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Abstract

In this work, we consider the problems of testing whethersrithution over{0, 1}" is k-wise or
(e, k)-wise independent using samples drawn from that distobut

To distinguishk-wise independent distributions from those that &far in statistical distance, we
upper bound the number of required sample©ty/52) and lower bound it bﬂ(n%l/o‘) (these bounds
hold for constank, and essentially the same bounds hold for gerigralo achieve these bounds, we
use Fourier analysis to relate a distribution’s distanomfik-wise independence to itsasega measure
of the parity imbalance it induces on a set of variables). fdiationships we derive are tighter than
previously known, and are of independent interest.

To distinguish €, k)-wise independent distributions from those thatfar in statistical distance, we

. logn . yklogn }
upper bound the number of required sample@l@m) and lower bound it by (—(M) m) Al

though these bounds are an exponentialimprovement (irstefmandk) over the corresponding bounds
for testingk-wise independence, we show that tiree complexity of testing £, k)-wise independence
is unlikely to be polyf, 1/¢,1/6) for k = ®(logn), since this would disprove a plausible conjecture
about the hardness of finding hidden cliques in random grdphder the conjecture, our result implies
that for, sayk = logn ande = 1/n%%, there is a set ofe( k)-wise independent distributions, and a set
of distributions at distancé = 1/n®%! from (g, k)-wise independence, which are indistinguishable by
polynomial time algorithms.
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1 Introduction

A probability distribution over0, 1}" is k-wise independernif its restriction to anyk coordinates is uni-
form. Similarly a distribution is €, k)-wise independent, roughly, its restriction to ank coordinates is
almost uniform. Such distributions look random “locallig’an observer of onli coordinates, even though
they may be far from random “globally.” Because of this kegtéee, k-wise and €, k)-wise independent
distributions are important concepts in probability, céexjiy, and algorithm design [19, 21, 24, 25].

Given samples drawn from a distribution oV@r 1}", it is natural to wonder whether the distribution
generating those sampleskisvise independent. An experimenter, for example, who vesedata in the
form of a vector ofn bits might like to know whether every setting fof those bits is equally likely to
occur, or whether some settingskabits are more or less likely.

In this work, we seek new ways of elucidating the structurd-afise independent distributions, and
of analyzing a distribution’s statistical distancelktavise independence. We use our new understanding to
develop dicient algorithms fotesting kwise and €, k)-wise independence — that is, algorithms that with
high probability accept distributions which gravise independent, and reject distributions which&far
in statistical distance from arkwise independent distribution.

Previous work addressed the problem of testing relatedepties of distributions, including unifor-
mity [17, 8] and independence [7, 26, 9]. Although we are waravwof any previous work on testilkgwise
and ¢, k)-wise independence, the theorems in [4] combined with @igdization of the algorithm in [17]
yield natural testing algorithms which we improve upon.

1.1 Our Results and Techniques

The formal definition of a testing algorithm frwise or €, k)-wise independent distributions is given below.
The complexity of a testing algorithm is measured both imteof the number of samples required (sample
complexity), and the computational time needed to prodessetsamples (time complexity).

Definition 1.1 (Testingk-wise ((, k)-wise) independence) et0 < ¢,6 < 1, and let D be a distribution over
{0, 1}". We say that an algorithrrestsk-wise ((e, k)-wise) independencié given access to a set {0, 1}"
of samples drawn independently from D, it outputs: 1) “YefsDiis a k-wise (e, k)-wise) independent
distribution, 2) “No” if the statistical distance of D to ank-wise (e, k)-wise) independent distribution is
at leasts. The tester may fail to give the right answer with probabibit mostl/3. We call|Q| the query
complexityof the algorithm.

In Table 1, we summarize the sample and time bounds that gariims achieve, along with the lower
bounds that we prove for the associated testing problemistdrpreting these results, it is useful to think of
6 ande as constants, so that the complexity measures are functfamy n andk. TheO* andQ* notation
is defined as followsO*(f) = O(f1*°)) andQ*(f) = Q(f1-°W). For constank, one can replace th@*
andQ* in the statement of our results withandQ respectively.

1.1.1 Testingk-wise independence

In Section 3, we present an algorithm for testiagiise independence. We use the notion tiias over a
set Twhich is a measure of the parity imbalance of the distrilutiwer the seT of variables:

Definition 1.2. For a distribution D over{0, 1}", thebiasof D over a non-empty set T [n] is defined as
biasH(T) £ P p[®icT X = 0] — Prxep[®icT X = 1]. We say biag(T) is an I-th level bias ifT| = I.

A well-known fact says that a distribution kswise independenttiits biaseshiasy(T) are zero for all
nonempty set3 c [n] of size at mosk.

This suggests the following simple algorithm: estimatefradlbiasesof the distribution over sets of size
up tok and output “Yes” ff all of those biases are small enough. We show that this #hgofasO* (nk/s2)



Table 1: Summary of Testing Results

Reference Sample Complexity Time Complexity
Upper | Lower Upper | Lower
Testingk-wise independence this p?per O* (rffk) 2 —5 ) O*(rffk)
[4] O (&) Q*(n2) O (%) -
Testing €, k)-wise independence this paper| O(X9") | © yklogn of;oé‘;’é) | e s
€ (e+8) (flog 5 ) | POY®

"These bounds can be derived from theorems in [4], thoughdiaeyot explicitly consider the testing problem.
#This can be achieved trivially.
$This lower bound applies whdn= ©(logn) andes = n~°M. It is contingent upon a conjecture discussed below.

sample complexity an®*(n?/s2) time complexity. We also prove a sample complexity loweurmb of

Q*(nk;z1 /6), showing our upper bound is at most a quadratic factor frptmal.
The analysis of our testing algorithm is based on TheoremL2tA(D, Dywi) denote the statistical dis-
tance between distributioR and the set ok-wise independent distributior®y,,ij. Theorem 3.1 shows that

A (D, Dywi) < O(\/ngk(bias(T))2 log¥/2 n). Previously, the only non-trivial bound oX(D, D) is the

one implicit in [4]: A(D, Dxwi) < 2tk [biagT)|. In most of the interesting cases, our new bound improves
upon their result. For example, the main upper bound resy#]iis: if all the biases of a distributiod
over non-empty subsets up to skare at most, thenA(D, Dywi) < ¥ - €. Using Theorem 3.1, this can be
improved toA(D, Diwi) < O((4/nlogn)¥) - e.

Our sample lower bound is based on a Random Distribution Laifiremma 3.6), which shows that a

uniform distribution over a random set of si (”/'g#) is almost surely-far from anyk-wise independent

distribution. In contrast, the lower bound result in [4] alsathat any distribution with support si@(%) is

always Y 2-far from anyk-wise independent distribution. Our result applies to camdiniform distributions
over a large range of support sizes, and shows a tfdetween a distribution’s support size and its distance
to k-wise independent distributions.

Fourier-analytic interpretation of our bounds on A(D, Dywi)-

Our upper and lower bounds @D, Dy.i), together with the proof techniques, may be of independent
interest when interpreted as Fourier-analytic inequifior bounded functions on the hypercube. The
harmonic analysis of such functions has been considerdteiComputer Science literature, e.g., in [14].
The connection to Fourier analysis comes from the basidlf@attthe biases of a distributidd are equal to
D’s Fourier codficients (up to a normalization factor).

Bounds onA(D, Dywi) may be viewed as part of the following general question: fifamily F of
functions on the hypercube and a subfamilyc F of functions defined via a restriction on their Fourier
codficients. Then, for functiorf € F, what is thef, distance fromf to its projection inH, i.e., £1(f, H)?*

In our caseF is the set of all bounded functions that sum up to 1 (i.e.ribdigtions), andH further requires
that the functions have no non-zero Fourierfognts over non-empty subsets of size at nkodthen, for
example, Parseval's equality gives the following boundtm¢g-norm: £>(f, H) > || f«kll2 where foi(X) =
2.0<|S|<k fsys() is the truncation of to the low-level Fourier spectrum (the inequality would besguality
if the functions were not bounded). Unfortunately, such artabimplies only very weak bounds for tlig
norm.

1The distance of a function to a séf(f, H), is defined to be migy [If — hilp.



In contrast, our upper bound @D, Dyi) says that:1(f, H) < ||fll» - O(log¥’? n). To prove such an
inequality, we proceed as follows. Given a distributibn= f, we approximateD using a functionD1,
obtained by forcing all oD’s first k-level Fourier cofficients to zero while keeping all others unchanged.
Although D; is not necessarily a probability distribution (it may mapnsoinputs to negative values), we
show how to turn it back into B-wise independent distribution by “mending” it with a seriaf carefully
chosen small weight-wise independent distributions. By a deep result in Fowialysis, the Bonami-
Beckner inequality, we bound the distance incurred by therfding” process. Thus, we are able to bound
the total¢; distance oD to k-wise independence by the distance frBnto D1 plus the “mending” cost.

Furthermore, our lower bound technique (employed by thedBemDistribution Lemma) implies that
t1(f, H) > ||f<<:||||2 which is already useful when we taketo be a uniform function on a randomly chosen
support. ThIS inequality follows by taking the convolutiohD = f with an auxiliary function and then
applying Young's convolution inequality to lower bound thenorm of D — D’, whereD’ is the k-wise
independent distribution closestbn

1.1.2 Testing(e, k)-wise independence
In Section 4, we give an algorithm for testing K)-wise independence that us®gklogn/s%e?) samples,

and we show tha® (— "klogn) samples are required. The lower bound on the sample cortplexi

(e+6) \/log 1/(e+6)

achieved by obtaining af (%) lower bound on the support size ofaK)-wise independent distribu-

tion. The proof of the lower bound uses significantlffelient ideas from the lower bound for testigvise
independence.

