of density between δ and 1− δ. We
shall also use the following definition of a generalized universal graph:

Let U(3, k) denote the 3-partite graph on vertex set A ∪B ∪ C, where

|A| = 2|B|+|C|, |B| = 2k and |C| = k, such that B → C and A→ B ∪ C.

The first step in the proof is to show that, for almost all G ∈ P , there is a partition
(S1, S2) of V (G) such that,

(a) Each part is a union of (an almost equal number of) Szemerédi sets.
(b) Each part contains at most γm2 grey pairs (where m is the total number of Sze-

merédi sets).

The proof of this (see Lemma 16) follows as in [7], by applying the Szemerédi Regularity
Lemma and Erdős-Simonovits Stability Theorem. The key observation is that the ‘cluster
graph’ contains no grey triangles (see Lemma 9). We call such a partition (S1, S2) a BBS-
partition of G.

Next we consider a maximal set B ⊂ V (G) of vertices such that, for each j = 1, 2, and
each pair b, b′ ∈ B, ∣∣(Γ(b) ∩ Sj

)
4
(
Γ(b′) ∩ Sj

)∣∣ > αn.

We shall sometimes refer to a set with this property as a set of ‘bad’ vertices. The main
step in the proof is to show that, for almost every G ∈ P , |B| is bounded.

Indeed, we show (see Lemmas 10, 11 and 12) that, for any t ∈ N, if |B| is suffi-

ciently large then there exist a set B′ ⊂ B of size 22t, and sets T
(1)
1 , . . . , T

(1)
t ⊂ S1 and

T
(2)
1 , . . . , T

(2)
t ⊂ S2, with |T (i)

j | > δn, such that the following holds:

(a) All vertices of T
(i)
j have the same neighbourhood in B′.

(b) If b1, b2 ∈ B′ with b1 6= b2, then Γ(b1)∩
⋃
T

(i)
j 6= Γ(b2)∩

⋃
T

(i)
j . (Since there are 22t

vertices in B′, this means they shatter any set of representatives of the sets T
(i)
j .)

The proof of Lemma 10 uses the so-called ‘sparsening method’, together with a re-
peated application of the ‘reverse’ Sauer’s Lemma; that is, Sauer’s Lemma combined
with Lemma 4, the observation that if U → V , then V → U ′ for some (large) U ′ ⊂ U .

Now, suppose such a set B′ exists in G. We show (see Lemma 17) that in almost

every such graph we can find subsets W
(i)
j ⊂ T

(i)
j such that, for each p, q ∈ [t], the pair

(W
(1)
p ,W

(2)
q ) is grey. Hence, by the Embedding Lemma, we can find a copy of U(3, k) in
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G, for arbitrarily large k (see Lemma 18). But this is a contradiction, since χc(P) = 2
(see Lemma 7).

We have shown that |B| is bounded for almost every G ∈ P . Since B is maximal, it
follows that each vertex v ∈ V (G) is a ‘clone’ of some vertex b ∈ B with respect to one
of the sets Sj, i.e.,

|(Γ(v) ∩ Sj)4(Γ(b) ∩ Sj)| 6 αn.

Since we expect to have few choices inside the sets Sj, it would be natural to expect that
v ∈ Sj. Although this is not necessarily true for every vertex v ∈ V (G), it turns out
that, for almost every graph G ∈ P , we can make it true by ‘adjusting’ the partition
(S1, S2) (see Lemmas 20 and 21). We obtain a new partition, (S ′1, S

′
2), which is ‘close’ to

the original partition (in the sense that |Sj4S ′j| 6 αn), such that for each j = 1, 2, and
every v ∈ S ′j, v is a clone of some b ∈ B with respect to S ′j.

Finally, let Uj ⊂ S ′j be the vertex set of a maximal collection of disjoint copies of U(k) in
Sj. (When χc(P) > 3 this step is more complicated, see the algorithm before Lemma 23).
We claim that |Uj| = O (n1−ε) for almost every G ∈ P ; to prove this, we simply count
(see Lemma 23). First, note that there are at most nn choices for the partition of V (G),
and for the edges incident with B, and at most

2α|Uj |n+n2−ε

choices for the edges inside Sj. (This follows because each vertex of Uj is a clone of a
vertex in B with respect to Sj, and by Theorem 2, using the fact that S ′j \Uj is U(k)-free.)

We will show further (see Lemma 15) that we have at most 2(1/2−2α)|Uj |n choices for the
edges between Uj and V (G) \ S ′j. Thus the total number of choices, |Pn|, satisfies

log2

(
|Pn|

)
6

(
|S ′1| − |U1|

)(
|S ′2| − |U2|

)
+

(
1

2
− α

)(
|U1|+ |U2|

)
n + O

(
n2−ε)

6
n2

4
− α

(
|U1|+ |U2|

)
n + O

(
n2−ε) ,

which implies that |U1| + |U2| = O (n1−ε), as required. (We have assumed for simplicity
that |Uj| = o(n); the calculation in the other case is essentially the same.) Letting
A = U1 ∪ U2 ∪B, we obtain Theorem 1.

5. Proof of Theorem 2

In this section we give a short proof of Theorem 2. Our main tool is Sauer’s Lemma.

Proof of Theorem 2. Let k ∈ N, and let G be a U(k)-free graph on n vertices. We first

claim that, given any bipartition (A,B) of the vertex set V (G), there are at most 2n
2−ε

choices for the cross-edges.
Indeed, let 0 < ε < 1/(k+ 1), and partition B into sets B1, . . . , Bt of size about nε. By

Sauer’s Lemma, for each j ∈ [t] we have

|{S ⊂ Bj : ∃ a ∈ A such that Γ(a) ∩Bj = S}| 6 k

(
|Bj|
k − 1

)
< nεk,
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since G[A,Bj] is U(k)-free. Thus the number of choices for G[A,B] is at most

t∏
j=1

(
2|Bj |

nεk

)(
nεk
)n
6 2

P
j |Bj |nεk

(
2εkn logn

)n1−ε
6 2n

2−ε logn,

since
∑

j |Bj| = n and 1 + εk < 2− ε.
Finally, we may cover E(G) with log n bipartite graphs, and so the number of choices

for G is at most 2n
2−ε(logn)2 � 2n

2−ε′
for any ε′ < ε, as required. �

The reader will have noticed that the value of ε obtained above is not best possible; a
more precise calculation is undertaken in Section 8.

6. Some lemmas on universal graphs

In this section we state some of the lemmas we’ll use to prove Theorem 1. We begin
with a simple but key observation. Recall that we write A→ B to mean that A shatters
B, i.e., G[A′, B] = U(k) for some A′ ⊂ A, where |B| = k.

Lemma 4. Let G be a graph and let t ∈ N. Suppose A,B ⊂ V (G), with A → B and
|B| > 2t. Then there exist subsets A′ ⊂ A and B′ ⊂ B such that B′ → A′, and |A′| = t.

Proof. Let A→ B be as described, and assume (taking subsets if necessary) that |B| = 2t

and G[A,B] = U(2t). Label the elements of B with the vertices of the hypercube [2]t

arbitrarily, and consider the faces of this cube (i.e., the subcubes of dimension t−1) which
contain the origin. Denote by F1, . . . , Ft the corresponding subsets of B.

Now, there is an obvious bijection φ between vertices of A and subsets of B (a vertex
is mapped to its neighbourhood), and so each set Fj ⊂ B corresponds to a vertex of A.
Let A′ = {φ(F1), . . . , φ(Ft)}.

We claim that for each pair of vertices b, b′ ∈ B, we have Γ(b)∩A′ 6= Γ(b′)∩A′. Indeed,
if b 6= b′ then their labels must differ in some direction on the cube, so b ∈ Fj, b′ /∈ Fj,
say. But then φ(Fj) ∈ Γ(b) \ Γ(b′), as claimed. Thus A′ and B′ are sets as required by
the lemma. �

We shall also use the following slight extension of Lemma 4.

Lemma 5. Let G be a graph and let r, t ∈ N. Let A1, . . . , Ar, B ⊂ V (G) be disjoint sets,
with |B| > 2rt, and Aj → B for each j ∈ [r]. Then there exist subsets A′j ⊂ Aj and
B′ ⊂ B such that B′ →

⋃
j A
′
j, and |A′j| = t for each j ∈ [r].

Proof. Assume (by taking a subset if necessary) that |B| = 2rt. By Lemma 4, there exist
subsets A∗j ⊂ Aj such that |A∗j | = rt and B → A∗j for each j ∈ [r]. Moreover, we can
choose the sets A∗j so that the following holds:

• Let (v
(1)
1 , . . . , v

(rt)
1 ) be an arbitrary order for the elements of A∗1. Then, for each

i ∈ [rt] and j ∈ [r], there exists a vertex v
(i)
j ∈ A∗j with the same neighbourhood

in B as v
(i)
1 .
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Indeed, to do this we simply use the same [2]t-labelling of B (see the proof of Lemma 4
above) for each set Aj.

Now we simply have to choose r disjoint t-subsets A′j ⊂ A∗j for j ∈ [r]. To spell it out,

let A′j = {v(i)
j : (j − 1)t + 1 6 i 6 jt} for each j ∈ [r]. It is clear that B →

⋃
j A
′
j, as

required. �

In Section 4 we used the 3-partite graph U(3, k). We now make the natural generaliza-
tion to r-partite graphs, which we shall denote U(r, k).

Definition. For each k, r ∈ N, define the generalized universal graph, U(r, k), to be the

r-partite graph on vertex set A1 ∪ . . . ∪Ar, where |A1| = k and |Aj+1| = 2
Pj

1 |Ai| for each
1 6 j 6 r − 1, such that

Aj+1 → A1 ∪ . . . ∪ Aj
for each 1 6 j 6 r − 1.

Moreover, for each v ∈ {0, 1}r, define U∗v (r, k) to be the graph on vertex set A1∪ . . .∪Ar
such that the induced r-partite graph is U(r, k), and G[Aj] is either complete or empty
for each j ∈ [r], with G[Aj] complete if and only if vj = 1.

We next apply Lemma 4 to prove a Ramsey-type theorem for the graphs U(r, k).

Lemma 6. For each r, k ∈ N, there exists K = K(r, k) ∈ N such that the following holds.
Let G be a graph on vertex set A1 ∪ . . .∪Ar, and suppose G[A1, . . . , Ar] = U(r,K). Then
U∗v (r, k) 6 G for some v ∈ {0, 1}r.

Proof. The proof is by induction on r. For r = 1 the lemma is just Ramsey’s Theorem.
For r = 2 we first apply Ramsey to A1, to obtain a subset B1 ⊂ A1 such that G[B1] is
either complete or empty. Note that A2 → B1, so by Lemma 4, there exists a set B′2 ⊂ A2

such that B1 → B′2. Finally, applying Ramsey to B′2, we obtain a subset B2 ⊂ B′2 such
that G[B2] is complete or empty, and B1 → B2.

So let r > 3, and assume the result holds for smaller values of r. Let t = |U∗v′(r− 1, k)|,
T = 2t and m =

(
R(T )
T

)
, where R(T ) is the Ramsey number. Let K ′ = mk, and let

K = K(r − 1, K ′). We claim that the lemma holds for K.
First, by the induction hypothesis, there exists a copy H of U∗v′(r−1, K ′) in G[A1∪ . . .∪

Ar−1], for some v′ ∈ {0, 1}r−1. Note that Ar → V (H), and let V (H) = B1 ∪ . . . ∪ Br−1,
where Bj+1 → B1 ∪ . . . ∪Bj for each 1 6 j 6 r − 2.

Since Ar → V (H), the bipartite graph G[Ar, V (H)] contains every (small) bipartite
graph as an induced subgraph. We shall define a specific such bipartite graph, F , and
show that it contains U∗v (r, k) for some v ∈ {0, 1}r.

Indeed, since K ′ = mk, H contains m disjoint copies of U∗v′(r−1, k). To see this, simply

partition B1 into m equal-size parts, B
(1)
1 , . . . , B

(m)
1 , and successively choose disjoint sets

B
(1)
j , . . . , B

(m)
j ⊂ Bj such that B

(i)
j → B

(i)
1 ∪ . . .∪B

(i)
j−1. Let H(i) denote the graph induced

by B
(i)
1 ∪ . . . ∪B

(i)
r−1.

Now, define the bipartite graph F as follows. Let I(T ) denote the set of subsets of
{1, . . . , R(T )} of size T .
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(a) V (F ) = X∪Y , with X = [R(T )] and Y =
⋃

Z∈I(T )

YZ , where the sets YZ are disjoint,

and |YZ | = t for each Z ∈ I(T ).
(b) For each subset W ⊂ X of size T , we have W → YW .
(c) The other edges may be chosen arbitrarily.

Note that no two vertices of X have the same neighbourhood in Y , since each such pair
is contained in some T -set W ⊂ X, so differs on YW . Therefore, since Ar → V (H), it
follows that there exists a set A′r ⊂ Ar such that

G
[
A′r, V

(
H(1)

)
∪ . . . ∪ V

(
H(m)

)]
= F,

with YZ = V (H(φ(Z))) for each Z ∈ I(T ), for some bijection φ : I(T )→ [m].
Finally we apply Ramsey’s Theorem to A′r, to obtain a set Br of size T such that G[Br]

is complete or empty. By the definition of F we have Br → YBr , so Br → V (H(i)) for some
i ∈ [m]. It follows that the set Br ∪ YBr induces a copy of U∗v (r, k) for some v ∈ {0, 1}r,
as required. �

The following immediate consequence of Lemma 6 says that if χc(P) = r, and there is
an arbitrarily large copy of U(r + 1, k) in G, then G contains a forbidden graph of P .

Lemma 7. Let r,m ∈ N, and for each v ∈ {0, 1}r choose a graph Hv ∈ H(r, v) with
|V (Hv)| 6 m. Let k = k(r,m) ∈ N be sufficiently large, and let G be any graph.

Then either G is U(r, k)-free, or Hv 6 G for some v ∈ {0, 1}r.

Proof. Suppose that G contains a copy of U(r, k). Then, by Lemma 6, G also contains an
induced copy of U∗v (r,m) for some v ∈ {0, 1}r. But Hv 6 U∗v (r, k) for every Hv ∈ H(r, v)
with |Hv| 6 m, and so we are done. �

Before continuing, we note that we have already proved Theorem 1 in the case r = 1.

Corollary 8. Let P be a hereditary property of graphs with χc(P) = 1. Then there exists
k = k(P) ∈ N such that G is U(k)-free for every G ∈ P, and hence there exists ε > 0
such that

|Pn| 6 2n
2−ε

for every sufficiently large n ∈ N.

Proof. Since χc(P) = 1, there exists, for each v ∈ {0, 1}2, a graph Hv ∈ H(2, v) such that
Hv 6∈ P . By Lemma 7, it follows that there exists k ∈ N such that G is U(k)-free for
every G ∈ P . By Theorem 2, it follows that

|Pn| 6 2n
2−ε

for every sufficiently large n ∈ N, as required. �

The following ‘induced’ embedding lemma is a simple consequence of the Embedding
Lemma, the Slicing Lemma and (the proof of) Lemma 7.
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Lemma 9. Given δ > 0 and m, r ∈ N, there exist ε > 0 and n0 = n0(ε, δ,m, r) ∈ N such
that the following holds. Let G be a graph on A1 ∪ . . . ∪ Ar, where |Aj| > n0 for each
j ∈ [r], and suppose each pair (Ai, Aj) is (ε, δ)-grey.

Then for some v ∈ {0, 1}r, H 6 G for every H ∈ H(r, v) with |H| 6 m.