In terms ofn andk, the sample complexity of testing, k)-wise independence is exponentially better
than that of testing-wise independence. However, the time complexity of tgstink)-wise independence
presents another story. Since the number of samples rddureur testing algorithm is only polg(es),
one would hope that the time complexity is polynomial as widibwever, we show that for sontethis is
not likely to be the case. Specifically, in Theorem 4.4 we shuat fork = @(logn) andes = n"°®, no
polynomial time tester exists for this testing problem, ema plausible conjecture on the hardness of finding
a hidden clique in random graphs. Finding hidden cliqueamiom graphs has been studied since [18, 23].
We discuss our conjecture in detail in Section 4.

Computational indistinguishability of (e, k)-wise independent distributions.

The initial motivation of [4] was to show that a randomizedalithm requiring onlyk-wise indepen-
dent distributions (i.e.Q(klogn) random bits) can be further derandomized using)éwise independent
distributions (requiring onlO(k + log(n/€)) random bits), by showing that any, k)-wise independent dis-
tribution is close in statistical distance to sofwise independent distribution far= 1/poly(n, 2€). They
instead proved that anr,K)-wise independent distribution can be at distanc&/2 from k-wise indepen-
dence even foe as small ag = n"%/. One can view their results as showing tkatise (i.e., (Qk)-wise)
and q%/5, k)-wise independent distributions are far apart infornratioeoretically.

Despite the large statistical distance, one can ask whethes are (1poly(n, 2¥), k)-wise independent
distributions that are poly-time indistinguishable frotnk)-wise independence, under some computational
hardness assumption (suehk)-wise independent distributions should still requdék + log(n/e)) random
bits to be useful for derandomization). Although we do natveer the above question or give a result
useful for derandomization, our above hardness of testsglt yields some evidence for affianative
answer. Specifically, we show that for, s&y= logn, there is a family of if~%°°, k)-wise independent
distributions, and a family ofr( %%, k)-wise independent distributions that are poly-time itidiguishable
under the aforementioned hidden clique conjecture. Eveumgih any distribution from the first family is at
distances > n~952 from any distribution from the second family (as we shows tlonjecture implies that



distinguishing a random distribution from the first familpm a random member of the second cannot be
done in polynomial time with a polynomial number of samples.

2 Preliminaries

We use fi] to denote the sdfl, ..., n}. For an integek = o(n), defineMy = Zik:l (rl‘) to be the number of
non-empty subsets ofi] of size at mosk. ThenMpy < nk andMp = Q*(nK).

We will restrict our attention to probability distributisrover{0, 1}" which are specified by distribution
functionsD : {0, 1}" — [0, 1] such that},yc01;» D(X) = 1. Thesupportof D, SuppD), is the set of points
x at whichD(x) # 0. LetA = {as,...,amn} be a multiset of cardinalityn, wherea; € {0, 1}". The uniform
distribution overA, denotedU , is defined to b&Ja(x) = ElMa =Xl \yg yseU, to denote the uniform
distribution over{0, 1)}".

2.1 k-wise and(e, k)-wise Independent Distributions, and Distances

Definition 2.1. A distribution D is(e, k)-wise independerif for any k indexesii< i < ... < ik, and any
vectorV € {0, 1}¥ of k bits,|Prx<_D [xilxiz X :T/’] - 2‘k| < e. Whene = 0, we say that D is just4wise
independent The set of all k-wise independent distributions dadk)-wise independent distributions are
denoted byDyyi and D ) respectively.

For two distributiond,, D, we denote their statistical distancesfD1, D2) = maxscio.1yn | Pr[D1(S)]-
Pr[D2(S)]l. It is immediate to verify than(Dq, D) = % > «ID1(X) — D2(X)| and 0< A(D1, D)) < 1.
Thedistance of a distribution D to k-wise independemdenotedA(D, Dywi), is defined to be the mini-
mum statistical distance & to anyk-wise independent distribution, i.&(D, Diwi) = MiNprep,,; A(D, D).
If A(D, Diwi) < 6, we sayD is §-closeto k-wise independence. Otherwise, we days §-far. These
concepts are defined identically far, k)-wise independence, with . i in place ofDyy;.

2.2 The Fourier Transform and the Bonami-Beckner Inequality

The set of functiond : {0,1}" — R is a vector space of dimensiofi ih which the inner product between
two elementsf andg is defined agf,g) = 2—1n Yxeioan F(X)9(x). For eachS c [n], define the character
xs : {0,1)" - {=1,1} asys(X) = (—1)Ziss X, The set of 2 functions,{ys : S < [n]}, forms an orthonormal
basis for the vector space. This implies that any function{0, 1} — R can be expanded uniquely as
f(X) = Xscm f(S))(s(x), where f(S) = (f,xs(X)) is the Fourier coicient of f over setS. The p-norm

of fis|Ifll, = (z—ln xel0.)n If(X)Ip)l/p. Parseval's equality| f|Z = Sscry f(S)? follows directly from the
orthonormality of the basis.

For two functionsf, g : {0, 1}" — R, theirconvolutionis defined asf(* g)(x) = 2—1n Zyeo.n FAX-Y).
It is easy to show thaf\g = fg and f/:k\g = fgforany f,g: {0,1}" - R. Itis also easy to show that
[If = dllo < IIfllwllgllz, which is a simple special case of Young’s convolution iradidy

A powerful tool in Fourier analysis oveD, 1}" is the hyper-contractive estimate due independently to
Beckner [10] and Bonami [12]. The following is one form, peovin [12]:

Theorem 2.2. Let f: {0,1}" — R be a function that is a linear combination @ft : |T| < k}. Then, for any

even p> 2, [Ifll, < (4/p- l)kllfllz.

2.3 Characterizing k-wise Independence Using Biases

Up to a normalization factor, the biases are equal to thei€ocosficients of the distribution functiob.
More precisely,D(T) = 2—1nbiasD(T), for T # 0. Thus, we sometimes use the terms biases and Fourier
codficients interchangeably. The following well-known factkte biases t&-wise independence:

4



Fact 2.3. A distribution is k-wise independenf all the biases over sets € [n], 0 < |T| < k, are zero. In
particular, for the uniform distribution §, biagy (T) = Oforall T.

Fact 2.4. A(D, Diwi) > 5 MaXrcir,o<Ti<k biasp (T).

3 Testingk-wise independence

In this section, we study the problem of testing whether &itigion isk-wise independent af-far from
from k-wise independence. Our upper bound and lower bound rdsutissting are based on new upper and
lower bounds om\(D, D) in term of D's first k-level biases. We present our upper bounds in Section 3.1
and lower bounds in Section 3.2.

3.1 Upper bounds
In this section, we first prove an upper bound &D, Dyyi), then present our testing algorithm as well
as the sample and time complexity of our algorithm. For lyevet by = 35« biasp(S)| andb, =

\/ZISISK biasp(S)2. Note thatb, < by < /Mnxb, < n¥/2by.
The only previously known upper bound (D, Dkwi) is given in [4], where it is implicitly shown that
A(D, Diwi) < by. Our new bound is the following.

Theorem 3.1 (Upper bound on distanceA\(D, Dywi) < O((Iog nyk/2 \/Z|S|§k biasD(S)z). Consequently,
A(D. Diawi) < O((nlogn)¥'?) mas< Ibiasp(S).

Sinceb, is always smaller than or equal b3, our upper bound is no weaker than that of [4] up to
a polylogarithmic factor. However, for many distribution$ interest,b, is much smaller tham, (e.g.,
when all the biases are roughly of the same magnitude, ag icetbe of random uniform distributions, then
by = O*(by/n¥/2)).

The basic ideas of our proof are the following. We first opeiiatthe Fourier space to construct a
“pseudo-distribution’D1 by forcing all the firsk-level Fourier cofficients to be zeroD1 is not a distribution
because it may assume negative values at some points. Wedirent all these negative points by a series
of convex combinations dP; with k-wise independent distributions. In this way we maintaiat thil the
first k-level Fourier cofficients are still zero; on the other hand, we increase thehtse#} negative points
so that they now assume non-negative values. During theat@an, we distinguish between two kinds
of points which have negative weights: Light points whosenitaides are small and heavy points whose
magnitudes are large. We use twdteient types ok-wise independent distributions to handle these two
kinds of points. Using Bonami-Beckner’s inequality, westthat only a small number of points are heavy,
thus obtaining a better bound fa(D, Dywi).

Proof of Theorem 3.1The following lemma bounds thg-distance between a function and its convex com-
bination with other distributions.

Lemma 3.2. Let f be a real function defined on a domdhsuch that},,., f(x) = 1. Let Dy,...,D,
be distributions over the same domain Suppose there exist positive real numbeis.w, w, such that

D £ 1+2?:1Wi (f + X, wiDj) is non-negative for all ¢ D. Then||f(x) — D’(X)ll, < 2™ 3L w.

Proof. [|f(x) = D’(Q)ll, = | 2 wi(D’ = D)ll, < ', wilID” = Dill, < 2™ 3 wi. O



We first construct a real functioB; : {0, 1}" — R based orD but forcing all its firstk-level biases to be
zero.D; is defined by explicitly specifying all of its Fourier cheients:

0, if S+ 0and|S| <k

Di(S) =1 «
1(S) {D(S), otherwise.

SinceD1(0) = D(0) = 4, we havey,, D1(X) = 1. Note that in generdD; is not a distribution because it

is possible that for some, D1(X) < 0. By Parseval's equalityD — D1||, = 2—1n \/stk biasp(T)? = 2—1“b2.