Proof. We claim that G is not U(r, k)-free, where k = k(r,m) is the constant in Lemma 7,
if n0 is sufficiently large. Indeed, by the Slicing Lemma, if we partition each set Aj into

t = |U(r, k)| almost equal sets (A
(1)
j , . . . , A

(t)
j ), then each pair (A

(i)
j , A

(i′)
j′ ) (with j 6= j′)

is (ε′, δ′)-grey, where ε′ = 2ε/t and δ′ = δ/t − ε. Therefore, by the Embedding Lemma,
there exists a copy of U(r, k) in G, as required.

But now, by the proof of Lemma 7, G also contains an induced copy of U∗v (r,m) for some
v ∈ {0, 1}r, and so Hv 6 U∗v (r, k) for every Hv ∈ H(r, v) with |Hv| 6 m, as required. �

We next prove our key lemma whose proof uses the so-called ‘sparsening’ method.

Lemma 10. For each α > 0 and t ∈ N, there exist c = c1(α, t) ∈ N and δ = δ1(c, α, t) > 0
such that the following holds. Let G be a bipartite graph with parts U and V , satisfying
|U | > c, |V | = n ∈ N and ∣∣Γ(u)4Γ(u′)

∣∣ > αn

for each u, u′ ∈ U with u 6= u′.
Then there exists a subset U ′ ⊂ U , with |U ′| = t, and sets T1, . . . , T2t ⊂ V , with
|Tj| > δn for each j ∈ [2t], such that the following holds:

(a) If u, v ∈ Tj then Γ(u) ∩ U ′ = Γ(v) ∩ U ′.
(b) If W = {w1, . . . , w2t}, where wj ∈ Tj for each j ∈ [2t], then W → U ′.

Proof. Assume that |U | = c >
(

5 log c
α

)2t
, and with foresight, let p =

5 log c

αn
. We claim

that there exists a subset X ⊂ V , with |X| = pn, such that

Γ(x) ∩X 6= Γ(y) ∩X

for each x, y ∈ U with x 6= y. Indeed, if we choose a random subset X ⊂ V of size pn,
then

P
(

Γ(x) ∩X = Γ(y) ∩X
)
6

(
n− αn
pn

)/( n
pn

)
6 (1− α)pn

for each such pair {x, y}, and so

E
∣∣∣∣{{x, y} ∈ (U2

)
: Γ(x) ∩X = Γ(y) ∩X

}∣∣∣∣ 6 (
|U |
2

)
(1− α)pn 6 c2e−pαn < 1,

by our choice of p.
Thus such a set X must exist, as claimed. Now, since c is sufficiently large so that

c > |X|2t = (pn)2t =

(
5 log c

α

)2t
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then, by Sauer’s Lemma, there exist sets U∗ ⊂ U and X∗ ⊂ X, with |X∗| > 2t, such that
U∗ → X∗. Thus, by Lemma 4, there exist sets U1 ⊂ U∗ and X1 ⊂ X∗, with |U1| = t, such
that X1 → U1.

Now, let us removeX1 from V , and repeat the process, obtaining disjoint setsX2, . . . , X`.

Since |Xj| = 2t, we can do this so long as ` 6
αn

2t+1
. (It is easy to see that nothing goes

wrong in the calculation above when we replace α by α/2.) By the pigeonhole principle,
there is a set U ′ ⊂ U which occurs (as the set Uj) at least

`

(
|U |
t

)−1

>
αn

2t+1ct
> δn

times. Let J = {j : Xj → U ′}, and note that |J | > δn. Write Xj = {xj(1), . . . , xj(2
t)},

where Γ(xj(k)) ∩ U ′ = Γ(xj′(k)) ∩ U ′ for every j, j′ ∈ J , and let Tk = {xj(k) : j ∈ J },
for each k ∈ [2t]. The sets T1, . . . , T2t satisfy conditions (a) and (b), as required. �

The corresponding result for r-partite graphs follows as an easy corollary.

Lemma 11. For each α > 0 and r, t ∈ N, there exist c = c2(α, r, t) ∈ N and δ =
δ2(c, α, r, t) > 0 such that the following holds. Let G be a graph on n ∈ N vertices, let
(S1, . . . , Sr) be a partition of V (G), and let B ⊂ V (G) satisfy |B| > c and∣∣(Γ(b) ∩ Sj

)
4
(
Γ(b′) ∩ Sj

)∣∣ > αn

for every j ∈ [r], and each b, b′ ∈ B with b 6= b′.

Then there exists a subset B′ ⊂ B, with |B′| = t, and sets T
(i)
1 , . . . , T

(i)
2t ⊂ Si for each

i ∈ [r], with |T (i)
j | > δn, such that the following holds:

(a) If u, v ∈ T (i)
j then Γ(u) ∩B′ = Γ(v) ∩B′.

(b) If W = {w1, . . . , w2t}, where wj ∈ T (1)
j ∪ . . .∪T

(m)
j for each j ∈ [2t], then W → B′.

Proof. Let t1 > t2 > · · · > tr+1 = t be a sequence satisfying tj > c1(α, tj+1) for each
j ∈ [r] (where c1 is the function in Lemma 10), and assume that |B| = c > t1. Applying
Lemma 10 (with t = t1) to the pair (B, S1) = (U, V ), we obtain a set B1 ⊂ B and

a collection of sets T
(1)
1 , . . . , T

(1)

2t1
⊂ S1 given by that lemma. In particular, we have

|B1| > t2 and |T (i)
j | > δn, where δ = δ1(t1, α, t2).

Similarly, for each q ∈ [2, r] we may apply Lemma 10 (with c = tq and t = tq+1) to the

pair (Bq−1, Sq), to obtain sets Bq ⊂ Bq−1 and T
(q)
1 , . . . , T

(q)

2tq
⊂ Sq, with |Bq| = tq+1 and

|T (q)
j | > δn, where δ = δ1(tq, α, tq+1). Let δ2(c, α, t) = minq{δ1(tq, α, tq+1)}.
Finally, for each q ∈ [r], re-number so that the sets T

(q)
1 , . . . , T

(q)
2t shatter Br ⊂ Bq. It

follows that the sets B′ = Br and {T (i)
j : i ∈ [r], j ∈ [2t]} are those required by the lemma,

and so we are done. �

We shall in fact use the following immediate corollary of Lemmas 5 and 11.
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Lemma 12. For each α > 0 and r, t ∈ N, there exist c = c3(α, r, t) ∈ N and δ =
δ3(c, α, r, t) > 0 such that the following holds. Let G be a graph on n ∈ N vertices, let
(S1, . . . , Sr) be a partition of V (G), and let B ⊂ V (G) satisfy |B| > c and∣∣(Γ(b) ∩ Sj

)
4
(
Γ(b′) ∩ Sj

)∣∣ > αn

for every j ∈ [r], and each b, b′ ∈ B with b 6= b′.

Then there exists a subset B′ ⊂ B, with |B′| = 2rt, and sets T
(i)
1 , . . . , T

(i)
t ⊂ Si for each

i ∈ [r], with |T (i)
j | > δn, such that the following holds:

(a) If u, v ∈ T (i)
j then Γ(u) ∩B′ = Γ(v) ∩B′.

(b) If W = {w11, . . . , wrt}, where wij ∈ T (i)
j for each i ∈ [r], j ∈ [t], then B′ → W .

Proof. First we apply Lemma 11 to get sets U
(i)
j (for each i ∈ [r] and j ∈ [2|B

′|]) which
shatter B′. Applying Lemma 5 to these sets (or, if the reader prefers, to an arbitrarily
chosen element from each set) gives the required sets. �

The following two observations will be useful in Section 7.

Observation 13. Let δ > 0 be sufficiently small, and let |A| = |B| = n. There are at

most 2δn
2

bipartite graphs on A ∪B of density at most δ2.

Proof. If G is such a graph then e(G) 6 m = δ2n2, so the number of choices is at most

m∑
j=0

(
n2

j

)
6 2

(
n2

m

)
6 3m

(
1

δ2

)δ2n2

< 2δn
2

,

as required, since (1/x2)
x → 1 as x→ 0. �

Recall that Kr(t) denotes the Turán graph on rt vertices, i.e., the complete r-partite
graph with t vertices in each part.

Observation 14. For each r, t ∈ N, there exist ε > 0 and n0 = n0(r, t) ∈ N such that the
following holds. Let G be an r-partite graph on vertex set A1∪. . .∪Ar and, for each j ∈ [r],
let Bj(1) ∪ . . . ∪ Bj(t) be an equipartition of Aj. Suppose n > n0, |A1| = . . . = |Ar| = n,
and e(G) > (1− ε)

(
r
2

)
n2.

Then there exists a copy H of Kr(t) in G with |H ∩Bj(k)| 6 1 for each j, k.

Proof. Since ε may be chosen so that εr3t3 � 1, the result is trivial by the greedy

algorithm. To spell it out, for each i, j there exists a vertex v ∈ B(i)
j such that Γ(v) avoids

at most |B(i′)
j′ |/rt vertices of each other set B

(i′)
j′ . �

Finally, we prove the following easy lemma, which bounds the number of ways in which
a copy of U(r, k) in G can be attached to the rest of the graph without creating a copy
of U(r + 1, k).
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Lemma 15. For each r, k ∈ N, there exists K = K(r, k) ∈ N and δ = δ(r, k) > 0 such
that the following holds. Given a vertex set A ∪B, with |A| = |U(r, k)| and |B| = n, let

G(r, k, n) :=
{
G[A,B] : ∃ a U(r + 1, k)-free graph G on A ∪B with G[A] = U(r, k)

}
,

the set of bipartite graphs on A ∪B which do not create a copy of U(r + 1, k). Then

|G(r, k, n)| 6 2|U(r,k)|n−δn.

Proof. Since G is U(r + 1, k)-free, no set X ⊂ B shatters A. This mean that there exists
a subset Y ⊂ A such that Γ(u) ∩ A 6= Y for every u ∈ B. We therefore have at most(

2|A| − 1
)n
6 2|U(r,k)|n−δn

choices for the edges of G[A,B], where δ = 2−|U(r,k)|, as required. �

7. Proof of Theorem 1

In this section we shall describe several ‘bad’ properties of a graph, and prove that
the number of graphs in a hereditary property of graphs P with one of these properties
is o(|Pn|). We then deduce Theorem 1 by observing that all remaining graphs have the
required structure.

We begin with an important definition, motivated by [7].

Definition. Let ε, δ, γ > 0, let r ∈ N, let G be a graph, and let V (G) = S1∪ . . .∪Sr be a
partition of V (G). We say that P = (S1, . . . , Sr) is a BBS-partition of G (for (ε, δ, γ)) if
there exists a Szemerédi partition of G (for ε) into m parts (for some 1/ε < m ∈ N) such
that:

(a) Each part Sj is a union of (an almost equal number of) Szemerédi sets.
(b) Each part Sj contains at most γm2 pairs which are (ε, δ)-grey.

Note that if (S1, . . . , Sr) is a BBS-partition of G for (ε, δ, γ), then it follows that(
1

r
− ε
)
n 6 |Sj| 6

(
1

r
+ ε

)
n

for each j ∈ [r], by condition (a).
The following lemma was proved (in the monotone case) by Balogh, Bollobás and

Simonovits [7] using the Szemerédi Regularity Lemma, the Erdős-Simonovits Stability
Theorem, and the Embedding Lemma. The proof is essentially the same in our case, but
for the sake of completeness we shall give a fairly complete sketch.

Lemma 16 (Balogh, Bollobás and Simonovits [7]). Let r ∈ N, let γ > 0, and let δ =
δ(γ, r) > 0 and ε = ε(δ, γ, r) > 0 be sufficiently small. Let P be a hereditary property of
graphs with χc(P) = r.

For almost every graph G ∈ P, there exists a BBS-partition of G for (ε, δ, γ) into r
parts.
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Proof. First, since χc(P) = r, it follows that for each v ∈ {0, 1}r+1 there exists a ‘for-
bidden’ graph Hv ∈ H(r + 1, v), such that Hv 6∈ P . Choose such a graph for each
v ∈ {0, 1}r+1, and let t = max{|V (Hv)| : v ∈ {0, 1}r+1}.

Let G ∈ Pn, with n ∈ N sufficiently large, and apply the Szemerédi Regularity Lemma
(for ε and m = 1/ε) to the graph G. We obtain a collection of k parts, B1, . . . , Bk; define
a graph H on k vertices by letting ij ∈ E(H) if and only if the pair (Bi, Bj) is (ε, δ2)-grey.
(This is called the cluster graph of G.)

Suppose first that Kr+1 ⊂ H. Then, applying Lemma 9, we deduce that H 6 G for
every H ∈ H(r + 1, v) with |H| 6 t, for some v ∈ {0, 1}r+1. Therefore Hv ∈ P , which is
a contradiction.

Suppose next that the number of edges in the cluster graph H satisfies

e(H) 6

(
1− 1

r
− 2δ

)(
k

2

)
.

It is easy to bound the number of graphs G with at most this many edges. Indeed, there
are at most nn ways of choosing the Szemerédi partition, and, by Observation 13 and our
choice of m, at most 2(ε+δ)n2

ways of choosing the edges inside the parts, and between
non-grey pairs. Moreover, there are at most 2(1−1/r−2δ)n2/2 ways of choosing the edges
between grey pairs. But

|Pn| > 2(1−1/r+o(1))n2/2,

by Observation 3, so the number of such graphs G on n vertices is o(|Pn|).
Hence we may assume that H is Kr+1-free, and has at least (1 − 1/r − 2δ)

(
k
2

)
edges.

By the Erdős-Simonovits Stability Theorem, it follows that we can change H into the
Turán graph Tr(k) by changing at most γk2 edges. But this is exactly the definition of a
BBS-partition, and so we are done. �

Next, we need to count those graphs which have large ‘irregularities’ between pairs
(Si, Sj) of their BBS-partition. The following definition is designed to allow us to take
advantage of the δn-sets given by Lemma 12.

Let ε, δ, γ, α > 0, let n ∈ N, and let P be a hereditary property of graphs. To simplify
the notation in what follows, we shall suppress dependence on ε, δ and γ. Define a set
A(Pn, α) ⊂ Pn as follows:

A(Pn, α) :=
{
G ∈ Pn : ∃ a BBS-partition (S1, . . . , Sr) of G for (ε, δ, γ), and sets X ⊂ Si

and Y ⊂ Sj, for some i 6= j, with |X|, |Y | > αn, such that d(X, Y ) 6∈ (δ, 1− δ)
}
.

The following lemma says that the collection A(Pn, α) is small.

Lemma 17. Let α > 0, let 2 6 r ∈ N, and let ε > 0, δ > 0 and γ > 0 be sufficiently
small. Let P be a hereditary property of graphs with χc(P) = r, and let n ∈ N. Then

|A(Pn, α)| 6 2(1−1/r)n2/2−α2n2/3 = o(|Pn|).

Proof. For the first inequality we simply count. We have at most nn choices for the BBS-
partition S1 ∪ . . . ∪ Sr, and the sets X ⊂ Si and Y ⊂ Sj. By Observation 13, and the
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definition of a BBS-partition, we have at most

2(ε+
√
δ+γ)n2

choices for the edges inside the set Sk, for each k ∈ [r].
Next, recall that (1/r − ε)n 6 |S`| 6 (1/r + ε)n for each ` ∈ [r], by the definition of a

BBS-partition, and so we have at most

2(1/r+ε)2n2

choices for the edges between Sp and Sq, for each p 6= q. Moreover, we have at most

2(1/r+ε)2n2−(1−
√
δ)α2n2+1

choices for the edges between Si and Sj. To see this, assume for simplicity that |X| =

|Y | = αn, and observe that we have at most 2(1/r+ε−α)2n2
choices for the edges between

Si \X and Sj \ Y , at most 2(1/r+ε−α)αn2
choices for the edges between X and Sj \ Y (and

similarly for those between Y and Si \ X), and, by Observation 13, at most 2
√
δα2n2+1

choices for the edges between X and Y .
Putting these bounds together, we obtain

log2

(
|A(Pn, α)|

)
6

(
r

2

)
(1/r + ε)2n2 − α2n2

2
+O

(
(ε+

√
δ + γ)n2

)
.