Hence by the Cauchy-Schwartz inequality, we can upper bthetd-norm of D—D; as||[D—-Dq||, < 27"-by.
Now we define another functiobs : {0,1}" — R as

5,(S) = {D(S), 'S #0andiS| <k

0, otherwise.
By the linearity of the Fourier transforn;(x) + D»(X) = D(x). SinceD(x) > 0 for all x € {0, 1}", we have
D1(x) > —Da(x). By the Fourier transformPa(x)| = | S 14s<k biaso(S)ys(X)| < % Tigsi<k Ibiaso(S)] =
%b1. Hence the magnitudes 8f,(X)'s negative points are upper bounded-y, i.e. Do(X) > —3by.

By the linearity of the Fourier transform, if we define a fuootD’ as the convex combination @f;
with somek-wise independent distributions so tHitis non-negative, theDd’ will be ak-wise independent
distribution, since all the Fourier cfircients ofD’ on the firstk levels are zero.

If we use a uniform distribution to correct all the negativeights ofD;, then we will get an upper
bound almost the same (up to a factor p2Bas that of [4]. To improve on this, we distinguish betwega t
kinds of points wherd®; may assume negative weights: heavy points and light pdiets? = (2 +/logn)¥.
We call a pointx heavyif Dy(X) > Ab,/2", andlight if 0 < Dy(X) < Aby/2". For light points, we still
use a uniform distribution to correct them; but fechheavy point, say, we will use a speciak-wise
independent distributioblgcy(X), constructed by [2]:

Theorem 3.3. ([2]) For any z € {0,1)", there is a k-wise independent distributiorsdj-AX) over {0, 1}"
such that Wcn-A2) = Wéscm)l = Q(n k2, 2

Thus, we defind®’ by

D1(X) + Ab2Un(X) + X7 is heayWUscH-z(X)

D'(X) =
1+ by + Xsis heavyW

We selectw = 'S“szbl. SinceD4(x) > —%, one can check thdd’(x) is non-negative for both

heavy and light points. Hend®’ is ak-wise independent distribution.

Next we bound the number of heavy points. Note Dgtx) has only the firsk-level Fourier cofficients,
hence we can use Bonami-Beckner’s inequality to bound tblegtnility of |D»(X)| assuming large values,
and thus the total number of heavy points.

First we scaleDz(X) to make it of unitf,-norm. Definef(x) = E£Da(x). Then||f|, = ZDall, =

& \/7 Zxeoyr D202 = & \/Z—%H Y 1<is<k biaso(S)? = 1, where the second to last step follows from Parse-

val's equality. Now using the higher moment inequality nogthwe have, for evep,
eI

Prif(x)| > 1] < EX[ﬂp =5

2Note that, as shown by [13, 2], the support sizes of such nmigins are essentially optimal.



By Lemma 2.2||f[l, < (+/p- 1)k||f||2 = (vp- 1)k. Plug inA = (2+/logn) and p = logn, and w.l.0.g.
assume thap is even, then we have
(p_ 1)pk/2 < ppk/2 — (E)klogn — i

P gt 2

Pr[f(X)| > 2¢log¥? n] <

Therefore,

Pr[Dl(x) < —2(log n)"/z%] < Pr[Da(x) = 2(logn)/?b,/2"| < Pr[ID2(X)| = 2(logn)//?b,/2"]
= Pr[|f(3] = 2(ogn)*/?] < 1/n*.

In other words, there are at mosy/8K heavy points. By Lemma 3.2 we get (recall th@tippUgsch.2)| =
O(n“‘/zJ) andb; < nk2hy)

2" | SuppUsch-2)|

1 ’ k
§|D —Dj|, < Abo+ Z w(2) < (2+/logn)*by+ pr o

zheavy

by = (2+logn)*b+O (bz) = O((logn)?b,).

Finally, by the triangle inequality\(D, D’) = Z(|D - D’|l, < Z(|D - Dyl +[ID1 — D'|l,) = O((log n)*/2by).
o
Armed with Theorem 3.1, we are ready to describe our algoriibr testingk-wise independence. The

algorithm is simple in nature: it estimates all the fikdevel biases of the distribution and returns “Yes” if
they are all small. Le€Cy be the hidden constant @ (-) in the second part of Theorem 3.1.

Algorithm Test-KWI-Closeness(D,Kk,d)

FromD, draw a sef) of samples of siz€Q| = O(klog n/5’2), wheres’ = W

For each non-empty subs®tc [n],|S| < k, useQ to estimatebiasy(S) to within an additive term of’.
If maxs |biasp(S)| < 26’ return“Yes”; else returrfNo” .

The analysis oTest-KWI-Closeness establishes the following theorem (full proof appears ipé&pdix A.1).

Theorem 3.4 (Testingk-wise independence upper bound3esting k-wise independence can be solved
using Qk(logn)<*1nk/62) = O*(Q—Z) samples from the distribution and in timé((‘%zz—k).

3.2 Lower bounds

In this section, we give a lower bound on the sample compl@fibur testing algorithm. However, we first
motivate our study from the perspective of real functioningel over the boolean cube.

The upper bound given in Theorem 3.1 naturally raises tHeviolg question: Can we give a lower
bound onMA(D, Dyi) in term of the firsk-level biases oD? The only known answer to this question we are
aware of is the folklore lower bound in Fact 24(D, Dyi) > %maxlg|5|gk|biaag(8)|. This bound is too
weak for many distributions, as demonstrated in [4], whaegafamily of distributions that have all the first
k-level biases at moﬁ)(nl—l/s), but are at least/R-away from anyk-wise independent distribution. Their
proof is based on a min-entropy argument, which seems to walgkfor distributions with small support
size.

In fact, this statistical distance lower bound problem carpbt into a more general framework. Given
a functionf : {0,1}" — R, can we give a lower bound dff||, if only the firstk-level Fourier cofficients
of f are known? HausdfirYoung’s inequality givegf||, > Ifll., which leads directly to the bound we just



discussed (Fact 2.4). We develop a new approach to lowerddpiun in terms of f's first k-level Fourier
codficients (details appear in Appendix A.2). Our method worksgieneralk and is based on convolving
f with an auxiliary function and then applying Young'’s conwtidn inequality. Applying our lower bound
result toA(D, Diwi), we get:

Theorem 3.5(Lower bound on distance)Given a distribution D ovef0, 1}", define a family of functions
Dy € RI%Y" such that for all ge Dy, the Fourier cogficients of g satisfy:

0, ifS=0or|S| >k
a(S) = ¢sign(biass(S)) if |S| < k and biag(S) # 0
+1, if |S| < k and biag(S) =0,

where sigifx) = 1if x > 0, sign(x) = -1 if x < 0 and sigr{x) = 0 otherwise. Then for all g Dy,

3 Ysi<k Ibiaso (S)|
A(D, Dkwi) > 22|S|_|‘|(g||m ©

Under this framework, we prove the following lower bound astahces between random uniform dis-
tributions andk-wise independence, which is the basis of our sample lowmgndboesult, Theorem 3.7 (The
proof is deferred to Appendix A.3). Note that by Theorem 3hils bound is almost tight (see Proposi-
tion A.16 for details).

Lemma 3.6 (Random Distribution Lemma)Let k > 2. Let Q = '\r/]';’zk < 2™ withs < 1. If we sample

uniformly at random Q strings fronf0, 1}" to form a random multiseR and let Uy(X) be the uniform
distribution overQ, then for all large enough Rrg[A(Ug, Dkwi) > 0.2285] = 1 - o(1).

Theorem 3.7 (Sample lower bound)For k > 2 and§ < 0.228 Testing k-wise independence requires at
least|Q| = Q(2 - (2)'7") samples from the distribution.

Our lower bound result rules out the possibility of polynaitime testing algorithms fok = w(1).
To give an idea of how Theorem 3.7 follows from Lemma 3.6, rib&# U, is k-wise independent, and by
Lemma 3.6Uq is far fromk-wise independent. But any algorithm makingyQ) will not see any collisions
and thus will fail to distinguish between these two disttibns.

4 Testing (e, k)-wise independence

In this section, we study the sample and time complexity sfinjjuishing whether a distribution is, k)-
wise independent or is at distance at leé&fsbm any §, k)-wise independent distribution (as defined in 1.1).
We call this testing problemeEt(e, k)-iNnpEPENDENCE tO Within distances (we drop the reference tbwhen-
ever it is clear from the context). On one hand, comparedsiingk-wise independence, we prove that
exponentially fewer samples féige for Test(e, k)-inpEPENDENCE. On the other hand, this exponential im-
provement does not carry over to the time complexity; we stiawit is unlikely that there is a polg) time
algorithm for Test(e, K)-INDEPENDENCE.

We begin by describing our sample complexity results: wielgting k-wise independence requires
Q(nk;zl) samples, we show thﬂ(%) samples sfiice for testing £, k)-wise independence. In particular,
the sample complexity of &1(e, k)-iNnDEPENDENCE iS ONly poly(/ed), even for the case whdo= w(1) and
€,6 = n"°W, Specifically, we show that:

Theorem 4.1(Sample upper bound)For any0 < €, < 1, Test(e, k)-inpEPENDENCE tO Within distances can

be solved usingQ| = o(ke'g’gzn) samples from the distribution D.




Theorem 4.2(Sample lower bound) For € > ﬁl,r O<6< % — ¢, any tester solving est(e, K)-INDEPENDENCE

_ . . _ +klogn L .
to within distance requires at leasiQ| = Q (—(M) NTrETET) samples from the distribution.

To prove the sample upper bound Theorem 4.1, we prove aotethiip between dst(e, K)-INDEPENDENCE
and the problem of distinguishing ag k)-wise independent distribution from one that is not ewe€nk]-
wise independent, for somé > ¢ > 0 (see definition 4.5 for a formal statement). For the latteblem, we
simply compute the minimura Such thaD is (€, k)-wise independent, and compar®’e ande’.

To obtain the lower bound, we study the minimum support ofgrithution D which is , k)-wise

independent, and show it {3 zk'& ; the rest of the proof is similar to the proof of Theorem 3.7l(f
e?log(1/e)

proofs appear in Appendix B).

We now turn to the time complexity result. In contrast to tlesipive result for sample complexity,
we show that the time complexigannot bepoly (n/e6) for k = ®(logn), under the following conjecture
regarding the hardness of finding a hidden clique in a randphg In the following, let = t(n) be a
nondecreasing function ofso thatt(n) > Ig® n (the biggert(n), the stronger the conjecture and our result).

Conjecture 4.3(HC-Fnp[t]). Forn> 0, let G be a random graph on n vertices generated by the fatigwi
processGn 12t connect each pair of vertices with probability2, then choose a random set of t vertices,
and interconnect these vertices to form a clique (calledhigelen cliqu¢. Then there is no randomized
poly(n) time algorithm that, for all n, given G, outputs a clique desit, with success probability at least
1-1/n.

We discuss this conjecture in more detail in Section 4.1uAs8g the conjecture, we prove the follow-
ing theorem on time complexity ofe¥r(e, K)-INDEPENDENCE.

Theorem 4.4 (Time lower bound) Assume conjectureiC-Fino[t(n)] holds for some(n) > Ig3n. Let

k = algn for a constantr < 1, € = 2":]%2”, and¢ = %. Then there is ngoly(n) time algorithm that
solvesTEest(e, K)-INpEPENDENCE tO Within distances, even given access to any polynomial number of samples
from the distribution.

The proof of the theorem appears in Section 4.2. Note thahéabove settings g§r(e, K)-INDEPENDENCE
can be solved im°® = 20008° time, and thus it is not a priori clear whether one can prowh fiardness
result under a more standard assumption, suéhasP.

To prove our results on the sample and time complexity mfr(E, k)-inpEPENDENCE, We Study a closely
related problem. Specifically, we consider the problem sfifjuishing between a distributidd that is
(e, K)-wise independent and a distribution that is not ewepkj-wise independent fot’ > € > 0. ltis
somewhat easier to obtain upper and lower bounds for ther latbblem from which we can deduce the
bounds on the original Ekt(e, k)-inpEPENDENCE problem. We define the new problem below and describe its
relation to Test(e, K)-inpEPENDENCE; the proof of the relation is deferred to Appendix B.1. As timmed in
the preliminariesD. k) denotes the set of alé(k)-wise independent distributions.

Definition 4.5 (Test(e, k)-vs-(¢’, k)-INnDEPENDENCE). LetQ < € < € < 1, and D be a distribution ovef0, 1}".
We call atester for Est(e, k)-vs-(¢’, K)-INDEPENDENCE an algorithm that, given a set Q {0, 1}" drawn i.i.d.
from D, outputs: 1) “Yes”, if De D k); and 2) “No”, if D ¢ D 1y. The tester may fail with probability at
mostl1/3.

Lemma 4.6. Let0 < ¢€,6 < 1. If there exists a tester foFest(e, k)-vs-(e + €6, K)-INDEPENDENCE USINQ
Q = Q(n,k, €,6) samples and = T(n,k, ¢, 6) time, then there exists a tester fbest(e, K)-INDEPENDENCE tO
within distances using Q samples and T time.

Conversely, if there exists a tester fhrst(e, k)-inpEPENDENCE tO Within distances using Q samples and
T time, then there exists a tester fhust(e, K)-vs-(e + 6, K)-INDEPENDENCE USINg Q samples and T time.

In the rest of the section, we discuss the plausibility ofttlielen clique conjecture 4.3, and present the
proof of the Theorem 4.4 based on the conjecture.
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4.1 The Hidden Clique Conjecture

The problem of finding a hidden clique in a random graph has b@en since the works of [18, 23]. For
t = o(+/n), there is no known polynomial time algorithm that finds eee(t + €) log, n clique, for any
constante > 0. Whent > Q(+/n), [5] and [15] exhibit polynomial time algorithms that dodihe hidden
cligue of sizet.

Conjecture 4.3 is a generalization of the conjecture of treliess of the problem of finding a {1
€) log, n clique in a random graph fro@n 1/2 = Gn1/20 (i.€., withoutinserting any hidden clique) [20, 18].
This problem is a long-standing open question raised by (&2 also the survey of [16] and the references
therein). Although a random gragh 1,2 has a clique of size (20(1)) log, n with high probability [6], there
is no known polynomial time algorithm that finds even a cligfiesize (1+ €) log, n for constante > 0 (a
simple greedy algorithm finds a (e€) log, n clique, w.h.p.). The failure to exhibit such a polynomiahé
algorithm led to the conjecture that there is no algorithrie &b find a (1+ €) log, n clique in polynomial
time [18, 20]. Furthermore, the problem of finding a cquu&s'{zfe% log, n in a random graph has been
proposed as a “hard problem” for cryptographic purposek [20

4.2 Time complexity lower bound: proof of Theorem 4.4

Below we show that if conjecture HCep[t] holds, then the running time of any tester farsT(e, k)-vs-
2
(¢’, K)-INDEPENDENCE iS super-polynomial im for k = aIg n, for any constani < 1, ande = % =nO0),
¢ = /9 — n~OW), The theorem then follows by applying Lemma 4.6.
To prove the theorem, we first prove that the conjecture H@fg implies the following conjecture on

the hardness afecidingwhether a hidden clique is present or not in a random grapb.cohjecture is also
parametrized by the minimum size of the hidden cligue t(n), a non-decreasing function of

Conjecture 4.7(HC-Decmg[t]). Forn > 0, let G be arandom graph on n vertices that is generated viweeit
Gna/2 Of Gnaj2v, Where t > t(n) may be chosen adversarialy. Then there is no polynomial aiigxerithm
that for any n, given G, can output whether G came f@i,2 or Gn1/2v, With success probability at least
1-1/nd.

We show in Appendix B.4 that if HCiko[t] holds, then HC-RBcmg[t/3] also holds.

Now, to prove the theorem, it is ficient to give a reduction from the problem of distinguishiregween
Gm1/2 and Gm12v to the problem Est(e, k)-vs-(¢’, K)-INDEPENDENCE, Wheret” > t, m = 2l = @),
€= %92” € = t(”;:—n/e) Let7 be a tester that decides whetlize D,y or D ¢ D x with error probability
< n~* (we can amplify the success probability by running the tegtéor O(logn) times, each with a new
set of sampleg)).

Suppose we are given a grafton m = 21 vertices, generated either \Bn1/2 OF Gm1/2t(m)- LEtA
be the adjacency matrix @ with the diagonal entries set randomly to 0 or 1. From the m#re Mmym,
we construct a new matriB € My, by appendingh — m columns to the right, where each new entry is
randomly chosen frort0, 1}. We view matrixB as describing a distributioDg : {0, 1}" — [0, 1] defined to
be uniform on the set of therows of B: Dg(x) = B2 'whereB; is thei™ row of B.

We claim that, with high probability, iG € Gm1/2, thenDg € D k), and, conversely, iG € Gmi/ov,
thenDg ¢ D k. These properties immediately imply the reduction to tistetefor Test(e, K)-vs-(€’, K)-
INDEPENDENCE: generate the sample 3@tby drawing samples according the distributibg and feed it to
the tester. If the tester returns “Yes” (i.&g € D), returnG € Gm12. Otherwise (i.e.Dg ¢ D¢ ),
returnG € Gm1/2.4m)-

Next we prove that if5 € Gm1/2 then w.h.p.Dg € D), and if G € Gm1/24m) thenDg ¢ D¢ iy. T
simplify the argument, for a matri®, we define a parametgg(B) that roughly corresponds to the minimum

€ such thaDg is (€, k)-wise independent:
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Definition 4.8. Let k be such thal < k < n. For a matrix Be Mn({0,1}) andV € {0, 1}%, we define
a (k, V)-repetitionto be a set of distinct columns € {i,i»,...,ix} and a set of distinct rows R, such
that R= {r € [m] | Byi,Bi,... B, = V}. We define gB) to be the maximum value {®/m, over all
(k,V)-repetitions for all choices ¥ € {0, 1}*.

Note that when gB) > 2 - 27, the minimun for which Ds € Dz is € = gk(B) — 27X

Now, on one hand, & € Gm1/2, thenBis a random A matrix, and by an easy union bound calculation,
0k(B) < 590 with probability at least O((Ze/k)k) > 1-n?. Thus, sincay(B) > 1/m=2-27K we

(k-lg m)m
2
conclude thaDg € Dy k), Wheree < (k_ké]%q —okg2lon

fail.
On the other hand, & € Gm 1,2, thenB contains a clique of sizeé > t(m) and thus ak, 1¥)-repetition
Y(Vit?z)lRl > 1M1 Nimplying thatge(B) > D=1, ThusDg ¢ Dy, Wheree’ = -1 _ ok - 0'/22
n(I
nv_°
The total error probability is at most* from the tester, plus—* from the above reduction. This finishes
the proof of the Theorem 4.4.