The first inequality now follows if ε, δ and γ are sufficiently small. The final inequality
follows by Observation 3. �

Next, given a graph G, and a partition P = (S1, . . . , Sr) of G, we say that a set of
vertices B ⊂ V (G) is α-bad for (G,P ) if∣∣(Γ(u) ∩ Sj

)
4
(
Γ(v) ∩ Sj

)∣∣ > αn

for each u, v ∈ B with u 6= v, and each j ∈ [r]. Let

B(G,P, α) := max
{
|B| : B ⊂ V (G) is α-bad for (G,P )

}
.

Now, given ε, δ, γ, α > 0, c, n ∈ N, and a hereditary property of graphs P , we define a set
B(Pn, α, c) ⊂ Pn as follows:

B(Pn, α, c) :=
{
G ∈ Pn : ∃ a BBS-partition P of G for (ε, δ, γ) with B(G,P, α) > c

}
.

We next show that, if c = c(P) is sufficiently large then the collection B(Pn, α, c) is small.

Lemma 18. Let α > 0 and r ∈ N, and let P be a hereditary property of graphs with
χc(P) = r. There exist constants c = c(P , α) ∈ N and α′ = α′(P , α) > 0 such that the
following holds. Let ε > 0, δ > 0 and γ > 0 be sufficiently small, and let n ∈ N be
sufficiently large. Then

B(Pn, α, c) ⊂ A(Pn, α′).
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Proof. First, choose a graph Hv ∈ H(r+1, v)\P for each v ∈ {0, 1}r+1. Such graphs must
exist because χc(P) = r. Let m = max{|Hv| : v ∈ {0, 1}r+1}, and let k = k(r,m) ∈ N be
the constant in Lemma 7.

Now, let t = t(α, r, k) ∈ N be sufficiently large, let c = c3(α, r, t) and α̃ = δ3(c, α, r, t)
be the constants in Lemma 12, and let α′ = α̃/M(n0, ε), where M(., .) is the constant
in the refinement version of Szemerédi’s Lemma, and n0 = n0(r, t) is the constant in
Observation 14.

Let G ∈ Pn \ A(Pn, α′), let ε, δ and γ be sufficiently small, and suppose that there
exists a BBS-partition P of G for (ε, δ, γ) such that B(G,P, α) > c, i.e., there exists a set
B ⊂ V (G), with |B| > c, which is α-bad for (G,P ).

Claim: G is not U(r + 1, k)-free.

Proof of claim. By Lemma 12, there exists a set B′ ⊂ B, with |B′| = 2rt, and disjoint

sets T
(i)
j ⊂ Si, with |T (i)

j | = α̃n for each i ∈ [r] and j ∈ [t], such that

(a) If u, v ∈ T (i)
j then Γ(u) ∩B′ = Γ(v) ∩B′.

(b) If W = {w11, . . . , wrt}, where wij ∈ T (i)
j for each i ∈ [r], j ∈ [t], then B′ → W .

Let T =
⋃
i,j T

(i)
j , and apply the refinement version of Szemerédi’s Lemma (for ε) to the

(equi-)partition
r⋃
i=1

t⋃
j=1

T
(i)
j

of T . We obtain, for each i ∈ [r] and j ∈ [t], a partition (U
(i)
j (1), . . . , U

(i)
j (m)) of T

(i)
j ,

such that the resulting partition of T is a Szemerédi partition. Moreover, by our choices

of constants above, we have m > n0(r, t) and |U (i)
j | > α′n for every i ∈ [r] and j ∈ [t].

Suppose first that there exists a pair (U
(i)
j (`), U

(i′)
j′ (`′)), where i 6= i′, which is ε-regular

but not (ε, δ)-grey. Then the graph G[U
(i)
j (`), U

(i′)
j′ (`′)] has density in [0, δ) ∪ (1 − δ, 1],

and so G ∈ A(Pn, α′), a contradiction.

Thus every ε-regular pair (U
(i)
j (`), U

(i′)
j′ (`′)) is also (ε, δ)-grey. By the definition of a

Szemerédi partition, at most ε(mrt)2 pairs are irregular, and so the number of pairs

(U
(i)
j (`), U

(i′)
j′ (`′)) with i 6= i′ which are not (ε, δ)-grey is at most (1− 2ε)

(
r
2

)
(mt)2.

We apply Observation 14 to the r-partite graph F where V (F ) = {U (i)
j (`) : i ∈ [r], j ∈

[t], ` ∈ [m]}, and a pair of vertices {U (i)
j (`), U

(i′)
j′ (`′)} (with i 6= i′) is an edge of F if

and only if they form an (ε, δ)-grey pair. Since we chose ε > 0 sufficiently small, and

m > n0, it follows that there exist representatives {W (i)
j : i ∈ [r], j ∈ [t]}, where W

(i)
j ∈

{U (i)
j (1), . . . , U

(i)
j (m)}, such that every pair (W

(i)
j ,W

(i′)
j′ ) with i 6= i′ is (ε, δ)-grey.

It follows, by the Embedding Lemma, that there exists a copy of U(r, k) ⊂ G with

exactly one vertex in each set W
(i)
j . But B′ shatters this copy of U(r, k), by condition (b)

above, and so G is not U(r + 1, k)-free, as claimed. �
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By Lemma 7 and our choice of k, it follows that Hv 6 G ∈ P for some forbidden graph
Hv, which is a contradiction. Thus B(Pn, α, c) ⊂ A(Pn, α′), as required. �

Given α > 0, a graph G on n vertices, a subset A ⊂ V (G) and two vertices u, v ∈ V (G),
we say that u is an α-clone of v with respect to A if∣∣(Γ(u) ∩ A

)
4
(
Γ(v) ∩ A

)∣∣ 6 αn.

Let P = (S1, . . . , Sr) be a partition of G, and let B be an α-bad set for (G,P ). If B is
chosen to be maximal, then for every vertex v ∈ V (G), there exists a vertex b ∈ B, and
an index j ∈ [r] such that v is an α-clone of b with respect to Sj. Define

j(v) := min
{
j ∈ [r] : ∃ b ∈ B such that v is an α-clone of b with respect to Sj

}
.

Note that the function j(.) in fact depends on the triple (P,B, α). It will usually be
obvious which partition P , set B and constant α > 0 we are using, so we suppress this
dependence. When it is not obvious from the context, we shall clarify.

The following observation is an immediate consequence of the definition of an α-clone,
together with Observation 13.

Observation 19. Let α > 0 be sufficiently small, let G be a graph on n vertices, let
A,B ⊂ V (G), and suppose v ∈ V (G) is an α-clone of some vertex in B with respect to
A. Then, given the edges of G[A,B], we have at most

|B|2
√
αn

choices for the edges between v and A.

We would like to have v ∈ Sj(v) for every v ∈ V (G). In fact we shall prove that, for
almost every graph G ∈ P , we can adjust any given BBS-partition of G to guarantee that
this holds.

First, we shall show that almost all graphs G ∈ Pn have at most αn/2 vertices with
v 6∈ Sj(v). Indeed, given α > 0, a graph G, a BBS-partition P = (S1, . . . , Sr) of G, and a
maximal α-bad set B for (G,P ), let

J(G,P,B, α) := {v ∈ V (G) : v 6∈ Sj(v)}.

Now, given n ∈ N, α, ε, δ, γ > 0 and a hereditary property of graphs P , let

C(Pn, α) :=
{
G ∈ Pn : ∃ a BBS-partition P of G for (ε, δ, γ) and a maximal

(2α)-bad set B for (G,P ) such that |J(G,P,B, 2α)| > αn
}
.

The next lemma says that the set C(Pn, α) is small.