. This is the only part where the reduction can
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In this section we provide the omitted details from Section 3
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A.1 Testing algorithm and its analysis

In this section we will present our testing algorithm in dletaRecall thalCy denotes the hidden constant in
Theorem 3.1, i.eA(D, Dywi) < Ck(nlog n)¥'2 maxs.o si<k [biasp (S)|.

We will use the following algorithm to estimate the bias ofistiibution D over any non-empty subset
S with error parametes.

Algorithm Estimate-Bias(D,S,k,¥8)
Setm = O((klogn)/52).
Setnggq = O.
(Assume the sample set@= {X1,..., Xm})
Fori=1tom
If @jesX =1
Nodd = Nodd +21-
. No

Outputbiasy(S) = =2 - 1.

Lemma A.1. Let bias(S) be the bias computed b§stimate-Bias(D,S,k,s8), and biasy(S) be the
expected value of big$S) (i.e., the bias of distribution D over S). Then with probapiht leastl — 3_#

Ibiaso(S) — biaso(S)| < 6.

Proof. Let nogq and neven be the number of strings of odd parity and even parity, respdy, over S.
Without loss of generality, assume thaitsy(S) > O (otherwise replac@gqq With Neyenin the following
argument). Define the indicator random variablegor i = 1,...,m, such thal; = @,-ESX'J.. It is clear

thaty; are 0’1 random variables an [xi] = nogge/m > 1/2. Now applying Chern bound toy; gives the
desired result, sindeiasy(S) = 2E [xi] — 1. o

Now we are ready to describe the algorithm of testing closetek-wise independence, which (implic-
itly) usesEstimate-Bias as a subroutine.

Algorithm Test-KWI-Closeness(D,Kk,8)

’ J
Setd’ = T mlognF2-

Setm = O(klogn/s'?).

For each non-empty subs®tc [n] of size at mosk
Setngqy(S) = 0.

(Assume the sample set@= {Xi,..., Xm})

Fori=1tom
For each non-empty subs@tc [n] of size at mosk
If @jgsxlj =1

Nodd(S) = Nodd(S) + 1.
For each non-empty subs®tc [n] of size at mosk
bias(S) = Zew _ 1,

SetA = Cy(nlogn)¥/2 maxs |bias (S)!.
If A < 6.

accept
Else

reject.

Next we prove the correctness Dést-KWI-Closeness(D,K,d).
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Theorem 3.4.Let D be a distribution ovefO, 1}". If A(D, Dywi) < leggnﬁ thenTest-KWI-Closeness
accepts with probability at leagy/3; If A(D, Dywi) > 6, thenTest-KWI-Closeness accepts with probabil-
ity at mostl/3. Furthermore, the sample complexity Bfst-KiWI-Closeness is O(kCy(log n)<*1nk/62) =
O*(Q—z), and running time offest-KWI-Closenessis O*(r(‘s—zzk).

Proof of Theorem 3.4The running time and sample complexity analysis is stréogiard. IfA(D, Dywi) <
W, then by Fact 2.4biasp(S) < W for every 1< |S| < k. By Lemma A.1 |bias(S) —
biasy(S)| < W with probability at least 1- 3—# Thus union bound gives, with probability at least
1-Mnkzx > 2/3 (sinceMpk < n¥), |biasy(S)-biasp(S)| < W holds for eact$. This implies that,
for every non-emptys of size at mosk, Cy(nlog n)¥/?|biasp(S)| < 46. Therefore, the algorithm accepts.

If A(D, Diwi) > 6, by Theorem 3.1Cy(nlog n)¥/? maxs.e,si<k [0iaso(S)| > 6. A similar analysis shows
that with probability at least/3, Cy(nlog n)</2 MaXsg,is<k |IDIasH (S)| > %6 and hence the algorithm rejects.
i

Note that for constark, Test-KWI-Closeness gives an algorithm testinkfwise independence running
in time sublinear (in fact, polylogarithmic) in the size betsupportl = 2") of the distribution.

A.2 New lower bounds forA(D, Diwi)

In this section, we will develop a new framework to prove loweund on the distance between a distribution
andk-wise independent distributions and apply this method tw@Theorem 3.5. In fact, our techniques
developed here may be of independent interest: We give aower lbound on thé;-norm of a function

f 1 {0,1}" - R in terms of f’s first k-level Fourier cofficients. Our method is based on convolvifigvith

an auxiliary function and applying Young’s convolution duslity:

Theorem A.2(Young's convolution inequality)Let1 < p,q,r < oo, such that; = % + é — 1. Then for any
f,9:{0, )" = R, [If = gllr < [Ifllplldllg.

Given a distributiorD over{0, 1}". Let D’ be thek-wise independent distribution which is closestp
i.e.,A(D, Dywi) = A(D,D’) = %HD — D’||,. Definef(x) = D(x) — D’(x). Then we have

f(S) = 2—1nbiasD(S), for all non-empty subsefS with |S| < k,

and

1 _
AD.Dawi) =5 > 11091 = 2" fl,
xe{0,1)"

We will try to get a lower bound oA(D, Dywi) by bounding the/1-norm of f(x) from below.

Theorem A.3. Let f : {0,1)" — R. Define a family of functiongy ¢ RI®Y" such that for all ge Fg, the
Fourier cogficients of g satisfy

0, ifS=0or|S|>k
a(S) = {sign(f(S)) if S| < kandf(S)# 0
+1, if |S| < k and f(S) = 0.
Then for all ge 7y, A
isi<k | F(S)I
Il > 2B 27,
9l

14



In particular, .
2isi<k [ T(S)]

Il > = .
Minger, Ilgll.

Note that for allS such thatf(S) = 0, we have the freedom of choosing eithelr or —1 to minimize
lldll.. and get better lower bound.

Proof. Settingp = 1, then Young’s convolution inequality (Theorem A.2) givés any 1< r < oo, and
any f,g: {0,1}" - R,
If = gl

gl

Now we define functiorg as in the Theorem and defihéx) = (f = g)(x). Then by the convolution theorem,

il >

A(S) = 1f(S), if Sis non-empty an¢S| < k
o, otherwise.

By the definition of the Fourier transform,

IhOJT =1 ASs(l = | Y If(S)ks(x)
S

|SI<k

< ) If(9) =),

ISI<k

since for allS ¢ [n], xs(0) = 1 and the evaluation of any function at 0 is simply the sum btaFourier
codficients. Thus|hll, = h(0) = X5« |f(S)I. Now taker tending to infinity, we get

NS
1l > 2isi<k 1 f( )I. .

ll9ll..
Thus we get a lower bound fa{(D, Dywi):

Theorem 3.5. Let D be a distribution ove(0, 1}", and let¥y be defined as in Theorem A.3 but replacing
£(S) with bias(S). Then for all ge Fg, A(D, Diaui) > W

If all the low level Fourier cofiicients off are non-zero, then there is a uniqge F4 that corresponds
to f. Otherwise, there may be magis in 74 all correspond tof. If this is the case, for the purpose of
proving lower bound, we may pick the one with the smallesnitffinorm. On the other hand, there are
many diferentf’s that correspond to the sameA nice property of functiory is that only the firsk-level
Fourier codicients are non-zero and all these fméents are if—1, 1}. By the monotonicity of norms and
Parseval’'s equality, we hayig|l.. > [lgll. = /X1 <5<k 1 = +/Mnk. And a trivial upper bound iggll.. < Mnk.
Note that if||gll. < Mnk, then our new lower bound a&(D, Dyyi) probably will give a much better bound
than the trivial lower bound(D, Dywi) > % maxs |biasp (S)|. Next we will provide some evidence showing

the strength of our new lower bound: among§2 = 2001 possibleg's, at most an exponentially small
portion of them may havigl|.. = Q(4/nM, k). Thus mosg's will give good lower bound.

Theorem A.4. Letd be an M,k-dimensional vector with its )k components being(g)'s non-zero Fourier
cogficients, then for all - 0 and for all syficiently large n,

Pr [||g||m > 1.18Vc+ 1\/nMn,k] <2
derl-1,1}"ink

Proof. We will need the following simple Cherffictype tail bound (see Corollary A.1.2 of [6])
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Lemma A.5. Let %, 1 < i < m, be mutually independent random variables Witpx = 1] = Pr[x, = -1] =
$and set $ = Xy + -+ + Xm. Leta> 0. Then

a2
Pr|Sml > a] < 2e 2m,
Let x be an arbitrary element i, 1}". Then

Mn,k Mn,k

g0 = ) 8Ss (¥ = DY
i=1 i=1

where we defing; = 9(Si)ys,(X). Now if §(S;)’s are independent random variables uniformly distridute
in {1, )M« so areY;’s. Hence we can apply Lemma A.5 to bound the probabilitygX)] assuming

large values. Set = 1.18./(C+ 1)Mpxn > \/2-°°5Mn,k(cn+ n), thena > \/L Mnk(cn+n+ 1) and

Tog, e log, e
2 2 : i
as > mMn,k(cn + n+ 1) for all suficiently largen. Now Lemma A.5 gives

Mn, _ 2 B
Prllo(x)| > a] = Pr”ZizlkYi‘ > a] < 2e Mk < 27N 2N

Applying the union bound argument to all &trings gives

Prg[llgll. > a] = Prg[Ix € {0, 1)" s.1.19(x)| > &]
<2 o

A.3 Proof of the Random Distribution Lemma

For completeness, we restate the Lemma here.

Lemma 3.6 (Random Distribution Lemma)Assume that k- 2. Let Q = “:gék < 2" withs < 1. If we

sample uniformly at random Q strings frg 1}" to form a random multise® and let Uy(x) be the uniform
distribution overQ, then for all large enough Rig[A(Ug, Dkwi) > 0.2285] = 1 — o(1).