Lemma 20. Let r ∈ N, and let P be a hereditary property of graphs with χc(P) = r. Let
α > 0 be small, and let ε, δ, γ > 0 be sufficiently small, and n ∈ N be sufficiently large.
Then,

|C(Pn, α)| 6 2(1−1/r)n2/2−αn2/3r3 = o(|Pn|).
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Proof. The proof is almost the same as that of Lemma 17. Indeed, let G ∈ C(Pn, α), and
let P = (S1, . . . , Sr) be a BBS-partition of G for (ε, δ, γ), and B ⊂ V (G) be a maximal
(2α)-bad set for (G,P ), such that |J(G,P,B, 2α)| > αn. By the pigeonhole principle,
there exists i, j ∈ [r] (with i 6= j) such that

|C| :=
∣∣{v ∈ Si : j(v) = j

}∣∣ > α′n,

where α′ = α/r2.
Now we simply count the graphs in C(Pn, α). We have at most nn choices for the

partition P , the set B, the index j and the set C. By Observation 13, and the definition
of a BBS-partition, we have at most

2(ε+
√
δ+γ)n2

choices for the edges inside the set Sk, for each k ∈ [r].
Next, recall that (1/r − ε)n 6 |Sk| 6 (1/r + ε)n for each k ∈ [r], by the definition of a

BBS-partition, and so we have at most

2(1/r+ε)2n2

choices for the edges between Sp and Sq, for each p 6= q. Moreover, we have at most

2(1/r+ε)2n2−(α′/2r)n2

choices for the edges between Si and Sj. Indeed, by Observation 19 we have at most

n2
√

2α′|C|n choices for the edges between C and Sj, and we have at most 2(1/r+ε)2n2−|C|n/r

choices for the edges between Si \ C and Sj.
Putting these bounds together, we obtain

log2

(
|A(Pn, α)|

)
6

(
r

2

)
(1/r + ε)2n2 − αn2

2r3
+ O

(
(ε+

√
δ + γ)n2

)
.

The first inequality now follows if ε, δ and γ are sufficiently small. The final inequality
follows by Observation 3. �

Now let G be a graph, let r ∈ N, and let α, α′, ε, δ, γ > 0. Given a BBS-partition
P = (S1, . . . , Sr) of G for (ε, δ, γ), and a maximal (2α)-bad set for (G,P ), we make the
following definition.

Definition. An α-adjustment of (G,P ) with respect to B is a partition P ′ = (S ′1, . . . , S
′
r)

of V (G) such that, for each j ∈ [r], the following holds. |Sj4S ′j| 6 αn, and for every
v ∈ S ′j, there exists b ∈ B such that v is a (3α)-clone of b with respect to S ′j.

Given n ∈ N, constants ε, δ, γ, α > 0, and a hereditary property of graphs P , define

D(Pn, α) :=
{
G ∈ Pn : ∃ a BBS-partition P of G for (ε, δ, γ) and a maximal (2α)-bad

set B for (G,P ) such that @ an α-adjustment of (G,P ) with respect to B
}
.

The next lemma follows easily from the definitions.
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Lemma 21. Let r ∈ N, and let P be a hereditary property of graphs with χc(P) = r. Let
α > 0, and let ε, δ, γ > 0 be sufficiently small. Then,

D(Pn, α) ⊂ C(Pn, α).

Proof. Let G ∈ Pn, and suppose G ∈ D(Pn, α) \ C(Pn, α). Let P = (S1, . . . , Sr) be an
arbitrary BBS-partition of G for (ε, δ, γ), and let B be a maximal (2α)-bad set B for
(G,P ). Note that, since G 6∈ C(Pn, α), we have

|J(G,P,B, 2α)| = |{v ∈ V (G) : v 6∈ Sj(v)}| 6 αn.

For each j ∈ [r], let S ′j = {v ∈ V (G) : j(v) = j}. We claim that P ′ = (S ′1, . . . , S
′
r)

is an α-adjustment of (G,P ) with respect to B. Indeed, since |J(G,P,B, 2α)| 6 αn, it
follows immediately that |Sj4S ′j| < αn for every j ∈ [r]. Moreover, for each v ∈ S ′j we
have j(v) = j, and so there exists b ∈ B such that v is a (2α)-clone of b with respect to
Sj. But |Sj4S ′j| < αn, so v is a (3α)-clone of b with respect to Sj.

Thus P ′ is an α-adjustment of (G,P ) with respect to B, as claimed. But P and B
were chosen arbitrarily, so this contradicts the fact that G ∈ D(Pn, α). Thus D(Pn, α) ⊂
C(Pn, α), as required. �

Finally, for each graph G on vertex set S1 ∪ . . .∪Sr, and each integer k ∈ N, we choose
a collection of vertex-disjoint copies of U(t, k) for each 2 6 t 6 r + 1, using the following
algorithm.

Algorithm. Set ` := 1, t := r + 1 and X = ∅. Repeat the following steps until t = 1.

1. Suppose there exists a copy H of U(t, k) in G − X, and a function i : [t] → [r]
such that:

(a) V (H) = A1 ∪ . . . ∪ At,
(b) Aj+1 → A1 ∪ . . . ∪ Aj for each j ∈ [t− 1],

(c) Aj ⊂ Si(j) \X for each j ∈ [t], and

(d) i(1) = i(2), and i(j) = i(j′)⇔ j = j′ for j, j′ > 2.

Then set U` := V (H), X := X ∪ U` and ` := `+ 1, and repeat Step 1.
2. Otherwise, set t := t− 1, and go to Step 1.

In other words, we first find a maximal collection of vertex-disjoint copies of U(r+1, k),
such that for each copy, the smallest two classes are in the same set (Si(1) = Si(2)) as each
other, and the other classes in different sets (Si(3), . . . , Si(r+1)). We then find a maximal
collection of vertex-disjoint copies of U(r, k), which are also disjoint from each of the
copies of U(r + 1, k). We repeat this for each 2 6 t 6 r + 1, in decreasing order.

We obtain from the algorithm a collection {U1, . . . , UL}, where G[U`] = U(t, k) for some
2 6 t 6 r + 1, and the sets U` are pairwise disjoint. The following observation describes
the key property of these sets.
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Observation 22. Let U1, . . . , UL be the sets obtained from the algorithm applied (for k)
to the graph G and partition (S1, . . . , Sr) of V (G). Then, for each j ∈ [r] and ` ∈ [L], if

U` ∩ Sj = ∅ then the set Sj \
⋃̀
j=1

Uj does not shatter U`.

Proof. Suppose G[U`] = U(t, k), and At+1 → U` for some At+1 ⊂ Sj \
⋃̀
j=1

Uj. Then

U` ∪ At+1 induces a copy of U(t + 1, k), and so this set would have been chosen at an
earlier step of the algorithm. �

Now, given k ∈ N, a graph G, a BBS-partition P of G for (ε, δ, γ), a maximal (2α)-bad
set B for (G,P ), and an α-adjustment P ′ = (S ′1, . . . , S

′
r) of (G,P ) with respect to B, let

U(G,P ′, k) :=
L⋃
`=1

U`,

where {U1, . . . , UL} are the sets given by the algorithm, applied to the graph G and the
partition P ′.

Given n, k ∈ N, constants ε, δ, γ, α > 0, and a hereditary property of graphs P , let

U(Pn, α, k) :=
{
G ∈ Pn : ∃ a BBS-partition P of G for (ε, δ, γ), a maximal (2α)-bad

set B for (G,P ), and an α-adjustment P ′ = (S ′1, . . . , S
′
r) of

(G,P ) with respect to B with |U(G,P ′, k)| > n1−α
}
.

Theorem 1 is an easy corollary of the following lemma, together with Lemmas 16, 20
and 21. The proof of the lemma uses Theorem 2, and Lemmas 7, 15, 17, 18, 20 and 21.

Lemma 23. Let r ∈ N, and let P be a hereditary property of graphs with χc(P) = r.
There exist k = k(P) ∈ N and α = α(k,P) > 0 such that the following holds. Let
ε, δ, γ > 0 be sufficiently small and n ∈ N be sufficiently large. Then

|U(Pn, α, k)| 6 2(1−1/r)n2/2−α2n2−α
= o(|Pn|).

Proof. Let k be sufficiently large so that G is U(r + 1, k)-free for every G ∈ P . Such a
k = k(P) exists by Lemma 7.

We simply count the graphs in

Un := U(Pn, α, k) \
(
B(Pn, α, n1−2α) ∪ D(Pn, α)

)
.

By Lemmas 17 and 18 we have

|B(Pn, α, c)| 6 2(1−1/r)n2/2−α′n2

for some α′ = α′(P , α), if c = c(P , α) is sufficiently large. (Recall that |B(Pn, α, c)| is
monotone decreasing in c.) Also, by Lemmas 20 and 21 we have

|D(Pn, α)| 6 2(1−1/r)n2/2−α′′n2

,
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where α′′ = α/3r3. Thus it suffices to prove the claimed bound for the set Un.
So let G ∈ Un, and note that G has

(a) a BBS-partition P for (ε, δ, γ),
(b) a maximal set B ⊂ V (G), which is (2α)-bad for (G,P ), with |B| 6 n1−2α,
(c) an α-adjustment P ′ = (S ′1, . . . , S

′
r) of (G,P ) with respect to B, such that

|U(G,P ′, k)| > n1−α.

Let U1, . . . , UL denote the sets given by the algorithm, applied (for k) to the partition P ′

of G. By definition,

U(G,P ′, k) =
⋃
j

Uj.

We have at most nn choices for the partition P ′, and the sets B and U1, . . . , UL. Now,
given an edge e = ab, define the index i(e) as follows:

(a) If e has an endpoint in B then i(e) = 0.
(b) If e has an endpoint in U` and the other endpoint is in

V (G) \
(
B ∪

`−1⋃
j=1

Uj

)
then i(e) = `.

(c) If e has both endpoints in V (G) \
(
B ∪ U(G,P ′, k)

)
then i(e) =∞.

We choose the edges of G in increasing order of index.
First, since |B| 6 n1−2α, we have at most 2|B|n 6 2n

2−2α
choices for the edges incident

with B. So let 1 6 ` 6 L, and suppose that G[U`] is a copy of U(t, k), where 2 6 t 6 r.
(Note that t 6= r + 1, since G is U(r + 1, k)-free by our choice of k.)

Claim: There is a constant λ > 0, depending only on k and r, such that we have at most

2(1−1/r−λ)|U`|n

choices for the edges with index `.

Proof. Without loss of generality, let U` = A1 ∪ . . . ∪ At, where A1, A2 ⊂ S ′2, Aj ⊂ S ′j for
each 3 6 j 6 t, and

Aj+1 → A1 ∪ . . . ∪ Aj
for each 1 6 j 6 t − 1. Recall that, by the definition of an α-adjustment, each vertex
u ∈ S ′j is a (3α)-clone of b with respect to S ′j, for some b ∈ B. Note also that (1/r−2α)n 6
|S ′j| 6 (1/r + 2α)n for each j ∈ [r].

Thus, for each u ∈ U`, we have at most

2(1−2/r+2
√
α)n

choices for the edges between u and V (G)\S ′1, by Observation 19, since α > 0 is sufficiently
small. But S ′1 does not shatter U`, by Observation 22, and so, by Lemma 15, we have at
most

2|U`|n/r−λ1n
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choices for the edges between U` and S ′1, where λ1 = λ1(k, r) > 0 is the constant in
Lemma 15. Choosing α = α(P , k) sufficiently small, the result follows. �

Now, let Tj = S ′j \ U(G,P ′, k) for each j ∈ [r] , and note that, since the algorithm

stopped, Tj is U(k)-free. Thus, by Theorem 2, we have at most 2n
2−2α

choices for the
edges inside these sets. Also, trivially, we have at most

2(1−1/r)(n−U(G,P ′,k))2/2

choices for the edges between the sets Tj.
Multiplying the number of choices, we get

log2(|Un|) 6
(

1− 1

r

)
(n− |U(G,P ′, k)|)2

2
+

(
1− 1

r
− λ
)
|U(G,P ′, k)|n + O

(
n2−2α

)
6

(
1− 1

r

)
n2

2
− λ|U ′(G,P ′, k)|n +

|U(G,P ′, k)|2

2
+ O

(
n2−2α

)
.

Since |U(G,P ′, k)| > n1−α, the result follows if |U(G,P ′, k)| 6 λn.
Finally, suppose that |U(G,P ′, k)| > λn. Then, by the pigeonhole principle and without

loss of generality, there exists 2 6 t 6 r and a subset X ⊂ [L] such that, for each j ∈ X,
Uj = A1 ∪ . . . ∪ At, where A1, A2 ⊂ S ′2, Aj ⊂ S ′j for each 3 6 j 6 t, and

Aj+1 → A1 ∪ . . . ∪ Aj
for each 1 6 j 6 t− 1, and |X| > λ2n, where λ2 depends only on k and r.

We have at most nn choices for the partitions (S1, . . . , Sr) and (S ′1, . . . , S
′
r), and at most

2(ε+
√
δ+γ)n2

choices for the edges inside the sets Sj. We have at most 2αn
2

choices for the

edges incident with vertices in
⋃
j Sj4S ′j, and at most 2(r−1

2 )n2/r2 choices for the edges

between S ′i and S ′j for i, j 6= 1. Finally, we have at most 2n/r(n−n/r)−λ3n2
choices for the

edges incident with S ′1, by Lemma 15.
Thus, choosing α sufficiently small, we obtain

log2(|Un|) 6
(

(r − 1)(r − 2)

2r2
+
r − 1

r2

)
n2 − λ4n

2 =

(
1− 1

r
− λ4

)
n2,

for some λ4 > 0, as required. �

Remark 1. Note that we in fact only needed B(G,P, α) 6 n1−2α for almost every graph
G ∈ P .

The proof of Theorem 1 now follows easily.

Proof of Theorem 1. Let P be a hereditary property of graphs with χc(P) = r, and let
k = k(P) ∈ N be sufficiently large, and α = α(P , k), γ = γ(P , α, k), δ = δ(P , γ, α, k) > 0
and ε = ε(P , γ, δ, α, k) > 0 be sufficiently small. By Lemma 16, almost every graph
G ∈ P has a BBS-partition for (ε, δ, γ). So let G ∈ P , let P be a BBS-partition of G for
(ε, δ, γ), and let B be a maximal (2α)-bad set for (G,P ).
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Now, by Lemmas 20 and 21, for almost every such G there exists an α-adjustment
P ′ = (S ′1, . . . , S

′
r) of (G,P ) with respect to B. Let U(G,P ′, k) denote the set given by the

algorithm. By Lemma 23, U(G,P ′, k) 6 n1−α for almost every such G.
Let A = B ∪U(G,P ′, k), and let Sj := S ′j \A for each j ∈ [r]. Then Sj is U(k)-free for

each j ∈ [r], and Theorem 1 follows. �

8. A sharper bound for bipartite graphs

In this section we refine the methods of the proof of Theorem 2, giving a close to sharp
upper bound on

f(n, n, U(k)) := |{G bipartite on A ∪B : |A| = |B| = n and G is U(k)-free}|.

The exponent in our bound will be within a polylog-factor of the best that we could
hope for, i.e., the exponent in the extremal result of Alon, Krivelevich and Sudakov [3]
(see the more general Theorem 6.1 in their paper), that a U(k)-free graph with class sizes
n cannot have more than O(n2−1/(k−1)) edges.

We remark that to remove all of the seemingly unnecessary log-factors looks extremely
hard. Corresponding results are known only for the monotone case, and even then only
in special cases (for C4 by Kleitman and Winston [25], for C6 and C8 by Kleitman and
Wilson [24], for {C4, C6, . . . C2k} by Kohayakawa, Kreuger and Steger [26], and for Ks,t

by Balogh and Samotij [13, 14]).

Theorem 24. For every 3 6 k ∈ N, and every sufficiently large n, we have

f(n, n, U(k)) 6 exp
(
n2−1/(k−1)(log n)k+1

)
.