Proof. We will follow the lower bound techniques developed in theyimus section to prove this lemma.
However, for ease of analysis, we will use function§etent from those used in the previously. I3E(X)
be thek-wise independent distribution with minimum statisticédtdnce tdJq. Define

fa(¥) = Ua(¥) — D’(X).

Then we have A A
fa(S) = Ug(S), forallSc[n], S+ 0and|S| <Kk,

and
AUq, Diwi) = 2" I fqll,.

Definegg(x) : {0,1}" - R as

fo(S), if S #0and|S| <k,
0, otherwise.

8a(S) = {
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Also define the convolutiohg(X) = (fq * gg)(X), then

ho(S) = fo(S)2. if S#0and|S| <k,
A= 0, otherwise.

by the convolution theorem. Applying Young’s inequalityes

lIhalls

lgalle

We will prove the Lemma 3.6 by proving the following two lemsrizounding|hgll.. and||gqgll.., respectively.

Lemma A.6. For all large enough nPrg [||hQ||m > 0. 99927”5] 1-o0(2).

Ifall: >

Lemma A.7. Let% < Q < 2", Then for all k> 2 and large enough rPry [||gQ||m < 3 '\gk] -
1-0(2).

Now we prove the Lemma assuming Lemma A.6 and Lemma A.7: Byitien bound, with probability
1-0(1), both the lower bound dihg|l.. and the upper bound ¢fg|l.. hold. Then we have

1 09997 M k
A(Uq, Dxwi) = 2n||fa||1 z 5 T > 0.228, | —=¢

219 M“k”

as desired. O

In the following proofs of Lemma A.6 and Lemma A.7, we will agse that all the elements in multiset
Q are distinct. This will not fiect our results, since by the Birthday paradox, the probalif seeing a
collision inQis o(1).

A.3.1 Proof of Lemma A.6

We prove the lower bound dihg|l., by computing the expectation and variance|lnll... Then a simple
application of Chebyshev’s inequality gives the desiredriab The calculations are straightforward but
rather tedious.

Proof of Lemma A.6By the definition of Fourier transform

ha®l =| > ha(S)s()| <

1<IS|<k

D S = D) halS) = he(0).

1<IS|<k 1<IS|<k

Therefore

hall, = he(@) = > fa(S)*

1<IS|<k
Then for all non-empty subs&with |S| < k,

)= % . Uakrsi)

xe{O 1n

= 56 =S ks

XeQ

17



and

WS = 5 > Uars(9Ualis()
X,y€{01}

ZZan 2. xs(rs();

X,YeQ

To facilitate the calculation of the expectation and vateanf||hgl|.., we first state two simple technical
claims.

Claim A.8. Let x and y be twadlistinctstrings chosen uniformly at random frof@y 1}, then for all n> 1,
X + Yy is equal to every element {8, 1}" \ {0"} with equal probability.

Proof. First we fix anx, then the majy — x + y is a one-to-one correspondence betwggid}" \ {x} and
{0, 13"\ {O"}. Then notice thay equals every element {0, 1}" \ {x} with equal probability. O

Claim A.9. Let xy, X and ¥ be fourdistinctstrings chosen uniformly at random froi@y 1}". Then for all
n>2 Xx+y+ X +Y is equal to every element {0, 1}" with equal probability.

Proof. Letz = x+Yy. By claim A.8,z; equals all strings ifi0, 13"\ {0"} with equal probability. Them + X’
equals all strings 0, 1}" \ {x'} with equal probability. Bui’ takes all values 0, 1}" equally often, so is
21+ X = X+Yy+X. Thereforex+ y + X' + Y is uniformly distributed ovet0, 1}". m|

Proposition A.10.
Mn k Q -1

Eallfall-] = 2o~ 37

).

Proof.

Eallhell.] = E

D fa(S)?

1<IS|<k
>0 xs(Mws(y)

1<|S|<k x,yeQ

M, 1
o A= DD SCIL

| 1<|S|<k X,ye@,x#y

1
led Eq

Mnk 1

Eq Z Z Z xs(@
52 22nO2
~2 ”Q 29'Q [ 1<IS<k xeQ 220" z—xeQ

Mp Mn -1
B 22”g " Z?fgz e 0 s (@)

By Claim A.8,zis uniformly distributed ove(0, 1}" \ {0"}. Since for anys # 0, 3,010 xs(2) = 0, hence
226{01 (o )(5(2) -1, andEze{o’l}n\{on} [/\(5(2)] = —ﬁ. Then we have

M —
nk(l_Q 1
22nQ 2n-1

This completes the proof. m|

Ealllhall.] =

).
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Proposition A.11.

M2 _
2] _ nk Q 1
Eq[llhal2] = e o

2
I\/lnk Q_l

- 24n(’22(:L T on_1q

Mn,k(Q - 1)2
24n(2n _ 1)2Q2

2Mn,kQ(Q - 1)
24nQ4

2M,
24nQ’§<1 ~o(1)).

2Q-2)
2n-1

)+ 1 ) -

) +

Proof.

Ealhal?| = Ea|( D) fa(S)?)?

1<ISI<k

fa(S)* fa(T)?
1<IS|<k 1<|T<k

DU DL D xstxrywr(X +Y)

1<ISI<k 1<(TI<k x,yeQ X,y €Q

1
= o 4

Then one can distinguish between 1H&elient cases and calculate their expectations respectiyomit
the details here. o

Therefore we have

Var(ihall.) = 2%%(1 ~o(1))

and

1 +/2Mnk

o(ihall.) = 55~ (1~ o).

Finally we apply Chebyshev’s inequality, which states foatanyt > 0 PrjX — E[X] | > to(X)] < tlz to
|Ihgll. to finish the proof of Lemma A.6. O

A.3.2 Proof of LemmaA.7

The proof of Lemma A.7 is more involved: A simple calculatisimws thagg(x) equals a summation of
Q independent random variabl¥s, . . ., Yo determined by the random subsgtwhere—Mk < Y; < Mp.
However, a direct application of Hfiding’s bound to the sum can only givéigall. = O(Mnk), thus
A(Ugq, Diwi) = Q(é), which is too weak. We improve on this is by noticing that Wagiance ofy; is small,
thus Bernstein’s inequality [11] gives a better bound. Tdpgroach gives us the desired result but also
imposes a restriction that= O(1/n). We overcome this fliculty by the observation that for most of the
random variablegy;| is much smaller thaM,k, as implied by Bonami-Beckner’s inequality. This enables
us to distinguish between two kinds ¥fs: ThoselY;| are small and thosg;| are large, and sum them
separately. Followings are the detalils.
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Proof of Lemma A.7Fix an arbitraryx € {0, 1}". Then

= > fa(Shs(
1<IS|<k

1
=5 D, 2, YaWs(xs®)
1<|S|<k ye{0,2)"

— i ) Dos(c+)

1<IS|<k ye@

~ 550, O, xs(cey)

yeQ 1<|S|<k

1
= Zn_Q Z YX(Y),

yeQ

whereYy(y) = Y1qsi<k ¥s(X+Y). Note that the summation is ovixdependentandom variable¥(y) in Q.

We will distinguish between two kinds of strings: We call grgj y is x-badif |Yy(y)| > Mn/n*t and
x-goodotherwise. Then we can do the summation over strings that-goed and strings that arebad
separately:

Qo= > M+ DY)

yeQ, y is x-good yeQ, y is x-bad

DY) >

yeQ, y is x-good yeQ, y is x-bad

IA

+

Next we define a seB = {w € {0,1}" : | X145k xs(W)| > '\:{?’f}. This definition gives us the following

simple characterization of strings those arbad by observing thaB is just the set of all strings that are
0"-bad.

Claim A.12. A string y is x-bad if and only if x y € B, therefore y idadfor exactly|B| many of strings.

Proof. The first part follow directly from the definitions ofbad and seB. For the second part, note that
for each elementv in B, yis bad fory + w. O

Our next claim shows that in fact only an exponentially smpalttion of all the strings iff0, 1}" are in
8B, and hence each strings bad for only an exponentially small portion of all stringg0, 1}".

Claim A.13. Let k> 2 be a constant natural number. Then for all large enough n,

23

1B < 202" ©

Proof. Consider a functiorF(X) = Y15« xs(X). By Parseval's equality|F|l, = y/Xigsi<k1 = /Mnk.
SinceF has only the firsk levels Fourier coficients, Bonami-Beckner’s inequality applies. Hence weshav
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for all even numbep > 2

= PR > ek

>
. ExIFP]
R

nit

R
\/Mn
“IIFIL,)P

(p 1)""/2
(s

nit

pk/ 2

vV Mnk

nit

_23
Now takep = (2—%)2/‘(, and w.l.0.g. assume thatis even, we have RiiF(x)| > %} < (%)”l * for all
suficiently largen. This completes the proof. m|

Since each string s only bad for a small number of strings, if we choose unifigrat randomQ < 2"/3
strings to form a sef, then almost surely there is no strirgn {0, 1}" witnessing more than one stringdh
that isx-bad.

Claim A.14. Let Q be a random subset constructed by uniformly at random chgo® < 2"3 distinct
elements fronf0, 1}". Then with probabilityl — o(1), for each xe {0, 1}", there is at most one string iIQ
which is x-bad.

Proof. We will bound the probability that there is anwhich has at least two strings i@ that arex-
bad. Fix an arbitrary € {0,1}". The probability that there are two strings y» € Q which arex-bad is

(9555 < QZ'Z‘(?'Z = (). We finish the proof by applying a union bound argument otexa {0, 1)". ©

If we apply the Ho&ding bound directly to the sum of strings that argood, we would not get the
desired result. Instead, we will employ the following Beeng's inequality [11], which gives a better bound
on the sum of independent random variables when we have algmowi on the variance of the random
variables being summed.

Theorem A.15(Bernstein’s inequality) Let X, . .., Xg be independent real-valued random variables such
that|X;| < C forall1<i < Q. Leto? = (—12281 Var(X;). Then for any t- 0

2+ 2cr

Pr[|ZX. E[X]|>Qf <e

We will first compute the expectation and variance’gy) over the universe (name{®, 1}"). Then due
to the fact that the number ofbad strings is exponentially smaller than the cardinaityhe universe, the
expectation as well as the variance of the set-gbod strings are almost identical to those of the universe.
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Indeed, by direct calculation

D xsWy)

1<IS|<k

= > Elskl= ) 0=0,

1<IS|<k 1<IS|<k

Ey[Yx(Y)] = Ey

and

[ 2
Ey[Yx)?] = Ey [ > )(S(Y)]

1<IS|<k

=Ey| D, xstr®)

| 1<(STTI<k
=Ey| D) xsOP[+Ey| D D xs®)| (S 2SAT)
[ 1<[S<k 1<IS|<k S'#0
= Mn’k + O
= Mn’k.
Since for allx,y € {0,1}", 0 < |Yx(Y)| < Mpk, we have
Mp2"
|Ey is x-good [YsW]| < L = 0(1),

1- 58 1-23
2K (n k)

and

Mp k2"
Valyis x-good(Yx(¥)) < % - 0(1)2 = (1+0(1))Mn.
on_onk
Now we are ready to put it all together. With probability-J1o(1), for all x € {0, 1}" there is at most
one x-bad string inQ. We will call such random setgood Conditioned on this, the contribution of sum
over x-bad strings in (A.3.2) is at modl,x. We then apply Bernstein’s inequality to the sum oxeyood

strings witho? = Mk(1 + 0(1)),C = h:l".ik- By settingt = ,/2.02In ZMQj“” < 1.19, /¥ “and note that for

Q
all Q > Myk/n, Ct = o(c?), we have

DY)

yeQ, y is x-good

1
Pr > Qt| < 272700 — o(2),
Qis good _Q‘_ (zn)

The union bound over ak € {0, 1}" implies that, with probability + o(1), for all x

1.19M M
2"ga(¥)I < ngnQ+ "k <219, /%

i.e. with probability 1- o(1),

219 [Mpyn
2n Q

This completes the proof of Lemma A.7. m]

I9all <

22



A.3.3 Tightness of the Lemma 3.6

Our lower bound on the statistical distance between a rardisiribution andk-wise independent distribu-
tions is almost tight due to the following proposition

Proposition A.16. Let S be a random multiset formed by uniformly sampfix(g(log n)<t1n*/62) times
from {0, 1}". Then with high probability, | is 5-close to k-wise independent.

Proof. By Cherndtf bound, for evens C [n], |S| < k, S # 0, with probability at least ( ﬁ), Ibiasys(S)| <
O(5/(nlogn)¥/2). By a union bound argument, this holds for Sllith probability at least 23. Applying
Theorem 3.1 gives the desired result. m|

A.4 Sample lower bound
For completeness, we give a detailed proof of Theorem 3.7.

Proof of Theorem 3.7We will show that if the algorithm makes too few queries, titarannot successfully
distinguish between two distributions far apart with higblmbility. Consider the following two distribu-
tions. The first one is the uniform distributidsy, over{0, 1}". Obviously,U, is k-wise independent for all
1 < k < n. The second distributioblq is a uniform distribution over a multis&, whereQ@ is constructed

by uniformly and randomly sampling = (%3(3)&21)2 < 0.228 “,fg’; times from{0, 1}". By Lemma 3.6,
with probability 1- 0(1), Uq is at leasts-far from anyk-wise independent distribution. Now It be any
algorithm that make® = o( VZ) = o(%(E)k;zl) queries. LeDy, andDy,, be distributions over sample sets
of size Q that algorithm#A obtains fromU,, andUg respectively. By the Birthday Paradox, with probabil-
ity 1 — o(1), all the strings queried frortd,, are distinct and all the strings queried frddg, are distinct.
Conditioned on this, the statistical distance betwBgpandDy,, is zero, since both of the distributions are
uniform distributions ovemdistinct strings randomly selected frdf 1}". Therefore, A cannot distinguish
these two distributions with success probability boundedyefrom 1/2 by a constant. By the union bound,

the total probability thaiA succeeds is at mo§t+ 0(1). This completes the proof. m]

B Testing (e, k)-wise independence

In this section we provide the omitted details from Section 4

B.1 Relation of Test(e, k)-inDEpENDENCE and Test(e, K)-vs-(€’, K)-INDEPENDENCE

Here we prove the Lemma 4.6. We break down the lemma into teagsitions and prove each separately.

Proposition B.1. Let0 < €,6 < 1. If A(D, D)) > 6, then D¢ D(..51. Hence any algorithm for solving
Test(e, K)-vs-(e + €6, K)-INDEPENDENCE Can be used to solVEesT(e, K)-INDEPENDENCE tO Within distances with
the same sample and time complexity.

Proof. We prove the contrapositive: thatlf € D.¢s5k), thenA(D, D) < 6. Supposd is (e+ed, K)-wise
independent. Then construct a new distributirthat is €, k)-wise independent and such tligD, D’) < 6
as follows:
D - { D, with probability 1- 6
~ | Un, with probability §

Clearly, A(D, D’) < 6. Also, for anyk indicesi; < iz < ... ik, and any vectow e {0, 1}¥, we have that

Pr [Xilxiz...xik:V]—Z_k‘S(e+e§)(1—6)+0-6$e

XD’
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Now, to solve the problem ekr(e, K)-inpePENDENCE Of distribution D, simply invoke Est(e, K)-vs-(e +
€0, K)-INpEPENDENCE ON D. If D is such thatA(D, D k) > 6, thenD ¢ D5k and the tester for the
latter problem will report “No”. Otherwise, ID € D k), then the tester for the latter problem with report
“Yes”. i
Next we show how to reduce solvingsir(e, k)-vs-(¢’, K)-INDEPENDENCE t0 Solving TesT(e, K)-INDEPENDENCE
to within distances = € —e.

Proposition B.2. Let0 < e < € < 1. If A(D, D) < € — e then De D 1. Hence, any algorithm for
solving Test(e, k)-INDEPENDENCE tO Within distances = €’ — € also solvesTest(e, k)-vs-(€’, K)-INDEPENDENCE
(with the same sample and time complexity).

Proof. Let D’ € D be such that\(D,D’) < 6 = € — €. Then, for any indices; < i» < ...ix, and any
vectorVv e {0, 1}¥, we have that

XEE[Xilxiz"'Xik =V]—2_kS(XEB,[Xi1Xi2---Xik :T/’]+6)—2‘k§e+6=e’
and
XErD[Xilxiz---Xik :T/’]—Z‘kz (XEB, [xilxiz...xik :T/’]—&)—Z‘kz —e—0=—¢

Thus,D € D¢ .

To conclude, we solve B1(e, k)-vs-(¢’, K)-INpEPENDENCE ON D by a simple invocation to #st(e, k)-
INDEPENDENCE ON D. If D is such thatD ¢ D k) thenA(D, D(k) > € — € and the tester for the latter
problem with report “No”. Otherwise, iD € D ), then the tester returns “Yes”. m|

B.2 Sample complexity upper bound: proof of Theorem 4.1

We give an algorithm for #st(e, k)-vs-(¢’, k)-InpEPENDENCE, and use the relation of Lemma 4.6 to derive
the upper bound for dst(e, k)-inpEPENDENCE. In our algorithm for Est(e, k)-vs-(¢’, k)-INpEPENDENCE, We dO
not use biases. Note that using biases in the natural way wotrtatiice an approximation error of®
(see [3] for relations between the parametand the biases).

Theorem B.3(Sample upper bound)let0 < € < € < 1. Test(e, K)-vs-(¢’, K)-INDEPENDENCE Can be solved

using Q= O(('Z'E—Z)”z) samples from the distribution.

Proof. The algorithm proceeds in a straight-forward way: firstngghe sample®, compute a distribution
D that is an approximation tD, and then check whethér is closer to beingg, k)-wise independent, or is
closer to not even being’( k)-wise independent. Specifically, given the multiset ofripseQ, construct a
distribution D : {0,1}¢ — [0,1] that is uniformly distributed o, i.e., B(x) = UIULE= \whereQ =
{01,...0q}. Then we can compute the minimunslch tha is (€, k)-wise independent. ¥ < <€, then
we declareD is (¢, k)-wise independent, and, éf> % we declare thab is not (¢, k)-wise independent.

For this algorithm, we need to prove two properties. The isrittat if D is (e, k)-wise independent, then
€< % The second is that D is not ', k)-wise independent, then> %

We introduce the following notation. Farc [n], [C| = k, V € {0, 1}%, let f.y = P, [x|c :T/’]—Z‘k.
The important property oply is thaté' = max.y |Be-y|-

We prove that, with high probability, mgy; ||5C’7| is tightly concentrated around its true value. Fix any

C,V as above. Then we have thaty = X% & — 27, whereX; is an indicator variable equal to fFi
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Gilc = V. Note thatE [Xi] = Pryp [x|c :T/’]. By the Cherné bound, foro- = €3¢, we have that

Prq |IPcv — (E[Xi] - 27 > a‘]
Pro |Z!S|1 o -E [Xi]| > 0']

< exp|-Q((¢ - €%+ 1Q)]

Prq [|f’c,v — (Prxep [ch =7] -2 > cr]

A

Thus, settingQ| = O(('Z"i—gf)”z) with probability at least & n=*®, we have thalfi.y — (E [Xi] - 27)| <
.