We first prove the following lemma, the proof of which uses the methods of Section 6.
Let G be a U(k)-free bipartite graph with classes U and V where |U | = |V | = n. For each
u, v ∈ U , we define ∆(u, v) := |Γ(u)4Γ(v)|, the ‘distance’ between the two vertices.

Lemma 25. Let m,n, x, k ∈ N, and let G be a U(k)-free bipartite graph with classes U
and V , where |U | = m and |V | = n. Let U ′ ⊂ U , and suppose that, for any u, v ∈ U ′, we
have ∆(u, v) > x. Then

|U ′| 6
(n
x

)k−1

3k
(

logm
)k−1

.

Proof. The proof is very similar to that of Lemma 10. Indeed, let c = |U ′|, and with

foresight, let p =
3 log c

x
. We claim that there exists a subset X ⊂ V , with |X| = pn,

such that

Γ(u) ∩X 6= Γ(v) ∩X
for each u, v ∈ U ′ with u 6= v. Indeed, if we choose a random subset X ⊂ V of size pn,
then

P
(

Γ(x) ∩X = Γ(y) ∩X
)
6

(
n− x
pn

)/( n
pn

)
6
(

1− x

n

)pn
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for each such pair {x, y}, and so

E
∣∣∣∣{{x, y} ∈ (U ′2

)
: Γ(x) ∩X = Γ(y) ∩X

}∣∣∣∣ 6 (
c

2

)(
1− x

n

)pn
6 c2e−px < 1.

Thus such a set X must exist, as claimed. Now, if

c > 2

(
3n log c

x

)k−1

= 2(pn)k−1 >
k−1∑
i=0

(
|X|
i

)
,

then, by Sauer’s Lemma, there exist sets U ′′ ⊂ U ′ and X ′ ⊂ X, with |X ′| = k, such that
U ′′ → X ′. But this is a contradiction, since G is U(k)-free. Thus

|U ′| = c 6 2

(
3n log c

x

)k−1

6 3k
(n
x

)k−1 (
logm

)k−1

as required. �

We are now ready to prove Theorem 24.

Proof of Theorem 24. Let |U | = |V | = n, and suppose that G is a bipartite U(k)-free
graph with classes U and V . We are required to show that the number of choices for the

edge set of G is at most exp
(
n2−1/(k−1)(log n)k+1

)
.

The idea is to partition U into t+ 2 parts, and consider the edges from each part to V
in turn. Indeed, let t ∈ N, let n > x0 > · · · > xt > n1−1/(k−1), and let

U0 ⊂ . . . ⊂ Ut ⊂ U

be maximal subsets satisfying ∆(u, v) > xi for each u, v ∈ Ui and 0 6 i 6 t. Moreover,
and with foresight, let t = 10 log log n, and let

xi := n1−1/(k−1)+1/(k−1)i+2

for each 0 6 i 6 t. Note that we have at most 2n choices for the sets Ui.
Now, by Lemma 25,

|Ui| 6
(
n

xi

)k−1

3k(log n)k−1

for each 0 6 i 6 t, so we have at most

exp

(
n

(
n

x0

)k−1

3k(log n)k−1

)
choices for the graph G[U0, V ]. Now let 0 6 i 6 t − 1, and assume that the sets Ui and
Ui+1 and the graph G[Ui, V ] have already been chosen.

Claim: We have at most

exp

(
xi

(
n

xi+1

)k−1

3k+1(log n)k

)
choices for the edges between Ui+1 \ Ui and V .
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Proof of claim. Since Ui is maximal, for every v ∈ Ui+1 \ Ui there is a u ∈ Ui such that
∆(u, v) < xi. Thus, the number of choices for the edges between v and V is at most

2|Ui|
(
n

xi

)
,

and so the number of choices for the graph G[Ui+1 \ Ui, V ] is at most(
2|Ui|

(
n

xi

))|Ui+1|

6
(
nxi+1

)(n/xi+1)k−13k(logn)k−1

6 exp

(
xi

(
n

xi+1

)k−1

3k+1(log n)k

)
,

as claimed. �

Finally, given Ut and G[Ut, V ], the number of choices for the edge between U \ Ut and
V is at most[

2|Ut|
(
n

xt

)]n
6 exp

(
(xt + 1)n log n

)
6 exp

(
2n2−1/(k−1) log n

)
.

since for each u there is a vertex v ∈ Ut such that ∆(u, v) 6 xt. There are at most n
choices for v and 2

(
n
xt

)
choices for the symmetric difference.

Putting these bounds together, the number of choices for the graph G[U, V ] is at most

exp

(
n

(
n

x0

)k−1

3k(log n)k−1 + 2n2−1/(k−1) log n +
t−1∑
i=0

xi

(
n

xi+1

)k−1

3k+1(log n)k

)
.

But, recalling that xi = n1−1/(k−1)+1/(k−1)i+2
, we have

n

(
n

x0

)k−1

= xi

(
n

xi+1

)k−1

= n2−1/(k−1)

for each 0 6 i 6 t− 1. Since t = O(log log n), this gives an upper bound of

exp
(
Cn2−1/(k−1)(log n)k log log n

)
,

as required. �

We cannot hope to obtain very sharp results from such a (relatively) simple application
of Sauer’s Lemma. However, our results are close to optimal, if we do not care about
poly-log factors in the exponent. For example, Theorem 24 for k = 3 gives an n3/2 in the
exponent, and 3/2 is best possible, as U(3) contains a C4. In general, U(k) contains a
graph with average degree at least 2(k − 3), and so we have the bounds

exp
(
n2−1/(k−3)

)
6 f

(
n, n, U(k)

)
6 exp

(
n2−1/(k−1)(log n)k+1

)
.

It would be interesting to eliminate (if possible) the log n-factors from the exponent;
this would yield Kleitman-Winston-type results for many different bipartite graphs.
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9. questions

The most obvious disadvantage of Theorem 1 is that we know almost nothing about
the structure of a typical U(k)-free graph.

Question 1. What is the structure of a typical U(k)-free graph? In particular, are almost
all U(k)-free graphs either dense or sparse?

As we remarked in the Introduction, there has recently been some important progress
on hereditary properties of hypergraphs. In particular, we noted the following theorems
of Dotson and Nagle [18], Ishigami [22] and Person and Schacht [32].

Given a hereditary property of k-uniform hypergraphs P , the extremal number of P is
defined to be

ex(n,P) := max

{
|A| : A ⊂

(
[n]

k

)
, and there exists M⊂

(
[n]

k

)
\ H such that

M∪A′ ∈ P for every A′ ⊂ A
}
.

In other words, it is the maximum dimension of a subspace of Pn, in the product space

{0, 1}(
[n]
k ).

Theorem 26 (Dotson and Nagle [18], Ishigami [22]). Let k ∈ N and let P be a hereditary
property of k-uniform hypergraphs. Then

|Pn| = 2ex(n,P)+o(nk).

Theorem 27 (Person and Schacht [32]). Almost every Fano-plane-free 3-uniform hyper-
graph is bipartite.

These results give reason to be optimistic that the following question, which until
recently would have seemed very far out of reach, may now be approachable.

Question 2. What is the structure of a typical member of a hereditary property of k-
uniform hypergraphs?

Finally, we note that Theorem 1 is considerably weaker than Conjecture 1, since the
set A can be very large, and because our bounds on k are likely far from best possible.
The following problem asks for some progress towards the conjecture.

Problem 1. In the statement of Theorem 1, improve the upper bound on |A|, and give
good bounds on the constant k(P).
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[28] Ph.G. Kolaitis, H.J. Prömel and B.L. Rothschild, Kl+1-free graphs: asymptotic structure and a 0-1

law, Trans. Amer. Math. Soc., 303 (1987), 637–671.



THE STRUCTURE OF ALMOST ALL GRAPHS IN A HEREDITARY PROPERTY 29

[29] J. Komlós and M. Simonovits, Szemerdi’s regularity lemma and its applications in graph theory,
Bolyai Society Mathematical Studies 2, Combinatorics, Paul Erdős is Eighty (Volume 2) (D. Miklós,
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