Now, to show the first property, just note thar.p [x|c :V] - 2K < e whenD is (e k)-wise
independent. Thudf.y| < € + 0 = “75 By a union bound, with at least a constant probability,
max.y [Peyl < <5

For the second property, we show t ”E+E if D is not (¢, k)-wise independent. LeE,V be such
that | Pryp [ch :V] - 2K > ¢. Then, by the above deviation bound, with high probabllllné’v -
(Pryep [x|C =V] - 27%)| < <5<, Finally, we deduce thdficy| > € — o = € with high probability. o

B.3 Sample complexity lower bound: proof of Theorem 4.2

In this section we study the lower bound on sample compldgitghe problem Est(e, K)-INDEPENDENCE tO
within distances.
We first study the minimum support of a distributi@which is (, k)-wise independent. We show that

the minimum support of such a distribution@ﬁ(ﬁ log n). We then apply this argument to distributions

that are € + 6, k)-wise independent. Specifically, since a distribut@rsuch thatA(D, D) < ¢ is also
(e + 6, K)-wise independent (by Lemma 4.6), the minimum supportaigament implies thdD has support
size at least

| Supp)| > Q{m lo gn].

For obtaining the lower bound on sample complexity, we atersiwo distributions that are impossible

to distinguish unless we ha\fe( /W log n) samples. The first one is the uniform distributiof
€+

over {0, 1}". Obviously, U, is (g, k)-wise independent. The second dlstrlbutlﬁ is constructed via the
following random procesk: defineD* to be uniform over the s& of CW logn elements chosen
from U, (with replacement) for some constant- 0. Since any distributio* geonerated vid has small
support size, by the above bound on the support size, we hata(D", D)) > 6. However, using
the birthday paradox, unless( W log n) samples are drawn, both distributiobly and anD*
generated vi& look the same, and cannoetmbe distinguished by any algoriftira.actual proof follows. The
proof uses the following theorem that appears in [1].

Theorem B.4([1]). Let B be an n by n real matrix with, b= 1 for all i and |b; ;| < e for all i # j. If the

rank of Bis d, andZ < e < 3, then

d>Q #Iogn
€?log 1

Theorem B.5(minimum support size)Let% <e< E- The minimum support of a distribution D which is

(e, K)-wise independent @ ( Iog n)
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Proof. Consider a distributioD that is €, k)-wise independent. Assume tHatis given as a binarg x n
matrix Mp wheresis the support size. A restriction &p to a subse® # |1 c [1,---,n], |l| < kis denoted
asMp, and itis ansx [I| matrix that contains the relevant columnsibp.

ForO#1 c[1,---,n], |l| < '% consider the sum modulo 2 of the columns\df | and obtain a vector
vm, Of lengths. The weight ofvy, is denoted asv(vy, ) and it refers to the number of 1's iny. The
number of diferent setd, 0 # | c [1,---,n], |I| < 'g is ®(nk/2). Consider a matrix of dimensions by
©(n*'2) whose columns are all possible vecteyg . The matrixJ is a matrix of all 1's. LeC’ = J - C.

From the definition of £, k)-wise independent distribution we know that for ev@ry 1,J c [1,--- ,n],
INRE-NEN

2W(Vm,| ® Vm,3) — S

| | <e.
S

Consider now a matriB of dimension®(n/2) by ®(n¥'2), where its rows and columns are indexed by
different setd, andB, ; = %"MJ)_S Note thatB = [2(C! - C + C''- C’) — sJ]/s. SinceC,C’, J have
rank at moss, the rank ofB is also at moss. From the definition of€, k)-wise independent distribution we
obtain thatB, ) = 1 and|B, j| < e for | # J. Hence by Theorem B.4 we obtain

RanI(B)>Q[ a lIogn].

€?log

However, as mentioned above> RankB). Hence we obtain the claimed lower boundsn

s>Q K logn|.
e2log i

o
Corollary B.6. Let ﬁ% < €< % 0<6 < % — €. The minimum support of a distribution D for which

is o —Klogn__
A(D, D) <6isQ ((5+5)2 log 25 )

Proof. By Lemma 4.6 we get that a distributidh which isé-far from (g, k)-wise independent distribution
is a (€ + 6, k)-wise independent distribution. The corollary followsrfr the lower bound on the support size
of a (e + 6, k)-wise independent distribution as obtained in Theorem B.5 |

We are now ready to prove Theorem 4.2.

Theorem 4.2(Sample lower bound)For € > n™%/4, 0 < 6§ < 1/2 — ¢, any algorithm solvingTest(e, k)-

INDEPENDENCE t0 Within distance’ requires at leasiQ| = Q(— “klogn) samples from the distribution
(e+6) \/log 1/(e+9)
D.
Proof. We will show that if the algorithm ha® | ————— Vilogn samples, then it can not successfully
(e+6) \/log 1/(e+6)

distinguish the following two distributions with high prability. For the first distribution, consider the
uniform distributionU,, over{0, 1}". Obviously,U is (e, k)-wise independent for all ¥ k < nand 0< € <
%. The second distributio® is constructed via the following random procdssdefineD to be uniform

over the setS of C(EH;L% elements chosen frod,, (with replacement) for some ficiently small

constantc > 0. Since distrigﬂtiorD generated vi& has small support size, by Corollary B.6, we have that
A(D, D) > 6.

Now consider the distribution of the sample &ebf size ﬁ)%. For both distributionJ, and

D (chosen fronF), Qs a set of distinct element chosen frof0, 1}", Witeﬁéprobability at least 1112. This
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means that for any algorith#, we can show tha{PrQ&Un[ﬂ(Q) = 1] - Plpr gp[A(Q) = 1]| <1/6.In
other words,A cannot distinghuistJ,, from D based orl samples only, with success probability gf32
This completes the proof. m|

Theorem B.7. Letnk—l/4 <e<é€ < % Test(€, K)-vs-(€’, K)-INDEPENDENCE

k

requires at leasf)( @Flog L log n) samples from the distribution.

Proof. By Lemma 4.6 we get that a distributi@which is not ¢, k)-wise independent is at least £ €)-far
from a (, k)-wise independent distribution and from the lower boundTiest(e, k)-vs-(¢’, K)-INDEPENDENCE
we obtain the claimed lower bound. ]

B.4 Hardness of hidden clique: finding vs deciding

In the following, we prove that the hardness of finding a hiddkque in a random graph (conjecture 4.3)
implies the hardness of deciding on the presence of a hidagredn a random graph (conjecture 4.7).

Theorem B.8. For t(n) > Q(logn), HC-Fnp[t(n)] impliesHC-Decme[t(n)/3].

Proof. The proof is by contradiction. Suppose, for amy> ng, we can distinguish in polynomial time
whether a grapl® is drawn fromGn 1/2 or Gn1/21/3, With probability at least + 1/2n?. Let M be such a
distinguisher.

Then, forn > 3ng, given a graplG from G 12+, we can find a clique of sizgn G using the distinguisher
M as follows. Our algorithm is somewhat similar to the aldgortBasicFind used in [15] to find a hidden
clique of sizet = Q(+/n).

1. LetC = 0 (representing the current clique).
2. For each vertex of the graphs,
3. LetG, = G\ {v} \ N, be the graph obtained by removiadgogether withv's neighbors. Leh,
be the number of vertices (@,.
4. If M(Gy) outputs ‘G, 1/2", then putvinto the seC. Do nothing ifM(G,) outputs ‘G, 1/21/3"
5. OutputC.

The intuition behind the algorithm is the following. LKtbe the planted clique i®. If vis in K, then
after removingv and the neighborhoobl,, we remove the entire cliqui€, and the remaining grap8, is
a random graph fron@n, 1/2. If v ¢ K, then after removing andN,, we have deleted at most/3 of the
clique with high probability, and thus the grafh is a random graph with a hidden clique of size at least
t/3, i.e., chosen frong, 12+ for somet’ > t/3.

More formally, consider first any vertaxsuch thaw ¢ K. Then we can viev, as being generated via
the following random process. Pick integgras the number of vertices in the graph obtained by starting
with n vertices, deleting the vertex and then deleting each vertex with probabilitf21 Then pick integer
t" as follows: taken, red vertices anah — 1 — n, blue vertices, then draw randomign) vertices (without
repetitions); set’ to be the number of red vertices that were drawn. Finally gga&, via the process
Gn,1/2v. Note that P, < 0.4n] < e ", and Prf’ < t(n,)/3] < PIft’ < t(n)/3] < e M), Thus,M, run
on Gy, will output “Gy, 1/2¢" With probability 1 — et _n=2/2,

Now consider any vertex € K. Then we can viev, as being generated as follows. Pigkaccording
to the following distribution: start with vertices, delete vertexandt(n)—1 other vertices (the other vertices
of the cliqueK), and then delete each remaining vertex with probabiliB; the size of the surviving graph
givesn,. Finally, we generat&, via the procesgh, 1/>. Note that Prfi, < n/3] < ", Thus,M, run on
Gy, will output “Gy, 1/2” with probability 1 — e ™ —n=2/2,

By the union bound over all vertices with probability at least + 1/n, the algorithmM gives the right
answer for all of then verticesv. Thus, we outpu€ = K with probability at least + 1/n. O
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